1
|
Wei CJ, Tang Y, Sun YB, Yang TL, Yan C, Liu H, Liu J, Huang JN, Wang MH, Yao ZW, Yang JL, Wang ZC, Li QF. A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification. NPJ Digit Med 2025; 8:56. [PMID: 39863790 PMCID: PMC11763078 DOI: 10.1038/s41746-025-01454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background. In a Chinese seven-center cohort, data from 347 subjects were analyzed. Our one-step model incorporated normal tissue/organ labels to provide contextual information, offering a solution for tumors with complex backgrounds. To address privacy concerns, we utilized a lightweight deep neural network suitable for hospital deployment. The final model achieved an accuracy of 85.71% for MPNST diagnosis in the validation cohort and 84.75% accuracy in the independent test set, outperforming another classic two-step model. This success suggests potential for AI models in screening other whole-body primary/metastatic tumors.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang-Bai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tie-Long Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Cheng Yan
- Department of Radiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hui Liu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Liu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Ning Huang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Han Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhen-Wei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji-Long Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Zhi-Chao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing-Feng Li
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ristow I, Apostolova I, Kaul MG, Stark M, Zapf A, Schmalhofer ML, Mautner VF, Farschtschi S, Adam G, Bannas P, Salamon J, Well L. Discrimination of benign, atypical, and malignant peripheral nerve sheath tumours in neurofibromatosis type 1 - intraindividual comparison of positron emission computed tomography and diffusion-weighted magnetic resonance imaging. EJNMMI Res 2024; 14:127. [PMID: 39729173 DOI: 10.1186/s13550-024-01189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND To intraindividually compare the diagnostic performance of positron emission computed tomography (F-18-FDG-PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in a non-inferiority design for the discrimination of peripheral nerve sheath tumours as benign (BPNST), atypical (ANF), or malignant (MPNST) in patients with neurofibromatosis type 1 (NF1). RESULTS In this prospective single-centre study, thirty-four NF1 patients (18 male; 30 ± 11 years) underwent F-18-FDG-PET/CT and multi-b-value DW-MRI (11 b-values 0 - 800 s/mm²) at 3T. Sixty-six lesions corresponding to 39 BPNST, 11 ANF, and 16 MPNST were evaluated. Two radiologists independently assessed the maximum standardized uptake value (SUVmax) and mean and minimum apparent diffusion coefficient (ADCmean/min) as well as the ADC in areas of lowest signal intensity in each lesion (ADCdark). The AUCs of DW-MRI and F-18-FDG-PET/CT were compared to determine whether the ADC is non-inferior to SUVmax (non-inferiority margin equal to -10%). Follow-up of ≥ 24 months (BPNST) or histopathological evaluation (MPNST + ANF) served as diagnostic reference standard. Both SUVmax and ADC parameters demonstrated good diagnostic accuracy (AUCSUVmax 94.0%; AUCADCmean/min/dark 91.6% / 90.1% / 92.5%). However, non-inferiority could not be demonstrated for any of the three ADC parameters (lower limits of the confidence intervals of the difference between the AUC of ADCmean/min/dark and SUVmax -12.9% / -14.5% / -11.6%). Inter-rater reliability was excellent for both imaging techniques (Krippendorff's alpha all > 0.94). CONCLUSIONS Both PET/CT-derived SUVmax and MRI-derived ADC allow sensitive and non-invasive differentiation of benign and (pre)-malignant peripheral nerve sheath tumours. Nevertheless, DW-MRI cannot be considered as non-inferior to F-18-FDG-PET/CT in this prospective single-centre study.
Collapse
Affiliation(s)
- Inka Ristow
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Michael G Kaul
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maria Stark
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Zapf
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Lena Schmalhofer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Victor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Care Center Beste Trave, Bad Oldesloe, Germany
| | - Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Ye Z, Yao S, Yang T, Li Q, Li Z, Song B. Abdominal Diffusion-Weighted MRI With Simultaneous Multi-Slice Acquisition: Agreement and Reproducibility of Apparent Diffusion Coefficients Measurements. J Magn Reson Imaging 2024; 59:1170-1178. [PMID: 37334872 DOI: 10.1002/jmri.28876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Simultaneous multi-slice diffusion-weighted imaging (SMS-DWI) can shorten acquisition time in abdominal imaging. PURPOSE To investigate the agreement and reproducibility of apparent diffusion coefficient (ADC) from abdominal SMS-DWI acquired with different vendors and different breathing schemes. STUDY TYPE Prospective. SUBJECTS Twenty volunteers and 10 patients. FIELD STRENGTH/SEQUENCE 3.0 T, SMS-DWI with a diffusion-weighted echo-planar imaging sequence. ASSESSMENT SMS-DWI was acquired using breath-hold and free-breathing techniques in scanners from two vendors, yielding four scans in each participant. Average ADC values were measured in the liver, pancreas, spleen, and both kidneys. Non-normalized ADC and ADCs normalized to the spleen were compared between vendors and breathing schemes. STATISTICAL TESTS Paired t-test or Wilcoxon signed rank test; intraclass correlation coefficient (ICC); Bland-Altman method; coefficient of variation (CV) analysis; significance level: P < 0.05. RESULTS Non-normalized ADCs from the four SMS-DWI scans did not differ significantly in the spleen (P = 0.262, 0.330, 0.166, 0.122), right kidney (P = 0.167, 0.538, 0.957, 0.086), and left kidney (P = 0.182, 0.281, 0.504, 0.405), but there were significant differences in the liver and pancreas. For normalized ADCs, there were no significant differences in the liver (P = 0.315, 0.915, 0.198, 0.799), spleen (P = 0.815, 0.689, 0.347, 0.423), pancreas (P = 0.165, 0.336, 0.304, 0.584), right kidney (P = 0.165, 0.336, 0.304, 0.584), and left kidney (P = 0.496, 0.304, 0.443, 0.371). Inter-reader agreements of non-normalized ADCs were good to excellent (ICCs ranged from 0.861 to 0.983), and agreement and reproducibility were good to excellent depending on anatomic location (CVs ranged from 3.55% to 13.98%). Overall CVs for abdominal ADCs from the four scans were 6.25%, 7.62%, 7.08, and 7.60%. DATA CONCLUSION The normalized ADCs from abdominal SMS-DWI may be comparable between different vendors and breathing schemes, showing good agreement and reproducibility. ADC changes above approximately 8% may potentially be considered as a reliable quantitative biomarker to assess disease or treatment-related changes. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers, Shanghai, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People's Hospital, Sanya, China
| |
Collapse
|
4
|
Chen Y, Yang P, Fu C, Bian Y, Shao C, Ma C, Lu J. Variabilities in apparent diffusion coefficient (ADC) measurements of the spleen and the paraspinal muscle: A single center large cohort study. Heliyon 2023; 9:e18166. [PMID: 37519768 PMCID: PMC10372245 DOI: 10.1016/j.heliyon.2023.e18166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Evaluation of the variabilities in apparent diffusion coefficient (ADC) measurements of the spleen (ADCspleen) and the paraspinal muscles (ADCmuscle) to identify the reference organ for normalizing the ADC from the abdominal diffusion weighted imaging (DWI). Methods Two MRI scanners, with 314 abdominal exams on the GE and 929 on the Siemens system, were used for MRI examinations including DWI (b-values, 50 and 800 s/mm2). For a subset of 73 exams on the Siemens system a second exam was conducted. Four regions of interest (ROIs) in each exam were placed to measure the ADCspleen and the bilateral ADCmuscle. ADC variability between patients (on each scanner separately), ADC variability due to ROI placement between the two ROIs in each organ, and variability in the subset between the first and second exams were assessed. Results The ADCspleen was more scattered and variable than the ADCmuscle in the comparability (n = 929 and 314 for two MRI scanners, respectively) and repeatability (n = 73) datasets. The Bland-Altmann bias and limits of agreement (LoAs) for the ADCspleen (ICC, 0.47; CV, 0.070) and ADCmuscle (ICC, 0.67; CV, 0.023) in the repeatability datasets (n = 73) were -0.1 (-25.7%-25.6%) and -0.3 (-8.8%-8.1%), respectively. For the Siemens system, the Bland-Altmann bias and LoAs for the ADCspleen (ICC, 0.72; CV, 0.061) and ADCmuscle (ICC, 0.53; CV, 0.030) in the comparability datasets (n = 929) were 2.1 (-20.0%-24.2%) and 0.7 (-10.0%-11.4%), respectively. Similar findings have been found in the GE system (n = 314). The CVs for the ADCmuscle measurements were lower than those of the ADCspleen both in the repeatability and the comparability analyses (all p < 0.001). Conclusion Paraspinal muscles demonstrate better reference characteristics than the spleen in estimating ADC variability of abdominal DWI.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Siemens Healthineers, Shenzhen, 518057, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
- College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
5
|
Rogers HJ, Singh S, Barnes A, Obuchowski NA, Margolis DJ, Malyarenko DI, Chenevert TL, Shukla-Dave A, Boss MA, Punwani S. Test-retest repeatability of ADC in prostate using the multi b-Value VERDICT acquisition. Eur J Radiol 2023; 162:110782. [PMID: 37004362 PMCID: PMC10334409 DOI: 10.1016/j.ejrad.2023.110782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE VERDICT (Vascular, Extracellular, Restricted Diffusion for Cytometry in Tumours) MRI is a multi b-value, variable diffusion time DWI sequence that allows generation of ADC maps from different b-value and diffusion time combinations. The aim was to assess precision of prostate ADC measurements from varying b-value combinations using VERDICT and determine which protocol provides the most repeatable ADC. MATERIALS AND METHODS Forty-one men (median age: 67.7 years) from a prior prospective VERDICT study (April 2016-October 2017) were analysed retrospectively. Men who were suspected of prostate cancer and scanned twice using VERDICT were included. ADC maps were formed using 5b-value combinations and the within-subject standard deviations (wSD) were calculated per ADC map. Three anatomical locations were analysed per subject: normal TZ (transition zone), normal PZ (peripheral zone), and index lesions. Repeated measures ANOVAs showed which b-value range had the lowest wSD, Spearman correlation and generalized linear model regression analysis determined whether wSD was related to ADC magnitude and ROI size. RESULTS The mean lesion ADC for b0b1500 had the lowest wSD in most zones (0.18-0.58x10-4 mm2/s). The wSD was unaffected by ADC magnitude (Lesion: p = 0.064, TZ: p = 0.368, PZ: p = 0.072) and lesion Likert score (p = 0.95). wSD showed a decrease with ROI size pooled over zones (p = 0.019, adjusted regression coefficient = -1.6x10-3, larger ROIs for TZ versus PZ versus lesions). ADC maps formed with a maximum b-value of 500 s/mm2 had the largest wSDs (1.90-10.24x10-4 mm2/s). CONCLUSION ADC maps generated from b0b1500 have better repeatability in normal TZ, normal PZ, and index lesions.
Collapse
Affiliation(s)
- Harriet J Rogers
- Centre for Medical Imaging, Division of Medicine, University College London, London, UK.
| | - Saurabh Singh
- Centre for Medical Imaging, Division of Medicine, University College London, London, UK
| | - Anna Barnes
- Centre for Medical Imaging, Division of Medicine, University College London, London, UK
| | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Boss
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Shonit Punwani
- Centre for Medical Imaging, Division of Medicine, University College London, London, UK
| |
Collapse
|
6
|
Well L, Salamon J, Kaul MG, Farschtschi S, Herrmann J, Geier KI, Hagel C, Bockhorn M, Bannas P, Adam G, Mautner VF, Derlin T. Differentiation of peripheral nerve sheath tumors in patients with neurofibromatosis type 1 using diffusion-weighted magnetic resonance imaging. Neuro Oncol 2020; 21:508-516. [PMID: 30496452 DOI: 10.1093/neuonc/noy199] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We sought to determine the value of diffusion-weighted (DW) magnetic resonance imaging (MRI) for characterization of benign and malignant peripheral nerve sheath tumors (PNSTs) in patients with neurofibromatosis type 1 (NF1). METHODS Twenty-six patients with NF1 and suspicion of malignant transformation of PNSTs were prospectively enrolled and underwent DW MRI at 3T. For a set of benign (n = 55) and malignant (n = 12) PNSTs, functional MRI parameters were derived from both biexponential intravoxel incoherent motion (diffusion coefficient D and perfusion fraction f) and monoexponential data analysis (apparent diffusion coefficients [ADCs]). A panel of morphological MRI features was evaluated using T1- and T2-weighted imaging. Mann-Whitney U-test, Fisher's exact test, and receiver operating characteristic (ROC) analyses were applied to assess the diagnostic accuracy of quantitative and qualitative MRI. Cohen's kappa was used to determine interrater reliability. RESULTS Malignant PNSTs demonstrated significantly lower diffusivity (P < 0.0001) compared with benign PNSTs. The perfusion fraction f was significantly higher in malignant PNSTs (P < 0.001). In ROC analysis, functional MRI parameters showed high diagnostic accuracy for differentiation of PNSTs (eg, ADCmean, 92% sensitivity with 98% specificity, AUC 0.98; Dmean, 92% sensitivity with 98% specificity, AUC 0.98). By contrast, morphological imaging features had only limited sensitivity (18-94%) and specificity (18-82%) for identification of malignancy. Interrater reliability was higher for monoexponential data analysis. CONCLUSION DW imaging shows better diagnostic performance than morphological features and allows accurate differentiation of benign and malignant peripheral nerve sheath tumors in NF1.
Collapse
Affiliation(s)
- Lennart Well
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Salamon
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael G Kaul
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Said Farschtschi
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin I Geier
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Shin MK, Song JS, Hwang SB, Hwang HP, Kim YJ, Moon WS. Liver Fibrosis Assessment with Diffusion-Weighted Imaging: Value of Liver Apparent Diffusion Coefficient Normalization Using the Spleen as a Reference Organ. Diagnostics (Basel) 2019; 9:diagnostics9030107. [PMID: 31466404 PMCID: PMC6787628 DOI: 10.3390/diagnostics9030107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis staging is of great clinical importance because it is used to assess the severity of the underlying chronic liver disease. Among various imaging-based methods, apparent diffusion coefficient (ADC) measurement using diffusion-weighted imaging (DWI) has the potential to be used as an imaging biomarker for liver fibrosis assessment. In this study, we investigated the usefulness of liver ADC normalization using the spleen as a reference organ in liver fibrosis staging with 66 patients who underwent liver magnetic resonance imaging (MRI), transient elastography (TE), and surgical resection of a hepatic mass. ADC values of the liver (ADCliver) and spleen were analyzed, and the spleen was used for ADCliver normalization (nADCliver). ADCliver showed a weak negative correlation with TE (r = −0.246; p = 0.047) and fibrosis stage (r = −0.269; p = 0.029), while n ADCliver showed a moderate negative correlation with TE (r = −0.504; p < 0.001) and fibrosis stage (r = −0.579; p < 0.001). AUC values for nADCliver (0.777–0.875) were higher than those for ADCliver for each stage of fibrosis (0.596–0.713, p = 0.037–0.157). AUC values for TE (0.726–0.884) and nADCliver were not statistically different. In conclusion, normalized liver ADC can be useful in diagnosing liver fibrosis stage in patients with variable DWI acquisitions.
Collapse
Affiliation(s)
- Min Ki Shin
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea
| | - Ji Soo Song
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| | - Seung Bae Hwang
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Hong Pil Hwang
- Department of Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Young Jun Kim
- Department of Radiology, Presbyterian Medical Center, Jeonju 54907, Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
8
|
Intra-individual comparison of conventional and simultaneous multislice-accelerated diffusion-weighted imaging in upper abdominal solid organs: value of ADC normalization using the spleen as a reference organ. Abdom Radiol (NY) 2019; 44:1808-1815. [PMID: 30737546 DOI: 10.1007/s00261-019-01924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare the apparent diffusion coefficient (ADC) value of conventional diffusion-weighted imaging (cDWI) to simultaneous multislice-accelerated DWI (sDWI) and to evaluate the possibility of ADC normalization using the spleen as a reference organ. METHODS We retrospectively evaluated 92 patients (68 men, 24 women; mean age 60.0 years) who underwent liver magnetic resonance imaging (MRI) including both cDWI and sDWI. sDWI was obtained with an acceleration factor of 2. ADC values were measured from the right liver lobe, left liver lobe, spleen, pancreas, right kidney, and left kidney. ADC values of the spleen were used for normalization. Paired sample t test, Pearson's correlation coefficient, and Bland-Altman method were used for statistical analysis. RESULTS ADC values of cDWI were significantly lower than sDWI in all six anatomic regions (p < 0.001). The mean difference in ADC value between cDWI and sDWI ranged from 0.048 to 0.125 × 10-3 mm2/s. ADC values from cDWI and sDWI showed a moderate to very high positive correlation (p < 0.001). After ADC normalization using the spleen as a reference organ, there was no significant difference between normalized ADC of cDWI and sDWI in all 5 anatomic regions (p = 0.11 - 0.74). CONCLUSIONS Normalization of ADC using the spleen could be useful for comparing upper abdominal organs acquired with either cDWI or sDWI in longitudinal and follow-up studies.
Collapse
|
9
|
Ma S, Xu K, Xie H, Wang H, Wang R, Zhang X, Wei J, Wang X. Diagnostic efficacy of b value (2000 s/mm2) diffusion-weighted imaging for prostate cancer: Comparison of a reduced field of view sequence and a conventional technique. Eur J Radiol 2018; 107:125-133. [DOI: 10.1016/j.ejrad.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
|
10
|
Kim BR, Song JS, Choi EJ, Hwang SB, Hwang HP. Diffusion-Weighted Imaging of Upper Abdominal Organs Acquired with Multiple B-Value Combinations: Value of Normalization Using Spleen as the Reference Organ. Korean J Radiol 2018; 19:389-396. [PMID: 29713216 PMCID: PMC5904465 DOI: 10.3348/kjr.2018.19.3.389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/28/2017] [Indexed: 01/26/2023] Open
Abstract
Objective To compare apparent diffusion coefficient (ADC) of the upper abdominal organs acquired with multiple b-value combinations and to investigate usefulness of normalization. Materials and Methods We retrospectively analyzed data, including 3T diffusion-weighted images, of 100 patients (56 men, 44 women; mean age, 63.9) that underwent liver magnetic resonance imaging. An ADC map was derived with the following six b-value combinations: b1 = 0, 50, 400, 800; b2 = 0, 800; b3 = 0, 50, 800; b4 = 0, 400, 800; b5 = 50, 800; and b6 = 50, 400, 800 s/mm2. ADC values of the right liver lobe, left liver lobe, spleen, pancreas, right kidney, and left kidney were measured. ADC values of the spleen were used for normalization. Intraclass correlation coefficients (ICCs), comparison of dependent ICCs, and repeated-measures analysis of variance were used for statistical analysis. Results Intraclass correlation coefficients of the original ADC revealed moderate to substantial agreement (0.5145-0.6509), while normalized ADCs revealed almost perfect agreement (0.8014-0.8569). ICC of normalized ADC for all anatomical regions revealed significantly less variability than that of the original ADC (p < 0.05). Coefficient of variance for normalized ADC was significantly lower than that for the original ADC (3.0.3.8% vs. 4.8.8.8%, p < 0.05). Conclusion Normalization of the ADC values of the upper abdominal organs using the spleen as the reference organ significantly decreased variability in ADC measurement acquired with multiple b-value combinations.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea
| | - Ji Soo Song
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Eun Jung Choi
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Seung Bae Hwang
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.,Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Hong Pil Hwang
- Department of Surgery, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
11
|
Abstract
Diffusion-weighted imaging (DWI) is increasingly incorporated into routine body magnetic resonance imaging protocols. DWI can assist with lesion detection and even in characterization. Quantitative DWI has exhibited promise in the discrimination between benign and malignant pathology, in the evaluation of the biologic aggressiveness, and in the assessment of the response to treatment. Unfortunately, inconsistencies in DWI acquisition parameters and analysis have hampered widespread clinical utilization. Focusing primarily on liver applications, this article will review the basic principles of quantitative DWI. In addition to standard mono-exponential fitting, the authors will discuss intravoxel incoherent motion and diffusion kurtosis imaging that involve more sophisticated approaches to diffusion quantification.
Collapse
Affiliation(s)
- Myles T Taffel
- Department of Radiology, New York University School of Medicine, New York, NY
| | | | | |
Collapse
|
12
|
Accuracy of apparent diffusion coefficient in differentiating pancreatic neuroendocrine tumour from intrapancreatic accessory spleen. Eur Radiol 2017; 28:1560-1567. [PMID: 29134352 DOI: 10.1007/s00330-017-5122-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/26/2022]
|
13
|
Pathak R, Ragheb H, Thacker NA, Morris DM, Amiri H, Kuijer J, deSouza NM, Heerschap A, Jackson A. A data-driven statistical model that estimates measurement uncertainty improves interpretation of ADC reproducibility: a multi-site study of liver metastases. Sci Rep 2017; 7:14084. [PMID: 29075009 PMCID: PMC5658431 DOI: 10.1038/s41598-017-14625-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
Apparent Diffusion Coefficient (ADC) is a potential quantitative imaging biomarker for tumour cell density and is widely used to detect early treatment changes in cancer therapy. We propose a strategy to improve confidence in the interpretation of measured changes in ADC using a data-driven model that describes sources of measurement error. Observed ADC is then standardised against this estimation of uncertainty for any given measurement. 20 patients were recruited prospectively and equitably across 4 sites, and scanned twice (test-retest) within 7 days. Repeatability measurements of defined regions (ROIs) of tumour and normal tissue were quantified as percentage change in mean ADC (test vs. re-test) and then standardised against an estimation of uncertainty. Multi-site reproducibility, (quantified as width of the 95% confidence bound between the lower confidence interval and higher confidence interval for all repeatability measurements), was compared before and after standardisation to the model. The 95% confidence interval width used to determine a statistically significant change reduced from 21.1 to 2.7% after standardisation. Small tumour volumes and respiratory motion were found to be important contributors to poor reproducibility. A look up chart has been provided for investigators who would like to estimate uncertainty from statistical error on individual ADC measurements.
Collapse
Affiliation(s)
- Ryan Pathak
- University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK.
| | - Hossein Ragheb
- University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Neil A Thacker
- University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - David M Morris
- University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Houshang Amiri
- Radboudumc, Radiology and Nuclear Medicine, Nijmegen, Gelderland, NL, Netherlands
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Joost Kuijer
- VU University Medical Center, Physics & Medical Technology, PO Box 7057, Amsterdam, NL, 1007MB, Netherlands
| | - Nandita M deSouza
- Institute of Cancer Research, MRI Unit, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Arend Heerschap
- Radboudumc, Radiology and Nuclear Medicine, Nijmegen, Gelderland, NL, Netherlands
| | - Alan Jackson
- University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
14
|
Koc Z, Erbay G, Karadeli E. Internal comparison standard for abdominal diffusion-weighted imaging. Acta Radiol 2017; 58:1029-1036. [PMID: 27956463 DOI: 10.1177/0284185116681040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Standards for abdominal diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) measurements, and analysis are required for reproducibility. Purpose To identify optimal internal comparison standards for DWI to normalize the measured ADC for increased accuracy of differentiating malignant and benign abdominal lesions. Material and Methods We retrospectively studied 97 lesions (89 patients; age, 57 ± 13 years) with histopathologically confirmed abdominal disease. Seven normal body parts/contents (normal parenchyma, spleen, kidney, gallbladder bile, paraspinal muscle, spinal cord, and cerebrospinal fluid [CSF]) were assessed as internal references for possible use as comparison standards. Three observers performed ADC measurements. Statistical analyses included interclass correlation coefficients (ICCs), Mann-Whitney and Kruskal-Wallis tests, and coefficient of variation (CV). ROC analyses were performed to assess diagnostic accuracy of lesion ADC and normalized ADC for differentiating lesions. Pathology results were the reference standard. Results Mean and normalized ADCs were significantly lower for malignant lesions than for benign lesions ( P < 0.001). ICC was excellent for all internal references. Gallbladder had the lowest CV. Receiver operating characteristic (ROC) analyses showed that normalized ADCs obtained using normal parenchyma were better than lesion ADCs for differentiating malignant and benign abdominal lesions (area under the curve [AUC], 0.808 and 0.756, respectively). The normalized ADCs obtained using CSF shows higher accuracy than lesion ADCs (0.80 and 0.76, respectively) for differentiating between malignant and benign abdominal lesions. Conclusion The normal parenchyma from a lesion-detected organ can be used as an internal comparison standard for DWI. CSF can be used as a generalizable in plane reference standard.
Collapse
Affiliation(s)
- Zafer Koc
- Faculty of Medicine, Department of Radiology, Baskent University, Ankara, Turkey
| | - Gurcan Erbay
- Faculty of Medicine, Department of Radiology, Baskent University, Ankara, Turkey
| | - Elif Karadeli
- Faculty of Medicine, Department of Radiology, Baskent University, Ankara, Turkey
| |
Collapse
|
15
|
Ma C, Li J, Boukar MB, Yang P, Wang L, Chen L, Su L, Qu J, Chen SY, Hao Q, Lu JP. Optimized ROI size on ADC measurements of normal pancreas, pancreatic cancer and mass-forming chronic pancreatitis. Oncotarget 2017; 8:99085-99092. [PMID: 29228754 PMCID: PMC5716794 DOI: 10.18632/oncotarget.18457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives To investigate the effects of region of interest (ROI) sizes on apparent diffusion coefficient (ADC) measurements for the differentiation of normal pancreas (NP), pancreatic ductal adenocarcinoma (PDAC) and mass-forming chronic pancreatitis (MFCP). Results There were no significant differences for the mean ADCs measured by 12 different-size ROIs for MFCP, or PDAC and NP (P = 0.858–1.0). With the increase of ROI size (≥ 55 mm2), ADCs of PDAC were significantly lower than those of NP (all P < 0.05), but there was no difference of the accuracy in ADC for differentiating the two groups only at a ROI size of 214 mm2. When ROI size was above 99 mm2, ADCs of MFCP were significantly lower than those of NP (all P < 0.05). There were no significant differences for any of the mean ADCs measured by 12 different-size ROIs between PDAC and MFCP (P > 0.05). Materials and Methods Diffusion-weighted imaging (DWI) was performed on 89 participants: 64 with PDAC, 7 with MFCP, as well as 18 healthy volunteers. ADC maps were created using mono-exponential model. A homemade software was used to measure the mean ADC values of 12 concentric round ROIs (areas: 15, 46, 55, 82, 99, 121, 134, 152, 161, 189, 214, 223, and 245 mm2) for the mass of lesions and the NP tissue. Conclusions In ADC measurements, the optimized ROI size is 214 mm2 for the differentiation of PDAC and NP; ROI size of ≥ 99 mm2 is recommended to differentiate between MFCP and NP. ADC was not useful for the differentiation of PDAC and MFCP.
Collapse
Affiliation(s)
- Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Mbaiaoure Barak Boukar
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Panpan Yang
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Li Wang
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Luguang Chen
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Li Su
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianxun Qu
- GE Healthcare, MR Group, Shanghai, China
| | - Shi-Yue Chen
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Qiang Hao
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| | - Jian-Ping Lu
- Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Song JS, Kwak HS, Byon JH, Jin GY. Diffusion‐weighted MR imaging of upper abdominal organs at different time points: Apparent diffusion coefficient normalization using a reference organ. J Magn Reson Imaging 2017; 45:1494-1501. [DOI: 10.1002/jmri.25456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Ji Soo Song
- Department of RadiologyChonbuk National University Medical School and HospitalChonbuk South Korea
- Research Institute of Clinical Medicine of Chonbuk National UniversityBiomedical Research Institute of Chonbuk National University HospitalChonbuk South Korea
| | - Hyo Sung Kwak
- Department of RadiologyChonbuk National University Medical School and HospitalChonbuk South Korea
- Research Institute of Clinical Medicine of Chonbuk National UniversityBiomedical Research Institute of Chonbuk National University HospitalChonbuk South Korea
| | - Jung Hee Byon
- Department of RadiologyChonbuk National University Medical School and HospitalChonbuk South Korea
| | - Gong Yong Jin
- Department of RadiologyChonbuk National University Medical School and HospitalChonbuk South Korea
- Research Institute of Clinical Medicine of Chonbuk National UniversityBiomedical Research Institute of Chonbuk National University HospitalChonbuk South Korea
| |
Collapse
|
17
|
Albayrak E, Sahin S. Evaluation of upper abdominal organs with DWI in patients with familial Mediterranean fever. Abdom Radiol (NY) 2017; 42:1393-1399. [PMID: 27909774 DOI: 10.1007/s00261-016-1005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To investigate the diagnostic efficiency of diffusion-weighted magnetic resonance imaging (DWI) for the evaluation of functional changes that can occur in upper abdominal organs in patients with familial Mediterranean fever (FMF). METHODS The study included 50 controls, 45 patients with FMF, and 14 patients with FMF who had accompanying proteinuria. Measurement of apparent diffusion coefficient (ADC) was performed using DWI sections obtained from liver, spleen, kidney, and pancreas parenchyma with 1.5T MRI using b = 500 and b = 1000 s/mm2 values both in patients and control groups. Mean ADC values were compared between patient and control groups. RESULTS Renal ADC values were lower in the patient groups compared to the control group. Additionally, renal ADC values showed further decrease in the patient group in the presence of accompanying proteinuria, when compared to the FMF group without proteinuria (p < 0.001). Based on the ROC analysis, calculated cutoff values for the determination of FMF and FMF accompanied by proteinuria were 2.26 × 10-3 and 2.04 × 10-3 mm2/s, respectively. Liver, spleen, and pancreas ADC values did not show remarkable change between patient and control groups. CONCLUSION Present findings indicate that the presence of FMF and its clinical progression expressed by proteinuria can be differentially determined with renal DWI.
Collapse
|
18
|
Zhu J, Zhang J, Gao JY, Li JN, Yang DW, Chen M, Zhou C, Yang ZH. Apparent diffusion coefficient normalization of normal liver: Will it improve the reproducibility of diffusion-weighted imaging at different MR scanners as a new biomarker? Medicine (Baltimore) 2017; 96:e5910. [PMID: 28099354 PMCID: PMC5279099 DOI: 10.1097/md.0000000000005910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apparent diffusion coefficient (ADC) measurement in diffusion-weighted imaging (DWI) has been reported to be a helpful biomarker for detection and characterization of lesion. In view of the importance of ADC measurement reproducibility, the aim of this study was to probe the variability of the healthy hepatic ADC values measured at 3 MR scanners from different vendors and with different field strengths, and to investigate the reproducibility of normalized ADC (nADC) value with the spleen as the reference organ. Thirty enrolled healthy volunteers received DWI with GE 1.5T, Siemens 1.5T, and Philips 3.0T magnetic resonance (MR) systems on liver and spleen (session 1) and were imaged again after 10 to 14 days using only GE 1.5T MR and Philips 3.0T MR systems (session 2). Interscan agreement and reproducibility of ADC measurements of liver and the calculated nADC values (ADCliver/ADCspleen) were statistically evaluated between 2 sessions. In session 1, ADC and nADC values of liver were evaluated for the scanner-related variability by 2-way analysis of variance and intraclass correlation coefficients (ICCs). Coefficients of variation (CVs) of ADCs and nADCs of liver were calculated for both 1.5 and 3.0-T MR system. Interscan agreement and reproducibility of ADC measurements of liver and related nADCs between 2 sessions were found to be satisfactory with ICC values of 0.773 to 0.905. In session 1, the liver nADCs obtained from different scanners were consistent (P = 0.112) without any significant difference in multiple comparison (P = 0.117 to >0.99) by using 2-way analysis of variance with post-hoc analysis of Bonferroni method, although the liver ADCs varied significantly (P < 0.001). nADCs measured by 3 scanners were in good interscanner agreements with ICCs of 0.685 to 0.776. The mean CV of nADCs of both 1.5T MR scanners (9.6%) was similar to that of 3.0T MR scanner (8.9%). ADCs measured at 3 MR scanners with different field strengths and vendors could not be compared directly. Normalization of ADCs, however, may provide better reproducibility by overcoming these potential issues.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Yin Gao
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Jin-Ning Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Da-Wei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Cheng Zhou
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Importance of Fractional b Value for Calculating Apparent Diffusion Coefficient in DWI. AJR Am J Roentgenol 2016; 207:1239-1243. [DOI: 10.2214/ajr.15.15945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C, Padhani AR, Rosenkrantz AB, Shukla-Dave A, Sigmund E, Tanenbaum L, Thoeny H, Thomassin-Naggara I, Barbieri S, Corcuera-Solano I, Orton M, Partridge SC, Koh DM. Diffusion-weighted imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop. J Magn Reson Imaging 2016; 44:521-40. [PMID: 26892827 PMCID: PMC4983499 DOI: 10.1002/jmri.25196] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. J. Magn. Reson. Imaging 2016;44:521-540.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Thomas Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - David Collins
- CR UK Cancer Imaging Centre, Institute of Cancer Research and Department of Radiology, Royal Marsden Hospital, London, UK
| | - Constance Lehman
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celso Matos
- Department of Radiology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | | | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Eric Sigmund
- Irene and Bernard Schwartz Center for Biomedical Imaging (CBI) and Center for Advanced Imaging and Innovation (CAIR), Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Lawrence Tanenbaum
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harriet Thoeny
- Department of Diagnostic Radiology, Inselspital Bern, Bern, Switzerland
| | | | | | - Idoia Corcuera-Solano
- Department of Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew Orton
- CR UK Cancer Imaging Centre, Institute of Cancer Research and Department of Radiology, Royal Marsden Hospital, London, UK
| | | | - Dow-Mu Koh
- Institute of Cancer Research and Department of Radiology, Royal Marsden Hospital, London, UK
| |
Collapse
|
21
|
Ponhold L, Javor D, Heinz-Peer G, Sevcenco S, Hofstetter M, Baltzer PA. Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by diffusion-weighted imaging (DWI) in small renal masses. Acta Radiol 2016; 57:1014-20. [PMID: 26486599 DOI: 10.1177/0284185115610934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is increasingly used to diagnose renal lesion subtypes. Especially in small renal masses, identification of less aggressive tumor types is of clinical interest, as active surveillance strategies can be applied. PURPOSE To evaluate the inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by DWI in small renal masses ≤4 cm (SRM). MATERIAL AND METHODS This retrospective IRB-approved study included 39 patients (46 SRM: 12 benign, 34 malignant). All underwent a 3 T DWI of SRM prior to surgery. Two radiologists independently analyzed all imaging data by three measurements. Limits of agreement, intraclass correlation coefficients (ICC), group comparisons by t-tests, and ROC analysis were performed. RESULTS Reliability of ADC measurements was very high with an ICC of >0.9 for both observers. Inter-rater reliability was high with an ICC of 0.82. Limits of agreement for average ADC values between both observers were -23.5% to 38.3% with a mean difference of 7.5% between both observers. No significant differences were found between benign and malignant lesions (P value Observer 1: 0.362, Observer 2: 0.622). Papillary carcinoma showed lower ADC values compared to non-papillary carcinoma (P value Observer 1: 0.008, Observer 2: 0.012). Consequently, ROC analysis revealed a significant (P < 0.001, respectively) area under the ROC curve of 0.853 (Observer 1) and 0.837 (Observer 2) without significant differences between both readers (P = 0.772). CONCLUSION ADC measurements of SRM at 3 T show a high reproducibility and differentiate papillary from non-papillary carcinoma subtypes. However, measurement variability may limit the application of fixed ADC thresholds for lesion diagnosis.
Collapse
Affiliation(s)
- Lothar Ponhold
- Department of Radiology, University Hospital of Sankt-Pölten, St. Pölten, Austria
| | - Domagoj Javor
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gertraud Heinz-Peer
- Department of Radiology, University Hospital of Sankt-Pölten, St. Pölten, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Martin Hofstetter
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pascal Andreas Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Zeilinger MG, Lell M, Baltzer PAT, Dörfler A, Uder M, Dietzel M. Impact of post-processing methods on apparent diffusion coefficient values. Eur Radiol 2016; 27:946-955. [PMID: 27251180 PMCID: PMC5591618 DOI: 10.1007/s00330-016-4403-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The apparent diffusion coefficient (ADC) is increasingly used as a quantitative biomarker in oncological imaging. ADC calculation is based on raw diffusion-weighted imaging (DWI) data, and multiple post-processing methods (PPMs) have been proposed for this purpose. We investigated whether PPM has an impact on final ADC values. METHODS Sixty-five lesions scanned with a standardized whole-body DWI-protocol at 3 T served as input data (EPI-DWI, b-values: 50, 400 and 800 s/mm2). Using exactly the same ROI coordinates, four different PPM (ADC_1-ADC_4) were executed to calculate corresponding ADC values, given as [10-3 mm2/s] of each lesion. Statistical analysis was performed to intra-individually compare ADC values stratified by PPM (Wilcoxon signed-rank tests: α = 1 %; descriptive statistics; relative difference/∆; coefficient of variation/CV). RESULTS Stratified by PPM, mean ADCs ranged from 1.136-1.206 *10-3 mm2/s (∆ = 7.0 %). Variances between PPM were pronounced in the upper range of ADC values (maximum: 2.540-2.763 10-3 mm2/s, ∆ = 8 %). Pairwise comparisons identified significant differences between all PPM (P ≤ 0.003; mean CV = 7.2 %) and reached 0.137 *10-3 mm2/s within the 25th-75th percentile. CONCLUSION Altering the PPM had a significant impact on the ADC value. This should be considered if ADC values from different post-processing methods are compared in patient studies. KEY POINTS • Post-processing methods significantly influenced ADC values. • The mean coefficient of ADC variation due to PPM was 7.2 %. • To achieve reproducible ADC values, standardization of post-processing is recommended.
Collapse
Affiliation(s)
- Martin Georg Zeilinger
- Institute of Diagnostic Radiology, University of Erlangen-Nuremberg, Maximiliansplatz 1, D-91054, Erlangen, Germany
| | - Michael Lell
- Institute of Diagnostic Radiology, University of Erlangen-Nuremberg, Maximiliansplatz 1, D-91054, Erlangen, Germany
| | - Pascal Andreas Thomas Baltzer
- Department of Radiology and Nuclear Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Arnd Dörfler
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Michael Uder
- Institute of Diagnostic Radiology, University of Erlangen-Nuremberg, Maximiliansplatz 1, D-91054, Erlangen, Germany
| | - Matthias Dietzel
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, D-91054, Erlangen, Germany
| |
Collapse
|
23
|
Jerome NP, Papoutsaki MV, Orton MR, Parkes HG, Winfield JM, Boss MA, Leach MO, deSouza NM, Collins DJ. Development of a temperature-controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements. Med Phys 2016; 43:2998-3007. [PMID: 27277048 DOI: 10.1118/1.4948997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Diffusion-weighted (DW) and dynamic contrast-enhanced magnetic resonance imaging (MRI) are increasingly applied for the assessment of functional tissue biomarkers for diagnosis, lesion characterization, or for monitoring of treatment response. However, these techniques are vulnerable to the influence of various factors, so there is a necessity for a standardized MR quality assurance procedure utilizing a phantom to facilitate the reliable estimation of repeatability of these quantitative biomarkers arising from technical factors (e.g., B1 variation) affecting acquisition on scanners of different vendors and field strengths. The purpose of this study is to present a novel phantom designed for use in quality assurance for multicenter trials, and the associated repeatability measurements of functional and quantitative imaging protocols across different MR vendors and field strengths. METHODS A cylindrical acrylic phantom was manufactured containing 7 vials of polyvinylpyrrolidone (PVP) solutions of different concentrations, ranging from 0% (distilled water) to 25% w/w, to create a range of different MR contrast parameters. Temperature control was achieved by equilibration with ice-water. Repeated MR imaging measurements of the phantom were performed on four clinical scanners (two at 1.5 T, two at 3.0 T; two vendors) using the same scanning protocol to assess the long-term and short-term repeatability. The scanning protocol consisted of DW measurements, inversion recovery (IR) T1 measurements, multiecho T2 measurement, and dynamic T1-weighted sequence allowing multiple variable flip angle (VFA) estimation of T1 values over time. For each measurement, the corresponding calculated parameter maps were produced. On each calculated map, regions of interest (ROIs) were drawn within each vial and the median value of these voxels was assessed. For the dynamic data, the autocorrelation function and their variance were calculated; for the assessment of the repeatability, the coefficients of variation (CoV) were calculated. RESULTS For both field strengths across the available vendors, the apparent diffusion coefficient (ADC) at 0 °C ranged from (1.12 ± 0.01) × 10(-3) mm(2)/s for pure water to (0.48 ± 0.02) × 10(-3) mm(2)/s for the 25% w/w PVP concentration, presenting a minor variability between the vendors and the field strengths. T2 and IR-T1 relaxation time results demonstrated variability between the field strengths and the vendors across the different acquisitions. Moreover, the T1 values derived from the VFA method exhibited a large variation compared with the IR-T1 values across all the scanners for all repeated measurements, although the calculation of the standard deviation of the VFA-T1 estimate across each ROI and the autocorrelation showed a stability of the signal for three scanners, with autocorrelation of the signal over the dynamic series revealing a periodic variation in one scanner. Finally, the ADC, the T2, and the IR-T1 values exhibited an excellent repeatability across the scanners, whereas for the dynamic data, the CoVs were higher. CONCLUSIONS The combination of a novel PVP phantom, with multiple compartments to give a physiologically relevant range of ADC and T1 values, together with ice-water as a temperature-controlled medium, allows reliable quality assurance measurements that can be used to measure agreement between MRI scanners, critical in multicenter functional and quantitative imaging studies.
Collapse
Affiliation(s)
- Neil P Jerome
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| | - Marianthi-Vasiliki Papoutsaki
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom and Members of the Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy (QuiC-ConCePT) Consortium
| | - Matthew R Orton
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| | - Harold G Parkes
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| | - Jessica M Winfield
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| | - Michael A Boss
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| | - Nandita M deSouza
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom and Members of the Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy (QuiC-ConCePT) Consortium
| | - David J Collins
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, 123 Old Brompton Road, London SM2 5NG, United Kingdom
| |
Collapse
|
24
|
Song JS, Hwang SB, Chung GH, Jin GY. Intra-Individual, Inter-Vendor Comparison of Diffusion-Weighted MR Imaging of Upper Abdominal Organs at 3.0 Tesla with an Emphasis on the Value of Normalization with the Spleen. Korean J Radiol 2016; 17:209-17. [PMID: 26957905 PMCID: PMC4781759 DOI: 10.3348/kjr.2016.17.2.209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To compare the apparent diffusion coefficient (ADC) values of upper abdominal organs with 2 different 3.0 tesla MR systems and to investigate the usefulness of normalization using the spleen. MATERIALS AND METHODS Forty-one patients were enrolled in this prospective study, of which, 35 patients (M:F, 27:8; mean age ± standard deviation, 62.3 ± 12.3 years) were finally analyzed. In addition to the routine liver MR protocol, single-shot spin-echo echo-planar diffusion-weighted imaging using b values of 0, 50, 400, and 800 s/mm(2) in 2 different MR systems was performed. ADC values of the liver, spleen, pancreas, kidney and liver lesion (if present) were measured and analyzed. ADC values of the spleen were used for normalization. The Pearson correlation, Spearman correlation, paired sample t test, Wilcoxon signed rank test and Bland-Altman method were used for statistical analysis. RESULTS For all anatomical regions and liver lesions, both non-normalized and normalized ADC values from 2 different MR systems showed significant correlations (r = 0.5196-0.8488). Non-normalized ADC values of both MR systems differed significantly in all anatomical regions and liver lesions (p < 0.001). However, the normalized ADC of all anatomical regions and liver lesions did not differ significantly (p = 0.065-0.661), with significantly lower coefficient of variance than that of non-normalized ADC (p < 0.009). CONCLUSION Normalization of the abdominal ADC values using the spleen as a reference organ reduces differences between different MR systems, and could facilitate consistent use of ADC as an imaging biomarker for multi-center or longitudinal studies.
Collapse
Affiliation(s)
- Ji Soo Song
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Seung Bae Hwang
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Gyung Ho Chung
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Gong Yong Jin
- Department of Radiology, Chonbuk National University Medical School and Hospital, Jeonju 54907, Korea.; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
25
|
Jafar MM, Parsai A, Miquel ME. Diffusion-weighted magnetic resonance imaging in cancer: Reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J Radiol 2016; 8:21-49. [PMID: 26834942 PMCID: PMC4731347 DOI: 10.4329/wjr.v8.i1.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10(-3) mm(2)/s in liver, 1.94 × 10(-3) mm(2)/s in kidney, 1.60 × 10(-3) mm(2)/s in pancreatic body, 0.85 × 10(-3) mm(2)/s in spleen, 2.73 × 10(-3) mm(2)/s in gallbladder, 1.64 × 10(-3) mm(2)/s and 1.31 × 10(-3) mm(2)/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10(-3) mm(2)/s), 1.44 × 10(-3) mm(2)/s in endometrium, 1.53 × 10(-3) mm(2)/s in myometrium, 1.71 × 10(-3) mm(2)/s in cervix and 1.92 × 10(-3) mm(2)/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared with phantom studies.
Collapse
|
26
|
Doblas S, Almeida GS, Blé FX, Garteiser P, Hoff BA, McIntyre DJ, Wachsmuth L, Chenevert TL, Faber C, Griffiths JR, Jacobs AH, Morris DM, O’Connor JP, Robinson SP, Van Beers BE, Waterton JC. Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: Evidence from a seven-center multivendor study. J Magn Reson Imaging 2015; 42:1759-64. [PMID: 26012876 PMCID: PMC5968828 DOI: 10.1002/jmri.24955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. RESULTS ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). CONCLUSION Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed.
Collapse
Affiliation(s)
- Sabrina Doblas
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - Gilberto S. Almeida
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | | | - Philippe Garteiser
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - Benjamin A. Hoff
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Lydia Wachsmuth
- Department of Clinical Radiology, Münster University Hospital, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, Münster University Hospital, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Andreas H. Jacobs
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Münster, Germany
| | - David M. Morris
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | | | - Simon P. Robinson
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Bernard E. Van Beers
- Laboratory of imaging biomarkers, UMR 1149 – CRI, Inserm, Paris Diderot University, Paris, France
| | - John C. Waterton
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Ma C, Liu L, Li J, Wang L, Chen LG, Zhang Y, Chen SY, Lu JP. Apparent diffusion coefficient (ADC) measurements in pancreatic adenocarcinoma: A preliminary study of the effect of region of interest on ADC values and interobserver variability. J Magn Reson Imaging 2015; 43:407-13. [PMID: 26182908 DOI: 10.1002/jmri.25007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To assess the influence of region of interest (ROI) on tumor apparent diffusion coefficient (ADC) measurements and interobserver variability in pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS Twenty-two patients recruited with pathology-proven PDAC underwent diffusion-weighted imaging (DWI, 3.0T) prior to the surgical resection. Two independent readers measured tumor ADCs according to three ROI methods: whole-volume, single-slice, and small solid sample of tumor. Minimum and mean ADCs were obtained. The interobserver variability for each of the three methods was analyzed using interclass correlation coefficient (ICC) and Bland-Altman analysis. The minimum and mean ADCs among the ROI methods were compared using nonparametric tests. RESULTS The single-slice ROI method showed the best reproducibility in the minimum ADC measurements (mean difference ± limits of agreement between two readers were 0.025 ± 0.25 × 10(-3) mm2 /s; ICC, 0.92) among the three ROI methods. For the solid tumor sample ROI, both minimum ADC and mean ADC measurements reproducibility were the worst, with limits of agreement up to ±0.50 × 10(-3) mm2 /s and ±0.32 × 10(-3) mm2 /s, respectively (ICCs, 0.41/0.58). Both the minimum and mean ADCs demonstrated significant differences among the three ROI methods (both P < 0.001). The post-hoc analyses results showed no significant difference with regard to the mean ADCs between whole-volume and single-slice ROI methods (P = 0.14). CONCLUSION The ROI method had a considerable influence on both the minimum and mean ADC values and the interobserver variability in PDAC. The worst interobserver variability was observed for both the minimum and mean ADCs derived from small solid-sample ROI.
Collapse
Affiliation(s)
- Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Li Liu
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Jing Li
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Li Wang
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Lu-Guang Chen
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Yong Zhang
- GE Healthcare, MR Group, Shanghai, China
| | - Shi-Yue Chen
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Jian-Ping Lu
- Department of Radiology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Lin WC, Chen JH. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer. Transl Oncol 2015; 8:217-30. [PMID: 26055180 PMCID: PMC4487794 DOI: 10.1016/j.tranon.2015.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022] Open
Abstract
Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care.
Collapse
Affiliation(s)
- Wei-Ching Lin
- Department of Radiology, China Medical University Hospital; No. 2, Yuh-Der Rd, Taichung 40447, Taiwan (R.O.C.); School of Medicine, China Medical University; No.91, Syueshih Rd, Taichung, 40402, Taiwan (R.O.C.)
| | - Jeon-Hor Chen
- Department of Radiology, E-Da Hospital and I-Shou University; No.1, Yida Rd, Kaohsiung 82445, Taiwan; Center for Functional Onco-Imaging, School of Medicine, University of California, Irvine; No. 164, Irvine Hall, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Vouche M, Salem R, Lewandowski RJ, Miller FH. Can volumetric ADC measurement help predict response to Y90 radioembolization in HCC? ACTA ACUST UNITED AC 2014; 40:1471-80. [DOI: 10.1007/s00261-014-0295-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Abstract
In this article, functional magnetic resonance (MR) imaging techniques in the abdomen are discussed. Diffusion-weighted imaging (DWI) increases the confidence in detecting and characterizing focal hepatic lesions. The potential uses of DWI in kidneys, adrenal glands, bowel, and pancreas are outlined. Studies have shown potential use of quantitative dynamic contrast-enhanced MR imaging parameters, such as K(trans), in predicting outcomes in cancer therapy. MR elastography is considered to be a useful tool in staging liver fibrosis. A major issue with all functional MR imaging techniques is the lack of standardization of the protocol.
Collapse
Affiliation(s)
- Kumar Sandrasegaran
- Department of Radiology, Indiana University School of Medicine, 550 N University Blvd, UH 0279, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Giles SL, Messiou C, Collins DJ, Morgan VA, Simpkin CJ, West S, Davies FE, Morgan GJ, deSouza NM. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 2014; 271:785-94. [PMID: 24475858 DOI: 10.1148/radiol.13131529] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the feasibility of whole-body diffusion-weighted (DW) magnetic resonance (MR) imaging for assessment of treatment response in myeloma. MATERIALS AND METHODS This prospective single-institution study was HIPAA-compliant with local research ethics committee approval. Written informed consent was obtained from each subject. Eight healthy volunteers (cohort 1a) and seven myeloma patients (cohort 1b) were imaged twice to assess repeatability of quantitative apparent diffusion coefficient (ADC) estimates. Thirty-four additional myeloma patients (cohort 2) underwent whole-body DW imaging before treatment; 26 completed a posttreatment imaging. Whole-body DW data were compared before and after treatment by using qualitative (ie, observer scores) and quantitative (ie, whole-body segmentation of marrow ADC) methods. Serum paraproteins and/or light chains or bone marrow biopsy defined response. RESULTS Whole-body DW imaging scores were significantly different between observers (P < .001), but change in scores between observers after treatment was not (P = .49). Sensitivity and specificity for detecting response according to observer scores were 86% (18 of 21 patients) and 80% (4 of 5 patients) for both observers. ADC measurement was repeatable: mean coefficient of variation was 3.8% in healthy volunteers and 2.8% in myeloma patients. Pretreatment ADC in cohort 2 was significantly different from that in cohort 1a (P = .03), but not from that in cohort 1b (P = .2). Mean ADC increased in 95% (19 of 20) of responding patients and decreased in all (five of five) nonresponders (P = .002). A 3.3% increase in ADC helped identify response with 90% sensitivity and 100% specificity; an 8% increase (greater than repeatability of cohort 1b) resulted in 70% sensitivity and 100% specificity. There was a significant negative correlation between change in ADC and change in laboratory markers of response (r = -0.614; P = .001). CONCLUSION Preliminary work demonstrates whole-body DW imaging is a repeatable, quantifiable technique for assessment of treatment response in myeloma.
Collapse
Affiliation(s)
- Sharon L Giles
- From the Departments of Magnetic Resonance Imaging (S.L.G., C.M., D.J.C., V.A.M., C.J.S., N.M.D.) and Haemato-oncology (S.W., F.E.D., G.J.M.), Royal Marsden Hospital, Downs Rd, Sutton, Surrey SM2 5PT, England; and Departments of Clinical Magnetic Resonance (D.J.C., N.M.D.) and Molecular Pathology (F.E.D., G.J.M.), Institute of Cancer Research, Sutton, Surrey, England
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kakite S, Dyvorne H, Besa C, Cooper N, Facciuto M, Donnerhack C, Taouli B. Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 2014; 41:149-56. [PMID: 24415565 DOI: 10.1002/jmri.24538] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To evaluate short-term test-retest and interobserver reproducibility of IVIM (intravoxel incoherent motion) diffusion parameters and ADC (apparent diffusion coefficient) of hepatocellular carcinoma (HCC) and liver parenchyma at 3.0T. MATERIALS AND METHODS In this prospective Institutional Review Board (IRB)-approved study, 11 patients were scanned twice using a free-breathing single-shot echo-planar-imaging, diffusion-weighted imaging (DWI) sequence using 4 b values (b = 0, 50, 500, 1000 s/mm(2)) and IVIM DWI using 16 b values (0-800 s/mm(2)) at 3.0T. IVIM parameters (D: true diffusion coefficient, D*: pseudodiffusion coefficient, PF: perfusion fraction) and ADC (using 4 b and 16 b) were calculated. Short-term test-retest and interobserver reproducibility of IVIM parameters and ADC were assessed by measuring correlation coefficient, coefficient of variation (CV), and Bland-Altman limits of agreements (BA-LA). RESULTS Fifteen HCCs were assessed in 10 patients. Reproducibility of IVIM metrics in HCC was poor for D* and PF (mean CV 60.6% and 37.3%, BA-LA: -161.6% to 135.3% and -66.2% to 101.0%, for D* and PF, respectively), good for D and ADC (CV 19.7% and <16%, BA-LA -57.4% to 36.3% and -38.2 to 34.1%, for D and ADC, respectively). Interobserver reproducibility was on the same order of test-retest reproducibility except for PF in HCC. Reproducibility of diffusion parameters was better in liver parenchyma compared to HCC. CONCLUSION Poor reproducibility of D*/PF and good reproducibility for D/ADC were observed in HCC and liver parenchyma. These findings may have implications for trials using DWI in HCC.
Collapse
Affiliation(s)
- Suguru Kakite
- Department of Radiology/Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sugita R. Magnetic resonance evaluations of biliary malignancy and condition at high-risk for biliary malignancy: Current status. World J Hepatol 2013; 5:654-665. [PMID: 24432183 PMCID: PMC3888665 DOI: 10.4254/wjh.v5.i12.654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 02/06/2023] Open
Abstract
Tumors of the biliary tree are relatively rare; but their incidence is rising worldwide. There are several known risk factors for bile duct cancers, and these are seem to be associated with chronic inflammation of the biliary epithelium. Herein, 2 risk factors have been discussed, primary sclerosing cholangitis and reflux of pancreatic juice into the bile duct, as seen in such as an abnormal union of the pancreatic-biliary junction because magnetic resonance imaging (MRI) is used widely and effectively in the diagnosis of these diseases. When biliary disease is suspected, MRI can often help differentiate between benignity and malignancy, stage tumors, select surgical candidates and guide surgical planning. MRI has many advantages over other modalities. Therefore, MRI is a reliable noninvasive imaging tool for diagnosis and pre-surgical evaluation of bile duct tumors. Nowadays remarkable technical advances in magnetic resonance technology have expanded the clinical applications of MRI in case of biliary diseases. In this article, it is also discussed how recent developments in MRI contributes to the diagnosis of the bile duct cancer and the evaluation of patients with risk factors affecting bile duct cancer.
Collapse
|
34
|
Donati OF, Chong D, Nanz D, Boss A, Froehlich JM, Andres E, Seifert B, Thoeny HC. Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2013; 270:454-63. [PMID: 24471390 DOI: 10.1148/radiol.13130819] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine the variability of apparent diffusion coefficient (ADC) values in various anatomic regions in the upper abdomen measured with magnetic resonance (MR) systems from different vendors and with different field strengths. MATERIALS AND METHODS Ten healthy men (mean age, 36.6 years ± 7.7 [standard deviation]) gave written informed consent to participate in this prospective ethics committee-approved study. Diffusion-weighted (DW) MR imaging was performed in each subject with 1.5- and 3.0-T MR systems from each of three vendors at two institutions. Two readers independently measured ADC values in seven upper abdominal regions (left and right liver lobe, gallbladder, pancreas, spleen, and renal cortex and medulla). ADC values were tested for interobserver differences, as well as for differences related to field strength and vendor, with repeated-measures analysis of variance; coefficients of variation (CVs) and variance components were calculated. RESULTS Interreader agreement was excellent (intraclass coefficient, 0.876). ADC values were (77.5-88.8) ×10(-5) mm(2)/sec in the spleen and (250.6-278.5) ×10(-5) mm(2)/sec in the gallbladder. There were no significant differences between ADC values measured at 1.5 T and those measured at 3.0 T in any anatomic region (P >.10 for all). In two of seven regions at 1.5 T (left and right liver lobes, P < .023) and in four of seven regions at 3.0 T (left liver lobe, pancreas, and renal cortex and medulla, P < .008), intervendor differences were significant. CVs ranged from 7.0% to 27.1% depending on the anatomic location. CONCLUSION Despite significant intervendor differences in ADC values of various anatomic regions of the upper abdomen, ADC values of the gallbladder, pancreas, spleen, and kidney may be comparable between MR systems from different vendors and between different field strengths.
Collapse
Affiliation(s)
- Olivio F Donati
- From the Institute of Diagnostic and Interventional Radiology (O.F.D., D.N., A.B.) and University School of Medicine (E.A.), University Hospital Zurich, Zurich, Switzerland; Department of Radiology, Neuroradiology and Nuclear Medicine, Institute of Diagnostic, Interventional and Pediatric Radiology, University of Bern, Inselspital, Freiburgstrasse 10, CH-3010 Bern, Switzerland (D.C., J.M.F., H.C.T.); and Division of Biostatistics, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland (B.S.)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ma C, Li YJ, Pan CS, Wang H, Wang J, Chen SY, Lu JP. High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single-shot echo-planar imaging at 3 T. Magn Reson Imaging 2013; 32:125-31. [PMID: 24231348 DOI: 10.1016/j.mri.2013.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/01/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b=600s/mm(2) (P=0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P=0.008 and 0.000 for b-value=0s/mm(2) and 600s/mm(2) respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0mm/pixel to 1.25mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.
Collapse
Affiliation(s)
- Chao Ma
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Yan-jun Li
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chun-shu Pan
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - He Wang
- MR Group, GE Healthcare, Shanghai, China
| | - Jian Wang
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Shi-yue Chen
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jian-ping Lu
- Department of Radiology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
36
|
Diffusion-weighted MRI of the normal adult pancreas: The effect of age on apparent diffusion coefficient values. Clin Radiol 2013; 68:e532-7. [DOI: 10.1016/j.crad.2013.05.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 01/07/2023]
|