1
|
Liu J, Wu F, Zhan G, Wang K, Zhang Y, Hu D, Chen Y. DECT sparse reconstruction based on hybrid spectrum data generative diffusion model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108597. [PMID: 39809092 DOI: 10.1016/j.cmpb.2025.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
PURPOSE Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution. However, this imaging method can impact image quality. Therefore, this paper presents a hybrid spectrum data generative diffusion reconstruction model (HSGDM) to improve imaging quality. METHOD To exploit the spectral similarity of DECT, we use interleaved angles for sparse scanning to obtain low- and high-energy CT images with complementary incomplete views. Furthermore, we organize low- and high-energy CT image views into multichannel forms for training and inference and promote information exchange between low-energy features and high-energy features, thus improving the reconstruction quality while reducing the radiation dose. In the HSGDM, we build two types of diffusion model constraint terms trained by the image space and wavelet space. The wavelet space diffusion model exploits mainly the orientation and scale features of artifacts. By integrating the image space diffusion model, we establish a hybrid constraint for the iterative reconstruction framework. Ultimately, we transform the iterative approach into a cohesive sampling process guided by the measurement data, which collaboratively produces high-quality and consistent reconstructions of sparse view DECT. RESULTS Compared with the comparison methods, this approach is competitive in terms of the precision of the CT values, the preservation of details, and the elimination of artifacts. In the reconstruction of 30 sparse views, with increases of 3.51 dB for the peak signal-to-noise ratio (PSNR), 0.03 for the structural similarity index measure (SSIM), and a reduction of 74.47 for the Fréchet inception distance (FID) score on the test dataset. In the ablation study, we determined the effectiveness of our proposed hybrid prior, consisting of the wavelet prior module and the image prior module, by comparing the visual effects and quantitative results of the methods using an image space model, a wavelet space model, and our hybrid model approach. Both qualitative and quantitative analyses of the results indicate that the proposed method performs well in sparse DECT reconstruction tasks. CONCLUSION We have developed a unified optimized mathematical model that integrates the image space and wavelet space prior knowledge into an iterative model. This model is more practical and interpretable than existing approaches are. The experimental results demonstrate the competitive performance of the proposed model.
Collapse
Affiliation(s)
- Jin Liu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China.
| | - Fan Wu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Guorui Zhan
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Kun Wang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Yikun Zhang
- Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China.
| | - Dianlin Hu
- The Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Yang Chen
- Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Jakubowski BR, Griffiths M, Goss KN. The Role of Imaging in Pulmonary Vascular Disease: The Clinician's Perspective. Radiol Clin North Am 2025; 63:305-313. [PMID: 39863382 PMCID: PMC11763221 DOI: 10.1016/j.rcl.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases. While CT angiography is preferred for the detection of acute pulmonary embolus, dual-energy CT, single photon emission CT, and ventilation/perfusion scintigraphy are recommended for the detection of chronic thromboembolic disease. Application of these modalities will be reviewed here.
Collapse
Affiliation(s)
- Brandon R Jakubowski
- Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA
| | - Megan Griffiths
- Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA
| | - Kara N Goss
- Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA.
| |
Collapse
|
3
|
Horvat D, Orzan RI, Agoston-Coldea L. A Non-Invasive Approach to Pulmonary Hypertension. J Clin Med 2025; 14:1473. [PMID: 40094931 PMCID: PMC11900574 DOI: 10.3390/jcm14051473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disease associated with a poor prognosis, with progressive right ventricular (RV) failure being the main cause of death in this vulnerable population. Right heart catheterization remains the gold standard for assessing pulmonary hemodynamics. However, due to its invasive nature, non-invasive imaging methods are gaining increasing interest. Two-dimensional transthoracic echocardiography serves as the primary screening tool for PH and is widely used to estimate its likelihood. Nevertheless, this technique has several limitations, partially addressed through the assistance of a three-dimensional echocardiography. Cardiac magnetic resonance imaging (CMR) provides a comprehensive evaluation of both the morphology and hemodynamics of right ventricle-pulmonary artery unit, offering essential information for diagnosis, prognosis, and therapeutic monitoring. While two-dimensional cardiac CMR enables non-invasive characterization of pulmonary hemodynamics, advances in 4D-flow cardiac CMR allow for a more detailed analysis. These advancements enable the assessment of flow patterns, energetics, wall shear stress and severity, offering a more nuanced understanding of the disease. This review aims to provide an in-depth summary of the current data on advanced non-invasive imaging techniques for PH.
Collapse
Affiliation(s)
- Dalma Horvat
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 2-4 Clinicilor, 400006 Cluj-Napoca, Romania; (R.I.O.); (L.A.-C.)
| | - Rares Ilie Orzan
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 2-4 Clinicilor, 400006 Cluj-Napoca, Romania; (R.I.O.); (L.A.-C.)
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 2-4 Clinicilor, 400006 Cluj-Napoca, Romania; (R.I.O.); (L.A.-C.)
- 2nd Department of Internal Medicine, Emergency County Hospital, 400347 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Remy-Jardin M, Guiffault L, Oufriche I, Duhamel A, Flohr T, Schmidt B, Remy J. Image quality of lung perfusion with photon-counting-detector CT: comparison with dual-source, dual-energy CT. Eur Radiol 2024; 34:7831-7844. [PMID: 38967660 DOI: 10.1007/s00330-024-10888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To evaluate the quality of lung perfusion imaging obtained with photon-counting-detector CT (PCD-CT) in comparison with dual-source, dual-energy CT (DECT). METHODS Seventy-one consecutive patients scanned with PCD-CT were compared to a paired population scanned with dual-energy on a 3rd-generation DS-CT scanner using (a) for DS-CT (Group 1): collimation: 64 × 0.6 × 2 mm; pitch: 0.55; (b) for PCD-CT (Group 2): collimation: 144 × 0.4 mm; pitch: 1.5; single-source acquisition. The injection protocol was similar in both groups with the reconstruction of perfusion images by subtraction of high- and low-energy virtual monoenergetic images. RESULTS Compared to Group 1, Group 2 examinations showed: (a) a shorter duration of data acquisition (0.93 ± 0.1 s vs 3.98 ± 0.35 s; p < 0.0001); (b) a significantly lower dose-length-product (172.6 ± 55.14 vs 339.4 ± 75.64 mGy·cm; p < 0.0001); and (c) a higher level of objective noise (p < 0.0001) on mediastinal images. On perfusion images: (a) the mean level of attenuation did not differ (p = 0.05) with less subjective image noise in Group 2 (p = 0.049); (b) the distribution of scores of fissure visualization differed between the 2 groups (p < 0.0001) with a higher proportion of fissures sharply delineated in Group 2 (n = 60; 84.5% vs n = 26; 26.6%); (c) the rating of cardiac motion artifacts differed between the 2 groups (p < 0.0001) with a predominance of examinations rated with mild artifacts in Group 2 (n = 69; 97.2%) while the most Group 1 examinations showed moderate artifacts (n = 52; 73.2%). CONCLUSION PCD-CT acquisitions provided similar morphologic image quality and superior perfusion imaging at lower radiation doses. CLINICAL RELEVANCE STATEMENT The improvement in the overall quality of perfusion images at lower radiation doses opens the door for wider applications of lung perfusion imaging in clinical practice. KEY POINTS The speed of data acquisition with PCD-CT accounts for mild motion artifacts. Sharply delineated fissures are depicted on PCD-CT perfusion images. High-quality perfusion imaging was obtained with a 52% dose reduction.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France.
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, LILLE, France.
- IMALLIANCE-Haut-de-France, Valenciennes, France.
| | - Lucas Guiffault
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
| | - Idir Oufriche
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
| | - Alain Duhamel
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, LILLE, France
- Department of Biostatistics, University of Lille, CHU Lille, LILLE, France
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Bernhard Schmidt
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Jacques Remy
- Department of Thoracic Imaging, University Hospital Center of Lille, LILLE, France
- Department of Radiology, Valenciennes Regional Hospital, Valenciennes, France
| |
Collapse
|
5
|
Rajagopal S, Bogaard HJ, Elbaz MSM, Freed BH, Remy-Jardin M, van Beek EJR, Gopalan D, Kiely DG. Emerging multimodality imaging techniques for the pulmonary circulation. Eur Respir J 2024; 64:2401128. [PMID: 39209480 PMCID: PMC11525339 DOI: 10.1183/13993003.01128-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) remains a challenging condition to diagnose, classify and treat. Current approaches to the assessment of PH include echocardiography, ventilation/perfusion scintigraphy, cross-sectional imaging using computed tomography and magnetic resonance imaging, and right heart catheterisation. However, these approaches only provide an indirect readout of the primary pathology of the disease: abnormal vascular remodelling in the pulmonary circulation. With the advent of newer imaging techniques, there is a shift toward increased utilisation of noninvasive high-resolution modalities that offer a more comprehensive cardiopulmonary assessment and improved visualisation of the different components of the pulmonary circulation. In this review, we explore advances in imaging of the pulmonary vasculature and their potential clinical translation. These include advances in diagnosis and assessing treatment response, as well as strategies that allow reduced radiation exposure and implementation of artificial intelligence technology. These emerging modalities hold the promise of developing a deeper understanding of pulmonary vascular disease and the impact of comorbidities. They also have the potential to improve patient outcomes by reducing time to diagnosis, refining classification, monitoring treatment response and improving our understanding of disease mechanisms.
Collapse
Affiliation(s)
| | - Harm J Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
6
|
Moore J, Altschul E, Remy-Jardin M, Raoof S. Chronic Thromboembolic Pulmonary Hypertension: Clinical and Imaging Evaluation. Clin Chest Med 2024; 45:405-418. [PMID: 38816096 DOI: 10.1016/j.ccm.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of pulmonary embolism and is an important cause of pulmonary hypertension. As a clinical entity, it is frequently underdiagnosed with prolonged diagnostic delays. This study reviews the clinical and radiographic findings associated with CTEPH to improve awareness and recognition. Strengths and limitations of multiple imaging modalities are reviewed. Accompanying images are provided to supplement the text and provide examples of important findings for the reader.
Collapse
Affiliation(s)
- Jonathan Moore
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA
| | - Erica Altschul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA
| | - Martine Remy-Jardin
- Department of Thoracic Imaging, Univ.Lille, CHU Lille, LILLE F-59000, France; Univ.Lille, CHU Lille, ULR 2694 METRICS Evaluation des Technologies de Santé et des Pratiques Médicales, LILLE F-59000, France
| | - Suhail Raoof
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA.
| |
Collapse
|
7
|
Páez-Carpio A, Vollmer I, Zarco FX, Matute-González M, Domenech-Ximenos B, Serrano E, Barberà JA, Blanco I, Gómez FM. Imaging of chronic thromboembolic pulmonary hypertension before, during and after balloon pulmonary angioplasty. Diagn Interv Imaging 2024; 105:215-226. [PMID: 38413273 DOI: 10.1016/j.diii.2024.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
Balloon pulmonary angioplasty (BPA) has recently been elevated as a class I recommendation for the treatment of inoperable or residual chronic thromboembolic pulmonary hypertension (CTEPH). Proper patient selection, procedural safety, and post-procedural evaluation are crucial in the management of these patients, with imaging work-up playing a pivotal role. Understanding the diagnostic and therapeutic imaging algorithms of CTEPH, the imaging features of patients amenable to BPA, all imaging findings observed during and immediately after the procedure and the changes observed during the follow-up is crucial for all interventional radiologists involved in the care of patients with CTEPH. This article illustrates the imaging work-up of patients with CTEPH amenable to BPA, the imaging findings observed before, during and after BPA, and provides a detailed description of all imaging modalities available for CTEPH evaluation.
Collapse
Affiliation(s)
- Alfredo Páez-Carpio
- Department of Radiology, CDI, Hospital Clínic Barcelona, Barcelona 08036, Spain; Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, ON, Canada; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain.
| | - Ivan Vollmer
- Department of Radiology, CDI, Hospital Clínic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Federico X Zarco
- Department of Radiology, CDI, Hospital Clínic Barcelona, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | | | | | - Elena Serrano
- Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat 08907, Spain
| | - Joan A Barberà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Department of Pulmonary Medicine, ICR, Hospital Clínic Barcelona, Barcelona 08036, Spain; Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid 28029, Spain
| | - Isabel Blanco
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; Department of Pulmonary Medicine, ICR, Hospital Clínic Barcelona, Barcelona 08036, Spain; Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid 28029, Spain
| | - Fernando M Gómez
- Interventional Radiology Unit, Department of Radiology, Hospital Universitari i Politècnic La Fe, València 46026, Spain; Interventional Radiology Unit, Department of Radiology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
8
|
Hirata T, Yoshimura N, Yagi T, Yamazaki M, Horii Y, Ishikawa H. Association between pre-treatment computed tomography findings and post-treatment persistent decrease in lung perfusion blood volume. Sci Rep 2024; 14:11919. [PMID: 38789497 PMCID: PMC11126722 DOI: 10.1038/s41598-024-62890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
The purpose of this study was to evaluate pre-treatment CT findings in patients with acute pulmonary embolism (PE) and determine the imaging findings associated with residual hypoperfused segments in post-treatment lung perfused blood volume (LPBV). We evaluated 91 patients with acute PE who underwent dual-energy CT before and after treatment. The location of thrombi (proximal or distal) and patency of the pulmonary artery (occlusive or non-occlusive) were recorded using pre-treatment computed tomography pulmonary angiography (CTPA). Residual hypoperfusion was defined as a perfusion-decreased area seen in both the pre- and post-treatment LPBVs. The association of the location of the thrombus and vascular patency of pre-treatment CTPA with residual hypoperfusion on a segmental and patient basis was examined. In the segment-based analysis, the proportion of residual hypoperfusion in the proximal group was significantly higher than that in the peripheral group (33/125 [26.4%] vs. 9/87 [10.3%], P = 0.004). Patient-based analysis also showed that the proportion of residual hypoperfusion in patients with pre-treatment proximal thrombus was significantly higher than those without (16/42 [38.1%] vs. 3/25 (12.0%); P = 0.022). Pre-treatment vascular patency was not significantly associated with residual hypoperfusion (P > 0.05). Therefore, careful follow-up is necessary, especially in patients with proximal thrombi.
Collapse
Affiliation(s)
- Tetsuhiro Hirata
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-City, Niigata, 951-8510, Japan.
| | - Norihiko Yoshimura
- Department of Radiology, Niigata City General Hospital, 463-7 Syumoku, Chuo-Ku, Niigata-City, Niigata, 950-1141, Japan
| | - Takuya Yagi
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-City, Niigata, 951-8510, Japan
| | - Motohiko Yamazaki
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-City, Niigata, 951-8510, Japan
| | - Yosuke Horii
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-City, Niigata, 951-8510, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata-City, Niigata, 951-8510, Japan
| |
Collapse
|
9
|
Renapurkar RD, Bullen J, Rizk A, Abozeed M, Karim W, Bin Saeedan M, Tong MZ, Heresi GA. A Novel Dual Energy Computed Tomography Score Correlates With Postoperative Outcomes in Chronic Thromboembolic Pulmonary Hypertension. J Thorac Imaging 2024; 39:178-184. [PMID: 37423613 DOI: 10.1097/rti.0000000000000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
PURPOSE To compare dual-energy computed tomography (DECT) based qualitative and quantitative parameters in chronic thromboembolic pulmonary hypertension with various postoperative primary and secondary endpoints. MATERIALS AND METHODS This was a retrospective analysis of 64 patients with chronic thromboembolic pulmonary hypertension who underwent DECT. First, a clot score was calculated by assigning the following score: pulmonary trunk-5, each main pulmonary artery-4, each lobar-3, each segmental-2, and subsegmental-1 per lobe; the sum total was then calculated. The perfusion defect (PD) score was calculated by assigning 1 point to each segmental PD. The combined score was calculated by adding clot and PD scores. For quantitative evaluation, we calculated perfused blood volume (PBV) (%) of each lung and the sum of both lungs. Primary endpoints included testing association between combined score and total PBV with change in mean pulmonary arterial pressure ([mPAP], change calculated as preop minus postop values). Secondary endpoints included explorative analysis of the correlation between combined score and PBV with change in preoperative and postoperative pulmonary vascular resistance, change in preoperative 6-minute walk distance (6MWD), and immediate postoperative complications such as reperfusion edema, ECMO placement, stroke, death and mechanical ventilation for more than 48 hours, all within 1 month of surgery. RESULTS Higher combined scores were associated with larger decreases in mPAP ( =0.27, P =0.036). On average, the decrease in mPAP (pre mPAP-post mPAP) increased by 2.2 mm Hg (95% CI: -0.6, 5.0) with each 10 unit increase in combined score. The correlation between total PBV and change in mPAP was small and not statistically significant. During an exploratory analysis, higher combined scores were associated with larger increases in 6MWD at 6 months postprocedure ( =0.55, P =0.002). CONCLUSION Calculation of DECT-based combined score offers potential in the evaluation of hemodynamic response to surgery. This response can also be objectively quantified.
Collapse
Affiliation(s)
| | | | - Alain Rizk
- Section of Thoracic Imaging, Imaging Institute
| | | | - Wadih Karim
- Section of Thoracic Imaging, Imaging Institute
| | | | | | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
10
|
Moore J, Remy J, Altschul E, Chusid J, Flohr T, Raoof S, Remy-Jardin M. Thoracic Applications of Spectral CT Scan. Chest 2024; 165:417-430. [PMID: 37619663 DOI: 10.1016/j.chest.2023.07.4225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
TOPIC IMPORTANCE Thoracic imaging with CT scan has become an essential component in the evaluation of respiratory and thoracic diseases. Providers have historically used conventional single-energy CT; however, prevalence of dual-energy CT (DECT) is increasing, and as such, it is important for thoracic physicians to recognize the utility and limitations of this technology. REVIEW FINDINGS The technical aspects of DECT are presented, and practical approaches to using DECT are provided. Imaging at multiple energy spectra allows for postprocessing of the data and the possibility of creating multiple distinct image reconstructions based on the clinical question being asked. The data regarding utility of DECT in pulmonary vascular disorders, ventilatory defects, and thoracic oncology are presented. A pictorial essay is provided to give examples of the strengths associated with DECT. SUMMARY DECT has been most heavily studied in chronic thromboembolic pulmonary hypertension; however, it is increasingly being used across a wide spectrum of thoracic diseases. DECT combines morphologic and functional assessments in a single imaging acquisition, providing clinicians with a powerful diagnostic tool. Its role in the evaluation and treatment of thoracic diseases will likely continue to expand in the coming years as clinicians become more experienced with the technology.
Collapse
Affiliation(s)
- Jonathan Moore
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jacques Remy
- Univ Lille, Department of Thoracic Imaging, Lille, France
| | - Erica Altschul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jesse Chusid
- Feinstein Institutes for Medical Research, and Imaging Services, Department of Radiology, Northwell Health, Manhasset, NY
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers, Forchheim, Germany
| | - Suhail Raoof
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY.
| | - Martine Remy-Jardin
- Univ Lille, Department of Thoracic Imaging, Lille, France; Univ Lille, CHU Lille, Evaluation des technologies de santé et des pratiques médicales, Lille, France
| |
Collapse
|
11
|
Yamaguchi T, Ehara S, Yoshida H, Himoto D, Izuta S, Hayashi O, Hayashi H, Ogawa M, Shibata A, Yamazaki T, Izumiya Y, Fukuda D. Quantification of pulmonary perfusion using LSIM-CT correlates with pulmonary hemodynamics in patients with CTEPD. Front Cardiovasc Med 2023; 10:1237296. [PMID: 38028450 PMCID: PMC10654960 DOI: 10.3389/fcvm.2023.1237296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Lung subtraction iodine mapping (LSIM)-CT is a clinically useful technique that can visualize pulmonary mal-perfusion in patients with chronic thromboembolic pulmonary disease (CTEPD). However, little is known about the associations of LSIM images with hemodynamic parameters of patients with CTEPD. This study investigates a parameter of LSIM images associated with mean pulmonary arterial pressure (mPAP) and validates the association between pulmonary vascular resistance, right atrial pressure, cardiac index, and exercise capacity in patients with CTEPD. Methods This single-center, prospective, observational study involved 30 patients diagnosed with CTEPD using lung perfusion scintigraphy. To examine the correlation of decreased pulmonary perfusion area (DPA) with mPAP, areas with 0-10, 0-15, 0-20, and 0-30 HU in lung subtraction images were adopted in statistical analysis. The DPA to total lung volume ratio (DPA ratio, %) was calculated as the ratio of each DPA volume to the total lung volume. To assess the correlation between DPA ratios of 0-10, 0-15, 0-20, and 0-30 HU and mPAP, Spearman's rank correlation coefficient was used. Results The DPA ratio of 0-10 HU had the most preferable correlation with mPAP than DPA ratios of 0-15, 0-20, and 0-30 HU (ρ = 0.440, P = 0.015). The DPA ratio of 0-10 HU significantly correlates with pulmonary vascular resistance (ρ = 0.445, P = 0.015). The receiver operating characteristic curve analysis indicated that the best cutoff value of the DPA ratio of 0-10 HU for the prediction of an mPAP of ≥30 mmHg was 8.5% (AUC, 0.773; 95% CI, 0.572-0.974; sensitivity, 83.3%; specificity, 75.0%). Multivariate linear regression analysis, which was adjusted for the main pulmonary arterial to ascending aortic diameter ratio and right ventricular to left ventricular diameter ratio, indicated that the DPA ratio of 0-10 HU was independently and significantly associated with mPAP (B = 89.7; 95% CI, 46.3-133.1, P < 0.001). Conclusion The DPA ratio calculated using LSIM-CT is possibly useful for estimating the hemodynamic status in patients with CTEPD.
Collapse
Affiliation(s)
- Tomohiro Yamaguchi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shoichi Ehara
- Department of Intensive Care Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hisako Yoshida
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Himoto
- Department of Radiology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Shinichiro Izuta
- Department of Radiology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Ou Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroya Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mana Ogawa
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Shibata
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takanori Yamazaki
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Remy-Jardin M, Hutt A, Remy J. Chronic Thromboembolic Pulmonary Disease and Chronic Thromboembolic Pulmonary Hypertension. Semin Respir Crit Care Med 2022; 43:936-945. [PMID: 36307107 DOI: 10.1055/s-0042-1755570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary disease (CTEPD) are two terms characterizing symptomatic patients with chronic thromboembolic occlusions of pulmonary arteries with or without pulmonary hypertension at rest. Their diagnosis follows evolving schemas that integrate technological advances of pivotal imaging modalities among which computed tomography angiography plays a major role. This review article summarizes the current knowledge on the natural history of acute pulmonary embolism and its evolution toward chronic pulmonary embolism, as well as the imaging clues, for the identification of chronically obstructed pulmonary arteries. The requirements for imaging at the time of therapeutic decisions are also described in the light of recent updates in the literature from multidisciplinary groups of experts. Because an early diagnosis of CTEPH remains a challenge for the medical community, several practical issues are included in this article with the objective of improving the knowledge and collaboration between radiologists and clinicians in service to the patient.
Collapse
Affiliation(s)
| | - Antoine Hutt
- Department of Thoracic Imaging, Heart & Lung Institute, Lille Cedex, France
| | - Jacques Remy
- Department of Thoracic Imaging, Heart & Lung Institute, Lille Cedex, France
| |
Collapse
|
13
|
Correlation between CT Value on Lung Subtraction CT and Radioactive Count on Perfusion Lung Single Photon Emission CT in Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12112895. [PMID: 36428955 PMCID: PMC9688979 DOI: 10.3390/diagnostics12112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Lung subtraction CT (LSCT), the subtraction of noncontrast CT from CT pulmonary angiography (CTPA) without spatial misregistration, is easily applicable by utilizing a software-based deformable image registration technique without additional hardware and permits the evaluation of lung perfusion as iodine accumulation, similar to that observed in perfusion lung single photon emission CT (PL-SPECT). The aim of this study was to use LSCT to newly assess the quantitative correlation between the CT value on LSCT and radioactive count on PL-SPECT as a reference and validate the quantification of lung perfusion by measuring the CT value in chronic thromboembolic pulmonary hypertension (CTEPH). Methods: We prospectively enrolled 47 consecutive patients with CTEPH undergoing both LSCT and PL-SPECT; we used noncontrast CT, CTPA, and LSCT to measure CT values and PL-SPECT to measure radioactive counts in areas representing three different perfusion classes—no perfusion defect, subsegmental perfusion defect, and segmental perfusion defect; we compared CT values on noncontrast CT, CTPA, and LSCT and radioactive counts on PL-SPECT among the three classes, then assessed the correlation between them. Results: Both the CT values and radioactive counts differed significantly among the three classes (p < 0.01 for all) and showed weak correlation (ρ = 0.38) by noncontrast CT, moderate correlation (ρ = 0.61) by CTPA, and strong correlation (ρ = 0.76) by LSCT. Conclusions: The CT value measurement on LSCT is a novel quantitative approach to assess lung perfusion in CTEPH and only correlates strongly with radioactive count measurement on PL-SPECT.
Collapse
|
14
|
Lambert L, Michalek P, Burgetova A. The diagnostic performance of CT pulmonary angiography in the detection of chronic thromboembolic pulmonary hypertension-systematic review and meta-analysis. Eur Radiol 2022; 32:7927-7935. [PMID: 35482124 DOI: 10.1007/s00330-022-08804-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To examine the diagnostic performance of CT of the pulmonary artery (CTPA) as a potential first-choice imaging modality in patients with pulmonary arterial hypertension and suspected chronic thromboembolic pulmonary hypertension (CTEPH). METHODS A systematic review and meta-analysis were conducted in accordance with the PRISMA reporting checklist. Six scientific databases and registers (PubMed, EMBASE, Scopus, Web of Science, Cochrane, ClinicalTrials.gov ) were searched for studies evaluating the diagnostic performance of CTPA in suspected CTEPH in adult patients. Results were pooled separately for studies based on the evaluation of the pulmonary artery and those that relied solely on changes in parenchymal perfusion. RESULTS Ten single-center studies with 734 patients were eligible for pooling of the diagnostic performance of CTPA by evaluation of the pulmonary artery. The pooled sensitivity, specificity, PPV, NPV, accuracy, and diagnostic odds ratio (DOR) estimates for CTPA in the detection of CTEPH were 0.98, 0.99, 0.94, 1.00, 0.96, 0.96, and 292. Evaluation of perfusion changes yielded pooled estimates for sensitivity, specificity, PPV, NPV, accuracy, and DOR of 0.99, 0.84, 0.79, 0.98, 0.89, 0.89, and 98 across four studies with 278 patients. Scintigraphy, SPECT, digital subtraction angiography, right heart catheterization, pulmonary endarterectomy, and international guidelines were used to establish the diagnosis. CONCLUSION CTPA has high sensitivity and specificity in the detection of CTEPH when the examination is evaluated by expert radiologists. Evaluation of parenchymal perfusion alone is associated with slightly lower specificity. Further research is needed to determine the diagnostic performance of CTPA in excluding CTEPH in general radiology departments. KEY POINTS • CT pulmonary angiography (CTPA) is recommended in the diagnostic workup of chronic thromboembolic pulmonary hypertension (CTEPH). • CTPA has high sensitivity and specificity in the detection of CTEPH when evaluated by an expert radiologist. • Evaluation of changes in parenchymal perfusion alone is associated with slightly lower specificity. • Little is known about the diagnostic performance of CTPA in the detection of CTEPH in general radiology departments.
Collapse
Affiliation(s)
- Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic.
| | - Pavel Michalek
- Department of Anaesthesiology, Resuscitation and Intensive Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| | - Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague 2, Czech Republic
| |
Collapse
|
15
|
Sirajuddin A, Mirmomen SM, Henry TS, Kandathil A, Kelly AM, King CS, Kuzniewski CT, Lai AR, Lee E, Martin MD, Mehta P, Morris MF, Raptis CA, Roberge EA, Sandler KL, Donnelly EF. ACR Appropriateness Criteria® Suspected Pulmonary Hypertension: 2022 Update. J Am Coll Radiol 2022; 19:S502-S512. [PMID: 36436973 DOI: 10.1016/j.jacr.2022.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
Pulmonary hypertension may be idiopathic or related to a large variety of diseases. Various imaging examinations may be helpful in diagnosing and determining the etiology of pulmonary hypertension. Imaging examinations discussed in this document include chest radiography, ultrasound echocardiography, ventilation/perfusion scintigraphy, CT, MRI, right heart catheterization, and pulmonary angiography. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer-reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which peer-reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | | | - Travis S Henry
- Panel Chair, University of California San Francisco, San Francisco, California; Co-Director, ACR Education Center High Resolution CT of the Chest Course; Division Chief of Cardiothoracic Imaging, Duke University
| | - Asha Kandathil
- University of Texas Southwestern Medical Center, Dallas, Texas; Associate Program Director, Cardiothoracic Radiology Fellowship, The University of Texas Southwestern Medical Center
| | - Aine Marie Kelly
- Emory University Hospital, Atlanta, Georgia; Assistant Program Director Radiology Residency
| | - Christopher S King
- Inova Fairfax Hospital, Falls Church, Virginia; American College of Chest Physicians; Associate Medical Director, Advanced Lung Disease and Transplant Program; Associate Medical Director, Pulmonary Hypertension Program; System Director, Respiratory Therapy; Pulmonary Fibrosis Foundation
| | | | - Andrew R Lai
- University of California San Francisco, San Francisco, California; Primary care physician; former Director of the University of California San Francisco Hospitalist Procedure Service; former Director of the University of California San Francisco Division of Hospital Medicine's Case Review Committee, and former Director of procedures/quality improvement rotation for for the UCSF Internal Medicince residency
| | - Elizabeth Lee
- University of Michigan Health System, Ann Arbor, Michigan; Director M1Radiology Education University of Michigan Medical School, Associated Program Director Diagnostic Radiology Michigan Medicine, Director of Residency Education Cardiothoracic Division Michigan
| | - Maria D Martin
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Director Diversity and Inclusion, Department of Radiology, University of Wisconsin School of Medicine and Public Health
| | - Parth Mehta
- University of Illinois at Chicago College of Medicine, Chicago, Illinois; American College of Physicians
| | - Michael F Morris
- University of Arizona College of Medicine, Phoenix, Arizona; Director of Cardiac CT and MRI
| | | | - Eric A Roberge
- Uniformed Services University of the Health Sciences-Madigan Army Medical Center, Joint Base Lewis-McChord, Washington
| | - Kim L Sandler
- Vanderbilt University Medical Center, Nashville, Tennessee; Imaging Chair Thoracic Committee ECOG-ACRIN; Co-Chair Lung Screening 2.0 Steering Committee; Co-Director Vanderbilt Lung Screening Program
| | - Edwin F Donnelly
- Specialty Chair, The Ohio State University Wexner Medical Center, Columbus, Ohio; Ohio State University Medical Center: Chief of Thoracic Radiology, Interim Vice Chair of Academic Affairs, Department of Radiology
| |
Collapse
|
16
|
Miwa K, Taniguchi Y, Fujii H, Matsuoka Y, Onishi H, Yanaka K, Izawa Y, Tsuboi Y, Kono A, Emoto N, Hirata K. Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension. Life (Basel) 2022; 12:1232. [PMID: 36013412 PMCID: PMC9410450 DOI: 10.3390/life12081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Poor subpleural perfusion (PSP) on dual-energy computed tomography (DE-CT) suggests microvasculopathy in chronic thromboembolic pulmonary hypertension (CTEPH). However, whether the microvasculopathy findings are equivalent to those in pulmonary arterial hypertension (PAH) remains unclear. The aim of this study was to elucidate the characteristics of microvasculopathy in CTEPH compared to those of that in PAH. Methods: We retrospectively reviewed subpleural perfusion on DE-CT and the hemodynamics of 23 patients with PAH and 113 with inoperable CTEPH. Subpleural perfusion on DE-CT was classified as poor (subpleural spaces in all segments with little or no perfusion) or normal. Results: PSP was observed in 51% of patients with CTEPH and in 4% of those with PAH (p < 0.01). CTEPH patients with PSP had poorer baseline hemodynamics and lower diffusing capacity for carbon monoxide divided by the alveolar volume (DLCO/VA) than those with CTEPH with normal perfusion (pulmonary vascular resistance [PVR]: 768 ± 445 dynes-sec/cm5 vs. 463 ± 284 dynes-sec/cm5, p < 0.01; DLCO/VA, 60.4 ± 16.8% vs. 75.9 ± 15.7%, p < 0.001). Despite the existence of PSP, hemodynamics improved to nearly normal in both groups after balloon pulmonary angioplasty. Conclusions: PSP on DE-CT, which is one of the specific imaging findings in CTEPH, might suggest a different mechanism of microvasculopathy from that in PAH.
Collapse
Affiliation(s)
- Keisuke Miwa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroyuki Fujii
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoichiro Matsuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroyuki Onishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichi Yanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu Izawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasunori Tsuboi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Atsushi Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
17
|
Hermann EA, Motahari A, Hoffman EA, Allen N, Bertoni AG, Bluemke DA, Eskandari A, Gerard SE, Guo J, Hiura GT, Kaczka DW, Michos ED, Nagpal P, Pankow J, Shah S, Smith BM, Stukovsky KH, Sun Y, Watson K, Barr RG. Pulmonary Blood Volume Among Older Adults in the Community: The MESA Lung Study. Circ Cardiovasc Imaging 2022; 15:e014380. [PMID: 35938411 PMCID: PMC9387743 DOI: 10.1161/circimaging.122.014380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pulmonary vasculature is essential for gas exchange and impacts both pulmonary and cardiac function. However, it is difficult to assess and its characteristics in the general population are unknown. We measured pulmonary blood volume (PBV) noninvasively using contrast enhanced, dual-energy computed tomography to evaluate its relationship to age and symptoms among older adults in the community. METHODS The MESA (Multi-Ethnic Study of Atherosclerosis) is an ongoing community-based, multicenter cohort. All participants attending the most recent MESA exam were selected for contrast enhanced dual-energy computed tomography except those with estimated glomerular filtration rate <60 mL/min per 1.73 m2. PBV was calculated by material decomposition of dual-energy computed tomography images. Multivariable models included age, sex, race/ethnicity, education, height, weight, smoking status, pack-years, and scanner model. RESULTS The mean age of the 727 participants was 71 (range 59-94) years, and 55% were male. The race/ethnicity distribution was 41% White, 29% Black, 17% Hispanic, and 13% Asian. The mean±SD PBV in the youngest age quintile was 547±180 versus 433±194 mL in the oldest quintile (P<0.001), with an approximately linear decrement of 50 mL per 10 years of age ([95% CI, 32-67]; P<0.001). Findings were similar with multivariable adjustment. Lower PBV was associated independently with a greater dyspnea after a 6-minute walk (P=0.04) and greater composite dyspnea symptom scores (P=0.02). Greater PBV was also associated with greater height, weight, lung volume, Hispanic race/ethnicity, and nonsmoking history. CONCLUSIONS Pulmonary blood volume was substantially lower with advanced age and was associated independently with greater symptoms scores in the elderly.
Collapse
Affiliation(s)
- Emilia A. Hermann
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | | | | | | | | | | | | | | | - Grant T. Hiura
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | | | - Prashant Nagpal
- 2. University of Iowa, Iowa City, IA
- 5. University of Wisconsin-Madison, Madison WI
| | - Jim Pankow
- 7. University of Minnesota, Minneapolis, MN
| | | | - Benjamin M Smith
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
| | | | - Yifei Sun
- 9. Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| | - Karol Watson
- 10. University of California, Los Angeles, Los Angeles, CA
| | - R. Graham Barr
- 1. Department of Medicine, Columbia University Medical Center, New York, NY
- 11. Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, NY
| |
Collapse
|
18
|
Vulasala SSR, Wynn GC, Hernandez M, Kadambi I, Gopireddy DR, Bhosale P, Virarkar MK. Dual-Energy Imaging of the Chest. Semin Ultrasound CT MR 2022; 43:311-319. [PMID: 35738816 DOI: 10.1053/j.sult.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dual-energy computed tomography (DECT) is a contemporary development by which the tissue can be characterized beyond conventional computed tomography. It improves tissue differentiation by exploiting the X-ray absorptive property of the tissues. Although still in its early stages, DECT utilization in pulmonary and cardiovascular pathologies is emerging. It includes applications such as pulmonary embolism, pulmonary hypertension, myocardial perfusion, and coronary artery assessment. This article discusses DECT principles and their current and emerging applications in thoracic imaging.
Collapse
Affiliation(s)
- Sai Swarupa R Vulasala
- Research Assistant, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Gregory Carl Wynn
- Associate Professor, Division of Cardiovascular and Thoracic Imaging, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Mauricio Hernandez
- Radiology Research Manager II, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States.
| | - Isiri Kadambi
- Observer, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Dheeraj Reddy Gopireddy
- Associate Professor & Associate Chair, Clinical Operations, and Quality Assurance., Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| | - Priya Bhosale
- Professor, Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, United States
| | - Mayur K Virarkar
- Assistant Professor, Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, 32209, United States
| |
Collapse
|
19
|
McInnis M. Imaging Advances in Chronic Thromboembolic Pulmonary Hypertension. Semin Roentgenol 2022; 57:324-334. [DOI: 10.1053/j.ro.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022]
|
20
|
Abozeed M, Conic S, Bullen J, Rizk A, Saeedan MB, Karim W, Heresi GA, Renapurkar RD. Dual energy CT based scoring in chronic thromboembolic pulmonary hypertension and correlation with clinical and hemodynamic parameters: a retrospective cross-sectional study. Cardiovasc Diagn Ther 2022; 12:305-313. [PMID: 35800352 PMCID: PMC9253168 DOI: 10.21037/cdt-21-686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2024]
Abstract
BACKGROUND We used a dual energy computed tomography (DECT) based scoring system in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and correlated it with functional and hemodynamic parameters. METHODS This was a retrospective study on 78 patients with CTEPH who underwent DECT. First, clot burden score was calculated by assigning a following score: pulmonary trunk-5, each main pulmonary artery-4, each lobar-3, each segmental-2, and subsegmental-1 per lobe; sum total was then calculated. Perfusion defect (PD) score was calculated by assigning 1 point to each segmental PD. Combined score was calculated by adding the clot burden and PD score. All three scores were correlated with clinical and hemodynamic parameters that included New York Heart Association (NYHA) functional class, 6-minute walk distance (6MWT) in feet, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO), pulmonary arterial pressure (PAP) [systolic PAP (sPAP), diastolic PAP (dPAP) and mean PAP (mPAP)], pulmonary vascular resistance (PVR), right atrial pressure, cardiac output, and cardiac index. RESULTS Clot burden score, PD score, and combined score all positively correlated with sPAP (0.25, 0.34, 0.34), PVR (0.27, 0.30, 0.34), and mPAP (0.28, 0.31, 0.36). There was no statistically significant correlation of clot burden score, PD score and combined score with 6MWT, % predicted 6MWT, FEV1, FEV1%, FVC, FVC%, DLCO% and NYHA functional class. CONCLUSIONS DECT based scoring in CTEPH is feasible and correlates positively with sPAP, mPAP and PVR. Combined score has the highest magnitude of correlation.
Collapse
Affiliation(s)
- Mostafa Abozeed
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Sofija Conic
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | | | - Alain Rizk
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Mnahi Bin Saeedan
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Wadih Karim
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH, USA
| | - Rahul D. Renapurkar
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| |
Collapse
|
21
|
Lefebvre B, Kyheng M, Giordano J, Lamblin N, de Groote P, Fertin M, Delobelle M, Perez T, Faivre JB, Remy J, Duhamel A, Remy-Jardin M. Dual-energy CT lung perfusion characteristics in pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH): preliminary experience in 63 patients. Eur Radiol 2022; 32:4574-4586. [PMID: 35286410 DOI: 10.1007/s00330-022-08577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the stratification of potential causes of PH, current guidelines recommend performing V/Q lung scintigraphy to screen for CTEPH. The recognition of CTEPH is based on the identification of lung segments or sub-segments without perfusion but preserved ventilation. The presence of mismatched perfusion defects has also been described in a small proportion of idiopathic pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH). Dual-energy CT lung perfusion changes have not been specifically investigated in these two entities. PURPOSE To compare dual-energy CT (DECT) perfusion characteristics in PAH and PVOD/PCH, with specific interest in PE-type perfusion defects. MATERIALS AND METHODS Sixty-three patients with idiopathic or heritable PAH (group A; n = 51) and PVOD/PCH (group B; n = 12) were investigated with DECT angiography with reconstruction of morphologic and perfusion images. RESULTS The number of patients with abnormal perfusion did not differ between group A (35/51; 68.6%) and group B (6/12; 50%) (p = 0.31) nor did the mean number of segments with abnormal perfusion per patient (group A: 17.9 ± 4.9; group B: 18.3 ± 4.1; p = 0.91). The most frequent finding was the presence of patchy defects in group A (15/35; 42.9%) and a variable association of perfusion abnormalities in group B (4/6; 66.7%). The median percentage of segments with PE-type defects per patient was significantly higher in group B than in group A (p = 0.041). Two types of PE-type defects were depicted in 8 patients (group A: 5/51; 9.8%; group B: 3/12; 25%), superimposed on PH-related lung abnormalities (7/8) or normal lung (1/8). The iodine concentration was significantly lower in patients with abnormal perfusion (p < 0.001) but did not differ between groups. CONCLUSION Perfusion abnormalities did not differ between the two groups at the exception of a higher median percentage of segments with PE-type defects in patients with PVOD/PCH. KEY POINTS • Patchy perfusion defect was the most frequent pattern in PAH. • A variable association of perfusion abnormalities was seen in PVOD/PCH. • Lobular and PE-type perfusion defects larger than a sub-segment were depicted in both PAH and PVOD/PCH patients.
Collapse
Affiliation(s)
- Briac Lefebvre
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Maeva Kyheng
- Department of Biostatistics, University Center of Lille, F-59000, Lille, France
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France
| | - Jessica Giordano
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Nicolas Lamblin
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Pascal de Groote
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Marie Fertin
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Marie Delobelle
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
| | - Thierry Perez
- Univ Lille, CHU Lille, Department of Pulmonary Function, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1019 - CNRS UMR 8204, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Baptiste Faivre
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Jacques Remy
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Alain Duhamel
- Department of Biostatistics, University Center of Lille, F-59000, Lille, France
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France
| | - Martine Remy-Jardin
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France.
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France.
| |
Collapse
|
22
|
Gertz RJ, Gerhardt F, Kröger JR, Shahzad R, Caldeira L, Kottlors J, Große Hokamp N, Maintz D, Rosenkranz S, Bunck AC. Spectral Detector CT-Derived Pulmonary Perfusion Maps and Pulmonary Parenchyma Characteristics for the Semiautomated Classification of Pulmonary Hypertension. Front Cardiovasc Med 2022; 9:835732. [PMID: 35391852 PMCID: PMC8982082 DOI: 10.3389/fcvm.2022.835732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo evaluate the usefulness of spectral detector CT (SDCT)-derived pulmonary perfusion maps and pulmonary parenchyma characteristics for the semiautomated classification of pulmonary hypertension (PH).MethodsA total of 162 consecutive patients with right heart catheter (RHC)-proven PH of different aetiologies as defined by the current ESC/ERS guidelines who underwent CT pulmonary angiography (CTPA) on SDCT and 20 patients with an invasive rule-out of PH were included in this retrospective study. Semiautomatic lung segmentation into normal and malperfused areas based on iodine density (ID) as well as automatic, virtual non-contrast-based emphysema quantification were performed. Corresponding volumes, histogram features and the ID SkewnessPerfDef-Emphysema-Index (δ-index) accounting for the ratio of ID distribution in malperfused lung areas and the proportion of emphysematous lung parenchyma were computed and compared between groups.ResultsPatients with PH showed a significantly greater extent of malperfused lung areas as well as stronger and more homogenous perfusion defects. In group 3 and 4 patients, ID skewness revealed a significantly more homogenous ID distribution in perfusion defects than in all other subgroups. The δ-index allowed for further subclassification of subgroups 3 and 4 (p < 0.001), identifying patients with chronic thromboembolic PH (CTEPH, subgroup 4) with high accuracy (AUC: 0.92, 95%-CI, 0.85–0.99).ConclusionAbnormal pulmonary perfusion in PH can be detected and quantified by semiautomated SDCT-based pulmonary perfusion maps. ID skewness in malperfused lung areas, and the δ-index allow for a classification of PH subgroups, identifying groups 3 and 4 patients with high accuracy, independent of reader expertise.
Collapse
Affiliation(s)
- Roman Johannes Gertz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Roman Johannes Gertz
| | - Felix Gerhardt
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Robert Kröger
- Department of Radiology, Neuroradiology, and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Rahil Shahzad
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Clinical Applications Research, Philips GmbH Innovative Technologies, Aachen, Germany
| | - Liliana Caldeira
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonathan Kottlors
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Christian Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Kroeger JR, Zöllner J, Gerhardt F, Rosenkranz S, Gertz RJ, Kerszenblat S, Pahn G, Maintz D, Bunck AC. Detection of patients with chronic thromboembolic pulmonary hypertension by volumetric iodine quantification in the lung-a case control study. Quant Imaging Med Surg 2022; 12:1121-1129. [PMID: 35111609 DOI: 10.21037/qims-21-229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023]
Abstract
Background To evaluate whether volumetric iodine quantification of the lung allows for the automatic identification of patients with chronic thromboembolic pulmonary hypertension (CTEPH) and whether the extent of pulmonary malperfusion correlates with invasive hemodynamic parameters. Methods Retrospective data base search identified 30 consecutive patients with CTEPH who underwent CT pulmonary angiography (CTPA) on a spectral-detector CT scanner. Thirty consecutive patients who underwent an identical CT examination for evaluation of suspected acute pulmonary embolism and had no signs of pulmonary embolism or PH, served as control cohort. Lungs were automatically segmented for all patients and normal and malperfused volumes were segmented based on iodine density thresholds. Results were compared between groups. For correlation analysis between the extent of malperfused volume and mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) 3 patients were excluded because of a time span of more than 30 days between CTPA and right heart catheterization. Results Patients with CTEPH had a higher percentage of malperfused lung compared to controls (43.25%±24.72% vs. 21.82%±20.72%; P=0.001) and showed reduced mean iodine density in malperfused and normal-perfused lung areas, as well as in the vessel volume. Controls showed a left-tailed distribution of iodine density in malperfused lung areas while patients with CTEPH had a more symmetrical distribution (Skew: -0.382±0.435 vs. -0.010±0.396; P=0.004). Patients with CTEPH showed a significant correlation between the percentage of malperfused lung volume and the PVR (r=0.57, P=0.001). Conclusions Volumetric iodine quantification helps to identify patients with CTEPH by showing increased areas of malperfusion. The extent of malperfusion might provide a measurement for disease severity in patients with CTEPH.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.,Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jakob Zöllner
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Gerhardt
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman Johannes Gertz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - David Maintz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Pinilo J, Hutt A, Labreuche J, Faivre JB, Flohr T, Schmidt B, Duhamel A, Remy J, Remy-Jardin M. Evaluation Of a New Reconstruction Technique for Dual-Energy (DECT) Lung Perfusion: Preliminary Experience In 58 Patients. Acad Radiol 2022; 29 Suppl 2:S202-S214. [PMID: 34446359 DOI: 10.1016/j.acra.2021.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare dual-energy (DE) lung perfused blood volume generated by subtraction of virtual monoenergetic images (Lung Mono) with images obtained by three-compartment decomposition (Lung PBV). MATERIAL AND METHODS The study included 58 patients (28 patients with and 30 patients without PE) with reconstruction of Lung PBV images (i.e., the reference standard) and Lung Mono images. The inter-technique comparison was undertaken at a patient and segment level. RESULTS The distribution of scores of subjective image noise (patient level) significantly differed between the two reconstructions (p<0.0001), with mild noise in 58.6% (34/58) of Lung Mono images vs 25.9% (15/58) of Lung PBV images. Detection of perfusion defects (segment level) was concordant in 1104 segments (no defect: n=968; defects present: n=138) and discordant in 2 segments with a PE-related defect only depicted on Lung Mono images. Among the 28 PE patients, the distribution of gradient of attenuation between perfused areas and defects was significantly higher on Lung Mono images compared to Lung PBV (median= 73.5 HU (QI=65.0; Q3=86.0) vs 24.5 HU (22.0; 30.0); p<0.0001). In all patients, fissures were precisely identified in 77.6% of patients (45/58) on Lung Mono images while blurred (30/58; 51.7%) or not detectable (28/58; 48.3%) on Lung PBV images. CONCLUSION Lung Mono perfusion imaging allows significant improvement in the overall image quality and improved detectability of PE-type perfusion defects.
Collapse
|
25
|
Farrell C, Balasubramanian A, Hays AG, Hsu S, Rowe S, Zimmerman SL, Hassoun PM, Mathai SC, Mukherjee M. A Clinical Approach to Multimodality Imaging in Pulmonary Hypertension. Front Cardiovasc Med 2022; 8:794706. [PMID: 35118142 PMCID: PMC8804287 DOI: 10.3389/fcvm.2021.794706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension (PH) is a clinical condition characterized by progressive elevations in mean pulmonary artery pressures and right ventricular dysfunction, associated with significant morbidity and mortality. For resting PH to develop, ~50-70% of the pulmonary vasculature must be affected, suggesting that even mild hemodynamic abnormalities are representative of advanced pulmonary vascular disease. The definitive diagnosis of PH is based upon hemodynamics measured by right heart catheterization; however this is an invasive and resource intense study. Early identification of pulmonary vascular disease offers the opportunity to improve outcomes by instituting therapies that slow, reverse, or potentially prevent this devastating disease. Multimodality imaging, including non-invasive modalities such as echocardiography, computed tomography, ventilation perfusion scans, and cardiac magnetic resonance imaging, has emerged as an integral tool for screening, classifying, prognosticating, and monitoring response to therapy in PH. Additionally, novel imaging modalities such as echocardiographic strain imaging, 3D echocardiography, dual energy CT, FDG-PET, and 4D flow MRI are actively being investigated to assess the severity of right ventricular dysfunction in PH. In this review, we will describe the utility and clinical application of multimodality imaging techniques across PH subtypes as it pertains to screening and monitoring of PH.
Collapse
Affiliation(s)
- Christine Farrell
- Division of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Aparna Balasubramanian
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Allison G. Hays
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Steven Hsu
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Steven Rowe
- Division of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Stefan L. Zimmerman
- Division of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Paul M. Hassoun
- Division of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Monica Mukherjee
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
26
|
Vlahos I, Jacobsen MC, Godoy MC, Stefanidis K, Layman RR. Dual-energy CT in pulmonary vascular disease. Br J Radiol 2022; 95:20210699. [PMID: 34538091 PMCID: PMC8722250 DOI: 10.1259/bjr.20210699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Dual-energy CT (DECT) imaging is a technique that extends the capabilities of CT beyond that of established densitometric evaluations. CT pulmonary angiography (CTPA) performed with dual-energy technique benefits from both the availability of low kVp CT data and also the concurrent ability to quantify iodine enhancement in the lung parenchyma. Parenchymal enhancement, presented as pulmonary perfused blood volume maps, may be considered as a surrogate of pulmonary perfusion. These distinct capabilities have led to new opportunities in the evaluation of pulmonary vascular diseases. Dual-energy CTPA offers the potential for improvements in pulmonary emboli detection, diagnostic confidence, and most notably severity stratification. Furthermore, the appreciated insights of pulmonary vascular physiology conferred by DECT have resulted in increased use for the assessment of pulmonary hypertension, with particular utility in the subset of patients with chronic thromboembolic pulmonary hypertension. With the increasing availability of dual energy-capable CT systems, dual energy CTPA is becoming a standard-of-care protocol for CTPA acquisition in acute PE. Furthermore, qualitative and quantitative pulmonary vascular DECT data heralds promise for the technique as a "one-stop shop" for diagnosis and surveillance assessment in patients with pulmonary hypertension. This review explores the current application, clinical value, and limitations of DECT imaging in acute and chronic pulmonary vascular conditions. It should be noted that certain manufacturers and investigators prefer alternative terms, such as spectral or multi-energy CT imaging. In this review, the term dual energy is utilised, although readers can consider these terms synonymous for purposes of the principles explained.
Collapse
Affiliation(s)
- Ioannis Vlahos
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Megan C Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna C Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Rick R Layman
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Systemic-pulmonary collateral supply associated with clinical severity of chronic thromboembolic pulmonary hypertension: a study using intra-aortic computed tomography angiography. Eur Radiol 2022; 32:7668-7679. [PMID: 35420297 PMCID: PMC9668953 DOI: 10.1007/s00330-022-08768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess whether systemic-pulmonary collaterals are associated with clinical severity and extent of pulmonary perfusion defects in chronic thromboembolic pulmonary hypertension (CTEPH). METHODS This prospective study was approved by a local ethics committee. Twenty-four patients diagnosed with inoperable CTEPH were enrolled between July 2014 and February 2017. Systemic-pulmonary collaterals were detected using pulmonary vascular enhancement on intra-aortic computed tomography (CT) angiography. The pulmonary enhancement parameters were calculated, including (1) Hounsfield unit differences (HUdiff) between pulmonary trunks and pulmonary arteries (PAs) or veins (PVs), namely HUdiff-PA and HUdiff-PV, on the segmental base; (2) the mean HUdiff-PA, mean HUdiff-PV, numbers of significantly enhanced PAs and PVs, on the patient base. Pulmonary perfusion defects were recorded and scored using the lung perfused blood volume (PBV) based on intravenous dual-energy CT (DECT) angiography. Pearson's or Spearman's correlation coefficients were used to evaluate correlations between the following: (1) segment-based intra-aortic CT and intravenous DECT parameters (2) patient-based intra-aortic CT parameters and clinical severity parameters or lung PBV scores. Statistical significance was set at p < 0.05. RESULTS Segmental HUdiff-PV was correlated with the segmental perfusion defect score (r = 0.45, p < 0.01). The mean HUdiff-PV was correlated with the mean pulmonary arterial pressure (PAP) (r = 0.52, p < 0.01), cardiac output (rho = - 0.41, p = 0.05), and lung PBV score (rho = 0.43, p = 0.04). And the number of significantly enhanced PVs was correlated with the mean PAP (r = 0.54, p < 0.01), pulmonary vascular resistance (r = 0.54, p < 0.01), and lung PBV score (rho = 0.50, p = 0.01). CONCLUSIONS PV enhancement measured by intra-aortic CT angiography reflects clinical severity and pulmonary perfusion defects in CTEPH. KEY POINTS • Intra-aortic CT angiography demonstrated heterogeneous enhancement within the pulmonary vasculature, showing collaterals from the systemic arteries to the pulmonary circulation in CTEPH. • The degree of systemic-pulmonary collateral development was significantly correlated with the clinical severity of CTEPH and may be used to evaluate disease progression. • The distribution of systemic-pulmonary collaterals is positively correlated with perfusion defects in the lung segments in CTEPH.
Collapse
|
28
|
Kobelev E, Bergen TA, Tarkova AR, Vasiltseva OY, Kamenskaya OV, Usov VY, Chernyavsky AM. COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a poorly understood and dangerous medical problem. COVID-19-related pulmonary vessels involvement is a complex set of interrelated pathophysiological processes associated with vascular endothelial dysfunction and accompanied by thrombosis of various localization, vasomotor disorders, severe respiratory failure, as well as pulmonary embolism (PE) resulting in chronic thromboembolic pulmonary hypertension (CTEPH). According to computed tomographic pulmonary angiography, the incidence of PE in patients with COVID-19 ranges from 23 to 30%. The aim of this work was to focus the doctors' attention on the risk of pulmonary hypertension in patients after COVID-19.Despite the ability of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) to infect various organs and systems, the main and most serious complications are pulmonary infiltration, acute respiratory distress syndrome, acute respiratory failure and PE, which in some cases becomes the triggering mechanism for CTEPH development. The literature review presents data on main pathological abnormalities developing in target organs during COVID-19 and playing an important role in increasing the CTEPH risk. The paper describes the main methods of instrumental investigations of CTEPH and an algorithm for its use in COVID-19 survivors.The revealed data demonstrated that the absence of obvious signs of pulmonary hypertension/CTEPH, the cardiopulmonary system abnormalities cannot be ruled out. Therefore, it seems appropriate to actively follow up COVID-19 survivors. A thoroughly, purposefully collected anamnesis, pulmonary function tests and stress echocardiography in an ambiguous clinical situation will play a leading role as they identify cardiopulmonary disorders and provide the doctor with basic information for further planning of patient management.
Collapse
Affiliation(s)
- E. Kobelev
- Meshalkin National Medical Research Center
| | | | | | | | | | - V. Yu. Usov
- Cardiology Research Institute, Tomsk National Research Medical Center
| | | |
Collapse
|
29
|
Hong YJ, Shim J, Lee SM, Im DJ, Hur J. Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications. Korean J Radiol 2021; 22:1555-1568. [PMID: 34448383 PMCID: PMC8390816 DOI: 10.3348/kjr.2020.1512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary embolism (PE) is a potentially fatal disease if the diagnosis or treatment is delayed. Currently, multidetector computed tomography (MDCT) is considered the standard imaging method for diagnosing PE. Dual-energy CT (DECT) has the advantages of MDCT and can provide functional information for patients with PE. The aim of this review is to present the potential clinical applications of DECT in PE, focusing on the diagnosis and risk stratification of PE.
Collapse
Affiliation(s)
- Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jina Shim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hur
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Moher Alsady T, Kaireit TF, Behrendt L, Winther HB, Olsson KM, Wacker F, Hoeper MM, Cebotari S, Vogel-Claussen J. Comparison of dual-energy computer tomography and dynamic contrast-enhanced MRI for evaluating lung perfusion defects in chronic thromboembolic pulmonary hypertension. PLoS One 2021; 16:e0251740. [PMID: 34138864 PMCID: PMC8211171 DOI: 10.1371/journal.pone.0251740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/01/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To evaluate the agreement in detecting pulmonary perfusion defects in patients with chronic thromboembolic pulmonary hypertension using dual-energy CT and dynamic contrast-enhanced MRI. Second, to compare both imaging modalities in monitoring lung perfusion changes in these patients after undergoing pulmonary endarterectomy. METHODS 20 patients were examined with CT and MRI before and/or after pulmonary endarterectomy. Estimated perfusion defect percentage from both modalities was compared in a lobe-based analysis. Spatial agreement of perfusion defect maps was also assessed. RESULTS A significant correlation between CT and MRI based perfusion defect percentage was calculated in all lung lobes (r > 0.78; p < 0.001). In addition, a good spatial agreement between perfusion defect maps was found (mean spatial overlap for the whole lung was 68.2%; SD = 6.9). Both CT and MRI detected improvements in pulmonary perfusion after pulmonary endarterectomy: 8% and 7% decrease in whole lung perfusion defect percentage (p = 0.007 and 0.004), respectively. In a lobe-wise analysis, improvements were statistically significant only in lower lobes using both modalities (reduction in defect percentage ranged from 16-29%; p < 0.02). CONCLUSIONS Dual-energy CT is an alternative to MRI in monitoring chronic thromboembolic pulmonary hypertension. Both imaging modalities provided comparable estimations of perfusion defects and could detect similar improvement in lung perfusion after pulmonary endarterectomy.
Collapse
Affiliation(s)
- Tawfik Moher Alsady
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Till F. Kaireit
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Lea Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Hinrich B. Winther
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Karen M. Olsson
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Marius M. Hoeper
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Lower Saxony, Germany
| |
Collapse
|
31
|
Delcroix M, Torbicki A, Gopalan D, Sitbon O, Klok FA, Lang I, Jenkins D, Kim NH, Humbert M, Jais X, Vonk Noordegraaf A, Pepke-Zaba J, Brénot P, Dorfmuller P, Fadel E, Ghofrani HA, Hoeper MM, Jansa P, Madani M, Matsubara H, Ogo T, Grünig E, D'Armini A, Galie N, Meyer B, Corkery P, Meszaros G, Mayer E, Simonneau G. ERS statement on chronic thromboembolic pulmonary hypertension. Eur Respir J 2021; 57:13993003.02828-2020. [PMID: 33334946 DOI: 10.1183/13993003.02828-2020] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism, either symptomatic or not. The occlusion of proximal pulmonary arteries by fibrotic intravascular material, in combination with a secondary microvasculopathy of vessels <500 µm, leads to increased pulmonary vascular resistance and progressive right heart failure. The mechanism responsible for the transformation of red clots into fibrotic material remnants has not yet been elucidated. In patients with pulmonary hypertension, the diagnosis is suspected when a ventilation/perfusion lung scan shows mismatched perfusion defects, and confirmed by right heart catheterisation and vascular imaging. Today, in addition to lifelong anticoagulation, treatment modalities include surgery, angioplasty and medical treatment according to the localisation and characteristics of the lesions.This statement outlines a review of the literature and current practice concerning diagnosis and management of CTEPH. It covers the definitions, diagnosis, epidemiology, follow-up after acute pulmonary embolism, pathophysiology, treatment by pulmonary endarterectomy, balloon pulmonary angioplasty, drugs and their combination, rehabilitation and new lines of research in CTEPH.It represents the first collaboration of the European Respiratory Society, the International CTEPH Association and the European Reference Network-Lung in the pulmonary hypertension domain. The statement summarises current knowledge, but does not make formal recommendations for clinical practice.
Collapse
Affiliation(s)
- Marion Delcroix
- Clinical Dept of Respiratory Diseases, Pulmonary Hypertension Center, UZ Leuven, Leuven, Belgium .,BREATHE, Dept CHROMETA, KU Leuven, Leuven, Belgium.,Co-chair
| | - Adam Torbicki
- Dept of Pulmonary Circulation, Thrombo-embolic Diseases and Cardiology, Center of Postgraduate Medical Education, ECZ-Otwock, Otwock, Poland.,Section editors
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Hospitals NHS Trusts, London, UK.,Section editors
| | - Olivier Sitbon
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Frederikus A Klok
- Dept of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands.,Section editors
| | - Irene Lang
- Medical University of Vienna, Vienna, Austria.,Section editors
| | - David Jenkins
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Nick H Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA, USA.,Section editors
| | - Marc Humbert
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Xavier Jais
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Anton Vonk Noordegraaf
- Dept of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Section editors
| | - Joanna Pepke-Zaba
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Philippe Brénot
- Marie Lannelongue Hospital, Paris-South University, Le Plessis Robinson, France
| | - Peter Dorfmuller
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | - Elie Fadel
- Hannover Medical School, Hannover, Germany
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | | | - Pavel Jansa
- 2nd Department of Medicine, Dept of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Madani
- Sulpizio Cardiovascular Centre, University of California, San Diego, CA, USA
| | - Hiromi Matsubara
- National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Takeshi Ogo
- National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Ekkehard Grünig
- Thoraxklinik Heidelberg at Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea D'Armini
- Unit of Cardiac Surgery, Intrathoracic Transplantation and Pulmonary Hypertension, University of Pavia School of Medicine, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | | | - Bernhard Meyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Eckhard Mayer
- Dept of Thoracic Surgery, Kerckhoff Clinic Bad Nauheim, Bad Nauheim, Germany.,Equal contribution.,Co-chair
| | - Gérald Simonneau
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Equal contribution.,Co-chair
| |
Collapse
|
32
|
Kligerman S, Hsiao A. Optimizing the diagnosis and assessment of chronic thromboembolic pulmonary hypertension with advancing imaging modalities. Pulm Circ 2021; 11:20458940211007375. [PMID: 34104420 PMCID: PMC8150458 DOI: 10.1177/20458940211007375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Imaging is key to nearly all aspects of chronic thromboembolic pulmonary hypertension including management for screening, assessing eligibility for pulmonary endarterectomy, and post-operative follow-up. While ventilation/perfusion scintigraphy, the gold standard technique for chronic thromboembolic pulmonary hypertension screening, can have excellent sensitivity, it can be confounded by other etiologies of pulmonary malperfusion, and does not provide structural information to guide operability assessment. Conventional computed tomography pulmonary angiography has high specificity, though findings of chronic thromboembolic pulmonary hypertension can be visually subtle and unrecognized. In addition, computed tomography pulmonary angiography can provide morphologic information to aid in pre-operative workup and assessment of other structural abnormalities. Advances in computed tomography imaging techniques, including dual-energy computed tomography and spectral-detector computed tomography, allow for improved sensitivity and specificity in detecting chronic thromboembolic pulmonary hypertension, comparable to that of ventilation/perfusion scans. Furthermore, these advanced computed tomography techniques, compared with conventional computed tomography, provide additional physiologic data from perfused blood volume maps and improved resolution to better visualize distal chronic thromboembolic pulmonary hypertension, an important consideration for balloon pulmonary angioplasty for inoperable patients. Electrocardiogram-synchronized techniques in electrocardiogram-gated computed tomography can also show further information regarding right ventricular function and structure. While the standard of care in the workup of chronic thromboembolic pulmonary hypertension includes a ventilation/perfusion scan, computed tomography pulmonary angiography, direct catheter angiography, echocardiogram, and coronary angiogram, in the future an electrocardiogram-gated dual-energy computed tomography angiography scan may enable a "one-stop" imaging study to guide diagnosis, operability assessment, and treatment decisions with less radiation exposure and cost than traditional chronic thromboembolic pulmonary hypertension imaging modalities.
Collapse
Affiliation(s)
- Seth Kligerman
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| | - Albert Hsiao
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology 2021; 298:531-549. [PMID: 33399507 DOI: 10.1148/radiol.2020203108] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mm Hg and classified into five different groups sharing similar pathophysiologic mechanisms, hemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: (a) Is noninvasive imaging capable of identifying PH? (b) What is the role of imaging in establishing the cause of PH? (c) How does imaging determine the severity and complications of PH? (d) How should imaging be used to assess chronic thromboembolic PH before treatment? (e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH. This article is a simultaneous joint publication in Radiology and European Respiratory Journal. The articles are identical except for stylistic changes in keeping with each journal's style. Either version may be used in citing this article. © 2021 RSNA and the European Respiratory Society. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Christopher J Ryerson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Mark L Schiebler
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Ann N C Leung
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - James M Wild
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marius M Hoeper
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Philip O Alderson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Lawrence R Goodman
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - John Mayo
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Linda B Haramati
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Yoshiharu Ohno
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Patricia Thistlethwaite
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Edwin J R van Beek
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Shandra Lee Knight
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - David A Lynch
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Geoffrey D Rubin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marc Humbert
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| |
Collapse
|
34
|
Onishi H, Taniguchi Y, Matsuoka Y, Yanaka K, Izawa Y, Tsuboi Y, Mori S, Kono A, Nakayama K, Emoto N, Hirata KI. Evaluation of microvasculopathy using dual-energy computed tomography in patients with chronic thromboembolic pulmonary hypertension. Pulm Circ 2021; 11:2045894020983162. [PMID: 33532057 PMCID: PMC7829531 DOI: 10.1177/2045894020983162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
The existence of microvasculopathy in patients with chronic thromboembolic
pulmonary hypertension has been suggested. Recently, dual-energy computed
tomography has been used to produce a sensitive iodine distribution map in lung
fields to indicate microvasculopathy according to poor subpleural perfusion. Our
aim was to evaluate the impact of microvasculopathy on pathophysiology in
chronic thromboembolic pulmonary hypertension. According to the extent of poor
subpleural perfusion, ninety-three interventional treatment-naïve patients were
divided into poorly perfused (n = 49) or normally perfused
group (n = 44). We assessed cardiopulmonary exercise test,
right heart catheterization, and dual-energy computed tomography parameters for
quantitative evaluation of lung perfusion of blood volume score. Lung perfusion
of blood volume score in normally perfused group was significantly inversely
correlated with pulmonary vascular resistance (pulmonary vascular
resistance = 6816.1 × lung perfusion of blood volume score−0.793,
R2 = 0.225, p < 0.01), but lung perfusion of
blood volume score in poorly perfused group was not. Poorly perfused group had
higher pulmonary vascular resistance (879 ± 409 dynes-s/cm5 vs.
574 ± 279 dynes-s/cm5, p < 0.01) and lower lung
perfusion of blood volume score (22.1 ± 5.4 vs. 26.4 ± 6.6,
p < 0.01) and % diffusing capacity for carbon monoxide
divided by the alveolar volume (59.9 ± 15.4% vs. 78.8 ± 14.2%,
p < 0.01). Perfusion of blood volume score in the
normally perfused group showed an inverse correlation with pulmonary vascular
resistance; however, that in poorly perfused group did not. Microvasculopathy
might contribute to severe hemodynamics, apart from pulmonary vascular
obstruction. In our experience, more than half of treatment-naïve chronic
thromboembolic pulmonary hypertension patients have microvasculopathy.
Collapse
Affiliation(s)
- Hiroyuki Onishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoichiro Matsuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Yanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Izawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasunori Tsuboi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shumpei Mori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiko Nakayama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Cardiology, Shinko Memorial Hospital, Kobe, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society. Eur Respir J 2021; 57:2004455. [PMID: 33402372 DOI: 10.1183/13993003.04455-2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mmHg and classified into five different groups sharing similar pathophysiologic mechanisms, haemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: a) Is noninvasive imaging capable of identifying PH? b) What is the role of imaging in establishing the cause of PH? c) How does imaging determine the severity and complications of PH? d) How should imaging be used to assess chronic thromboembolic PH before treatment? e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Dept of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, Lille, France
- Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| | - Christopher J Ryerson
- Dept of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Mark L Schiebler
- Dept of Radiology, UW-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ann N C Leung
- Dept of Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - James M Wild
- Division of Imaging, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marius M Hoeper
- Dept of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany
| | - Philip O Alderson
- Dept of Radiology, Saint Louis University School of Medicine, St Louis, MO, USA
| | | | - John Mayo
- Dept of Radiology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Linda B Haramati
- Dept of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoshiharu Ohno
- Dept of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Shandra Lee Knight
- Dept of Library and Knowledge Services, National Jewish Health, Denver, CO, USA
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Geoffrey D Rubin
- Dept of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Marc Humbert
- Université Paris Saclay, Inserm UMR S999, Dept of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- Co-Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| |
Collapse
|
36
|
Gopalan D, Gibbs JSR. From Early Morphometrics to Machine Learning-What Future for Cardiovascular Imaging of the Pulmonary Circulation? Diagnostics (Basel) 2020; 10:diagnostics10121004. [PMID: 33255668 PMCID: PMC7760106 DOI: 10.3390/diagnostics10121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging plays a cardinal role in the diagnosis and management of diseases of the pulmonary circulation. Behind the picture itself, every digital image contains a wealth of quantitative data, which are hardly analysed in current routine clinical practice and this is now being transformed by radiomics. Mathematical analyses of these data using novel techniques, such as vascular morphometry (including vascular tortuosity and vascular volumes), blood flow imaging (including quantitative lung perfusion and computational flow dynamics), and artificial intelligence, are opening a window on the complex pathophysiology and structure-function relationships of pulmonary vascular diseases. They have the potential to make dramatic alterations to how clinicians investigate the pulmonary circulation, with the consequences of more rapid diagnosis and a reduction in the need for invasive procedures in the future. Applied to multimodality imaging, they can provide new information to improve disease characterization and increase diagnostic accuracy. These new technologies may be used as sophisticated biomarkers for risk prediction modelling of prognosis and for optimising the long-term management of pulmonary circulatory diseases. These innovative techniques will require evaluation in clinical trials and may in themselves serve as successful surrogate end points in trials in the years to come.
Collapse
Affiliation(s)
- Deepa Gopalan
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Imperial College London, London SW7 2AZ, UK;
- Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-77-3000-7780
| | - J. Simon R. Gibbs
- Imperial College London, London SW7 2AZ, UK;
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK
| |
Collapse
|
37
|
Morphologic and Functional Dual-Energy CT Parameters in Patients With Chronic Thromboembolic Pulmonary Hypertension and Chronic Thromboembolic Disease. AJR Am J Roentgenol 2020; 215:1335-1341. [PMID: 32991219 DOI: 10.2214/ajr.19.22743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The objective of our study was to compare morphologic and functional dual-energy CT (DECT) parameters in patients with chronic thromboembolic disease (CTED) and chronic thromboembolic pulmonary hypertension (CTEPH). MATERIALS AND METHODS. Using the local CTEPH registry, we identified 28 patients with CTED and 72 patients with CTEPH. On each DECT examination, a clot burden score was calculated by assigning the following scores for chronic changes by location: pulmonary trunk, 5; each main pulmonary artery (MPA), 4; each lobar branch, 3; each segmental branch, 2; and each subsegmental branch, 1. The total clot burden score was calculated by adding the individual scores from both lungs. Functional parameters were assessed using perfused blood volume (PBV) maps and included lung enhancement (in Hounsfield units), percentage of PBV, MPA peak enhancement (in Hounsfield units), maximum enhancement corresponding to 100, and the ratio of MPA peak enhancement to lung enhancement. A perfusion defect (PD) score was calculated by assigning 1 point to each segmental PD. Patients with CTED and patients with CTEPH were matched using propensity score matching to account for potential confounders. RESULTS. After matching, the CTEPH group showed a higher PD score than the CTED group and unilateral disease was more common in the CTED group than in the CTEPH group. In the unmatched sample, patients with CTED showed increased percentages of PBV for both lungs (PBV total) and for the right lung as compared with the CTEPH group (adjusted p = 0.040 and 0.028, respectively); after adjustment for clot burden, the difference between groups was still noted but was not statistically significant. No statistically significant differences were noted in the various functional DECT parameters after propensity score matching. CONCLUSION. Patients with CTED show anatomic and functional changes in the pulmonary vasculature and lung parenchyma similar to those seen in patients with CTEPH. Functional DECT parameters support the observation that CTED is an intermediate clinical phenotype in the population with chronic pulmonary embolism.
Collapse
|
38
|
Sin D, McLennan G, Rengier F, Haddadin I, Heresi GA, Bartholomew JR, Fink MA, Thompson D, Partovi S. Acute pulmonary embolism multimodality imaging prior to endovascular therapy. Int J Cardiovasc Imaging 2020; 37:343-358. [PMID: 32862293 PMCID: PMC7456521 DOI: 10.1007/s10554-020-01980-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
The manuscript discusses the application of CT pulmonary angiography, ventilation–perfusion scan, and magnetic resonance angiography to detect acute pulmonary embolism and to plan endovascular therapy. CT pulmonary angiography offers high accuracy, speed of acquisition, and widespread availability when applied to acute pulmonary embolism detection. This imaging modality also aids the planning of endovascular therapy by visualizing the number and distribution of emboli, determining ideal intra-procedural catheter position for treatment, and signs of right heart strain. Ventilation–perfusion scan and magnetic resonance angiography with and without contrast enhancement can also aid in the detection and pre-procedural planning of endovascular therapy in patients who are not candidates for CT pulmonary angiography.
Collapse
Affiliation(s)
- David Sin
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - Gordon McLennan
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - Fabian Rengier
- Section of Emergency Radiology, Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ihab Haddadin
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - John R Bartholomew
- Section of Vascular Medicine, Heart and Vascular Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - Matthias A Fink
- Section of Emergency Radiology, Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dustin Thompson
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA
| | - Sasan Partovi
- Section of Interventional Radiology, Imaging Institute, Cleveland Clinic Main Campus, Cleveland, OH, USA.
| |
Collapse
|
39
|
Assessment of Severity in Chronic Thromboembolic Pulmonary Hypertension by Quantitative Parameters of Dual-Energy Computed Tomography. J Comput Assist Tomogr 2020; 44:578-585. [PMID: 32649425 PMCID: PMC7368845 DOI: 10.1097/rct.0000000000001052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to assess the correlation between dual-energy computed tomography quantitative parameters and hemodynamics in patients with chronic thromboembolic pulmonary hypertension.
Collapse
|
40
|
Ruan W, Yap JJL, Quah KKH, Cheah FK, Phuah GC, Sewa DW, Ismail AB, Chia AXF, Jenkins D, Tan JL, Chao VTT, Lim ST. Clinical Updates on the Diagnosis and Management of Chronic Thromboembolic
Pulmonary Hypertension. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2020. [DOI: 10.47102/annals-acadmed.sg.2019254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Chronic thromboembolic pulmonary hypertension (CTEPH) is a known sequela after acute pulmonary embolism (PE). It is a debilitating disease, and potentially fatal if left untreated. This review provides a clinically relevant overview of the disease and discusses the usefulness and limitations of the various investigational and treatment options. Methods: A PubMed search on articles relevant to pulmonary embolism, pulmonary hypertension, chronic thromboembolic pulmonary hypertension, pulmonary endarterectomy, and balloon pulmonary angioplasty were performed. A total of 68 articles were found to be relevant and were reviewed. Results: CTEPH occurs as a result of non-resolution of thrombotic material, with subsequent fibrosis and scarring of the pulmonary arteries. Risk factors have been identified, but the underlying mechanisms have yet to be fully elucidated. The cardinal symptom of CTEPH is dyspnoea on exertion, but the diagnosis is often challenging due to lack of awareness. The ventilation/perfusion scan is recommended for screening for CTEPH, with other modalities (eg. dual energy computed tomography pulmonary angiography) also being utilised in expert centres. Conventional pulmonary angiography with right heart catherisation is important in the final diagnosis of CTEPH. Conclusion: Operability assessment by a multidisciplinary team is crucial for the management of CTEPH, as pulmonary endarterectomy (PEA) remains the guideline recommended treatment and has the best chance of cure. For inoperable patients or those with residual disease post-PEA, medical therapy or balloon pulmonary angioplasty are potential treatment options.
Keywords: Balloon pulmonary angioplasty, Chronic thromboembolic pulmonary hypertension, Pulmonary embolism, Pulmonary endarterectomy, Pulmonary hypertension
Collapse
Affiliation(s)
- Wen Ruan
- National Heart Centre Singapore, Singapore
| | | | | | | | | | | | | | | | | | - Ju Le Tan
- National Heart Centre Singapore, Singapore
| | | | | |
Collapse
|
41
|
Allen BD, Schiebler ML, François CJ. Pulmonary Vascular Disease Evaluation with Magnetic Resonance Angiography. Radiol Clin North Am 2020; 58:707-719. [PMID: 32471539 DOI: 10.1016/j.rcl.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pulmonary vascular assessment commonly relies on computed tomography angiography (CTA), but continued advances in magnetic resonance angiography have allowed pulmonary magnetic resonance angiography (pMRA) to become a reasonable alternative to CTA without exposing patients to ionizing radiation. pMRA allows the evaluation of pulmonary vascular anatomy, hemodynamic physiology, lung parenchymal perfusion, and (optionally) right and left ventricular function with a single examination. This article discusses pMRA techniques and artifacts; performance in commonly encountered pulmonary vascular diseases, specifically pulmonary embolism and pulmonary hypertension; and recent advances in both contrast-enhanced and noncontrast pMRA.
Collapse
Affiliation(s)
- Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Christopher J François
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
42
|
Tamura M, Kawakami T, Yamada Y, Kataoka M, Nakatsuka S, Fukuda K, Jinzaki M. Successful depiction of systemic collateral supply to pulmonary artery in CTEPH using time-resolved 4D CT angiography: a case report. Pulm Circ 2020; 10:2045894019881065. [PMID: 32328236 PMCID: PMC7163237 DOI: 10.1177/2045894019881065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022] Open
Abstract
A 49-year-old man with CTEPH (pre-procedural mean pulmonary artery pressure:
36 mmHg) underwent balloon pulmonary angioplasty. Chronic total occlusion of the
left inferior pulmonary artery trunk was observed. To evaluate the collateral
vessels of the chronic total occlusion, 4D-CTA was performed. The examination
was performed using a 256-row detector CT system using the test bolus tracking
method. 4D-CTA showed the bronchial artery-to-left inferior pulmonary artery
collateral supply, which was confirmed by a selective bronchial artery
angiography. The patient’s symptoms improved with balloon pulmonary angioplasty
of the other stenotic lesions. 4D-CTA can noninvasively evaluate the anatomy and
hemodynamics of multiple systemic collaterals simultaneously. This technique can
support interventions in systemic artery-to-pulmonary artery collaterals, such
as embolization, and could be helpful in challenging balloon pulmonary
angioplasty interventions for chronic total occlusion to identify vessel
structures distal to the chronic total occlusion and collateral channels for a
retrograde approach.
Collapse
Affiliation(s)
- Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kawakami
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Nakatsuka
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Pulmonary perfusion by iodine subtraction maps CT angiography in acute pulmonary embolism: comparison with pulmonary perfusion SPECT (PASEP trial). Eur Radiol 2020; 30:4857-4864. [PMID: 32279113 DOI: 10.1007/s00330-020-06836-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard. METHODS Thirty participants who have been diagnosed with acute pulmonary embolism on CTPA underwent perfusion SPECT/CT within 24 h. Perfusion SPECT and iodine map were independently interpreted by 2 nuclear medicine physicians and 2 radiologists. For both modalities, each segment was classified as normoperfused or hypoperfused, as defined by a perfusion defect of more than 25% of a segment. The primary end point was the diagnostic accuracy (sensitivity and specificity) of iodine map for segment-based evaluation of lung perfusion, using perfusion SPECT imaging as a reference standard. Following blinded interpretation, a retrospective explanatory analysis was performed to determine potential causes of misinterpretation. RESULTS The median time between CTPA with iodine maps and perfusion SPECT was 14 h (range 2-23 h). A total of 597 segments were analyzed. Sensitivity and specificity of iodine maps with CTPA for the detection of segmental perfusion defects were 231/284 = 81.3% (95% CI 76.4 to 85.4%) and 247/313 = 78.9% (95% CI 74.1 to 83.1%), respectively. In retrospect, false results were explained in 48.7%. CONCLUSION Iodine map CTPA showed promising results for the assessment of pulmonary perfusion in patients with acute PE, with sensitivity of 81.3% and specificity of 78.9%, respectively. Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the accuracy of the test. KEY POINTS • Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively. • Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test.
Collapse
|
44
|
Evaluation of Vascular Parameters in Patients With Pulmonary Thromboembolic Disease Using Dual-energy Computed Tomography. J Thorac Imaging 2020; 34:367-372. [PMID: 30562223 DOI: 10.1097/rti.0000000000000383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate patterns of vascular and lung parenchymal enhancement in patients with suspected chronic thromboembolic pulmonary hypertension (CTEPH) and in those with acute pulmonary embolism (PE) and compare those two groups. MATERIALS AND METHODS We retrospectively studied 186 thoracic DECT studies referred for evaluation of CTEPH or pulmonary hypertension. A total of 80 of these patients had a negative scan (control group), 13 had acute PE, and 53 had chronic thromboembolic disease (CTED)/CTEPH. Five different DECT-based parameters were evaluated that highlight patterns of vascular kinetics. Specifically, total DECT-based parenchymal attenuation in Hounsfield Unit (HU) (LungHU), percentage of perfused blood volume (PBV), peak enhancement of main pulmonary artery (PApeak in HU), maximum enhancement corresponding to 100 (PAmax), and the ratio of PApeak to LungHU were calculated. RESULTS Compared with patients with negative CT, patients with CTED/CTEPH tended to have lower LungHU (median: 27 vs. 38, P<0.001), lower PBV (median: 39 vs. 51, P=0.003), and higher PApeak/LungHU ratio (median: 17 vs. 13, P=0.003). Compared with patients with acute PE, patients with CTED/CTEPH tended to have lower LungHU (median: 27 vs. 39, P=0.006), lower PBV (median: 39 vs. 62, P=0.023), and higher PApeak/LungHU ratio (median: 17 vs. 11, P=0.023). No statistically significant differences were observed between patients with acute PE and those with negative CT. CONCLUSIONS DECT-based vascular parameters offer the potential to differentiate patients with acute versus chronic PE. These various anatomic and functional vascular DECT-based parameters might be reflective of the state of the underlying vascular bed.
Collapse
|
45
|
Si-Mohamed S, Moreau-Triby C, Tylski P, Tatard-Leitman V, Wdowik Q, Boccalini S, Dessouky R, Douek P, Boussel L. Head-to-head comparison of lung perfusion with dual-energy CT and SPECT-CT. Diagn Interv Imaging 2020; 101:299-310. [PMID: 32173289 DOI: 10.1016/j.diii.2020.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the quantitative and qualitative lung perfusion data acquired with dual energy CT (DECT) to that acquired with a large field-of-view cadmium-zinc-telluride camera single-photon emission CT coupled to a CT system (SPECT-CT). MATERIALS AND METHODS A total of 53 patients who underwent both dual-layer DECT angiography and perfusion SPECT-CT for pulmonary hypertension or pre-operative lobar resection surgery were retrospectively included. There were 30 men and 23 women with a mean age of 65.4±17.5 (SD)years (range: 18-88years). Relative lobar perfusion was calculated by dividing the amount (of radiotracer or iodinated contrast agent) per lobe by the total amount in both lungs. Linear regression, Bland-Altman analysis, and Pearson's correlation coefficient were also calculated. Kappa test was used to test agreements in morphology and severity of perfusion defects assessed on SPECT-CT and on DECT iodine maps with a one-month interval. Wilcoxon rank sum test was used to compare the sharpness of perfusion defects and radiation dose among modalities. RESULTS Strong correlations for relative lobar perfusion using linear regression analysis and Pearson's correlation coefficient (r=0.93) were found. Bland-Altman analysis revealed a -0.10 bias, with limits of agreement between [-6.01; 5.81]. With respect to SPECT- CT as standard of reference, the sensitivity, specificity, PPV, NPV, accuracy for lobar perfusion defects were 89.4% (95%
CI: 82.6-93.4%), 96.5% (95% CI: 92.1-98.5%), 95.6% (95% CI:
90.9-97.8%), 91.4% (95% CI: 85.6-94.9%) and 93.0% (95% CI:
87.6-96.1%) respectively. High level of agreement was found for morphology and severity of perfusion defects between modalities (Kappa=0.84 and 0.86 respectively) and on DECT images among readers (Kappa=0.94 and 0.89 respectively). A significantly sharper delineation of perfusion defects was found on DECT images (P<0.0001) using a significantly lower equivalent dose of 4.1±2.3 (SD) mSv (range: 1.9-11.85mSv) compared to an equivalent dose of 5.3±1.1 (SD) mSv (range: 2.8-7.3mSv) for SPECT-CT, corresponding to a 21.2% dose reduction (P=0.0004). CONCLUSION DECT imaging shows strong quantitative correlations and qualitative agreements with SPECT-CT for the evaluation of lung perfusion.
Collapse
Affiliation(s)
- S Si-Mohamed
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France.
| | - C Moreau-Triby
- Department of Nuclear Medicine, Hospices Civils de Lyon, 69500 Bron, France
| | - P Tylski
- Medical Physics and Radioprotection, Hospices Civils de Lyon, 69500 Bron, France
| | - V Tatard-Leitman
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Q Wdowik
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - S Boccalini
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - R Dessouky
- Department of Radiology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - P Douek
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - L Boussel
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| |
Collapse
|
46
|
Lysdahlgaard S, Hess S, Gerke O, Weber Kusk M. A systematic literature review and meta-analysis of spectral CT compared to scintigraphy in the diagnosis of acute and chronic pulmonary embolisms. Eur Radiol 2020; 30:3624-3633. [PMID: 32112117 DOI: 10.1007/s00330-020-06735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE To examine the diagnostic accuracy of spectral CT pulmonary angiography (S-CTPA) using ventilation-perfusions lung scintigraphy (V/Q-scan) as a reference standard in the diagnosis of acute or chronic pulmonary embolism (APE/CPE) and chronic thromboembolic pulmonary hypertension (CTEPH). METHODS PubMed, Embase, Scopus, and Web of Science were searched for the period from 1 Jan 2006 to 7 Feb 2019; eligible studies had > 10 patients over 18 years old, a diagnostic outcome of PE or CTEPH, and used V/Q scan as a reference standard. Bias and applicability were assessed using QUADAS-2 tools. Sensitivities, specificities, and predictive values were noted or calculated from available information. Meta-analysis employed a fixed-effects model of Mantel and Haenszel. Heterogeneity was assessed with I-squared statistics. RESULTS Four hundred ninety-three unique records were identified. Following screening by title, 53 studies were included in the abstract and full-text assessment. A total of six articles were included; four were suitable for a meta-analysis. Pooled sensitivity was 94.2% (95% CI, 88.3-100%), pooled specificity was 88.5% (95% CI, 81.3-95.6%), and positive and negative predictive values were 87.8% (95% CI, 80.3-95.4%) and 94.5% (95% CI, 89.3-99.7%), respectively. CONCLUSION Data on S-CTPA for PE/CTEPH remains promising, but limited; only small studies with methodological issues are available. Evidence is best for CPE/CTEPH whereas no firm conclusions are possible for APE. There is a need for larger, prospective studies with a robust composite reference standard including state-of-the-art CTPA and V/Q-scans. KEY POINTS • S-CTPA has high sensitivity and specificity for perfusion defects in patients with PE or CPETH. • Methodological issues and diversity of reference standards were found in the small number of included studies. • There is a need for larger prospective studies with more robust composite reference standards.
Collapse
Affiliation(s)
- Simon Lysdahlgaard
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark.
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Martin Weber Kusk
- Department of Radiology and Nuclear Medicine, University Hospital of Southwest Jutland, Esbjerg, Denmark
| |
Collapse
|
47
|
Dual-Energy Computed Tomography in Thoracic Imaging—Current Practices and Utility. J Thorac Imaging 2019; 35:W43-W50. [DOI: 10.1097/rti.0000000000000450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Helmersen D, Provencher S, Hirsch AM, Van Dam A, Dennie C, De Perrot M, Mielniczuk L, Hirani N, Chandy G, Swiston J, Lien D, Kim NH, Delcroix M, Mehta S. Diagnosis of chronic thromboembolic pulmonary hypertension: A Canadian Thoracic Society clinical practice guideline update. CANADIAN JOURNAL OF RESPIRATORY, CRITICAL CARE, AND SLEEP MEDICINE 2019. [DOI: 10.1080/24745332.2019.1631663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Doug Helmersen
- Pulmonary Hypertension Program, Division of Respiratory Medicine, Peter Lougheed Centre, University of Calgary, Calgary, Alberta, Canada
| | - Steeve Provencher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université de Laval, Quebec, Quebec, Canada
| | - Andrew M. Hirsch
- Centre for Pulmonary Vascular Disease, Sir Mortimer B Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Anne Van Dam
- Canadian Thoracic Society, Ottawa, Ontario, Canada
| | - Carole Dennie
- Thoracic and Cardiac Imaging Sections, The Ottawa Hospital Cardiac Radiology, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto Pulmonary Endarterectomy Program, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Mielniczuk
- University of Ottawa Heart Institute Pulmonary Hypertension Clinic, Cardiology Division, University of Ottawa, Ottawa, Ontario, Canada
| | - Naushad Hirani
- Pulmonary Hypertension Program, Division of Respiratory Medicine, Peter Lougheed Centre, University of Calgary, Calgary, Alberta, Canada
| | - George Chandy
- University of Ottawa Heart Institute Pulmonary Hypertension Clinic, Respirology Division, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - John Swiston
- Pulmonary Hypertension Program, Respirology Division, Vancouver General Hospital, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale Lien
- University of Alberta Pulmonary Hypertension Clinic, University of Alberta, Edmonton, Alberta, Canada
| | - Nick H. Kim
- Pulmonary Vascular Medicine, University of California San Diego, California, U.S.A.
| | - Marion Delcroix
- Centre for Pulmonary Vascular Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Sanjay Mehta
- Southwest Ontario Pulmonary Hypertension Clinic, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
49
|
Shahin Y, Johns C, Karunasaagarar K, Kiely DG, Swift AJ. IodiNe Subtraction mapping in the diagnosis of Pulmonary chronIc thRomboEmbolic disease (INSPIRE): Rationale and methodology of a cross-sectional observational diagnostic study. Contemp Clin Trials Commun 2019; 15:100417. [PMID: 31388600 PMCID: PMC6667787 DOI: 10.1016/j.conctc.2019.100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 10/27/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe but treatable disease that is commonly underdiagnosed. Computed tomography lung subtraction iodine mapping (CT-LSIM) in addition to standard CT pulmonary angiography (CTPA) may improve the evaluation of suspected chronic pulmonary embolism and improve the diagnostic pick up rate. We aim to recruit 100 patients suspected of having CTEPH and perform CT-LSIM scans in addition to the current gold standard test of nuclear medicine test (lung single photon emission computed tomography (SPECT) imaging) as a pilot study which will contribute to and inform the definitive trial. The diagnostic accuracy of CT-LSIM and lung SPECT will be compared. The primary outcome of the full definitive study is non-inferiority of CT-LSIM versus lung SPECT imaging.
Collapse
Affiliation(s)
- Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK.,INSIGNEO, Institute for in Silico Medicine, University of Sheffield, UK
| | - Christopher Johns
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | | | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK.,INSIGNEO, Institute for in Silico Medicine, University of Sheffield, UK
| | - Andy J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK.,INSIGNEO, Institute for in Silico Medicine, University of Sheffield, UK
| |
Collapse
|
50
|
Rajiah P, Tanabe Y, Partovi S, Moore A. State of the art: utility of multi-energy CT in the evaluation of pulmonary vasculature. Int J Cardiovasc Imaging 2019; 35:1509-1524. [PMID: 31049753 DOI: 10.1007/s10554-019-01615-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Multi-energy computed tomography (MECT) refers to acquisition of CT data at multiple energy levels (typically two levels) using different technologies such as dual-source, dual-layer and rapid tube voltage switching. In addition to conventional/routine diagnostic images, MECT provides additional image sets including iodine maps, virtual non-contrast images, and virtual monoenergetic images. These image sets provide tissue/material characterization beyond what is possible with conventional CT. MECT provides invaluable additional information in the evaluation of pulmonary vasculature, primarily by the assessment of pulmonary perfusion. This functional information provided by the MECT is complementary to the morphological information from a conventional CT angiography. In this article, we review the technique and applications of MECT in the evaluation of pulmonary vasculature.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Cardiothoracic Imaging Division, Department of Radiology, University of Texas Southwestern Medical Center, E6.122G, 5323 Harry Hines Boulevard, Mail Code 9316, Dallas, TX, 75390-8896, USA.
| | - Yuki Tanabe
- Cardiothoracic Imaging Division, Department of Radiology, University of Texas Southwestern Medical Center, E6.122G, 5323 Harry Hines Boulevard, Mail Code 9316, Dallas, TX, 75390-8896, USA
- Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sasan Partovi
- Interventional Radiology Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alastair Moore
- Department of Radiology, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|