1
|
Sarria GR, Fleckenstein J, Eckl M, Stieler F, Ruder A, Bendszus M, Schmeel LC, Koch D, Feisst A, Essig M, Wenz F, Giordano FA. Impact of the Novel MRI Contrast Agent Gadopiclenol on Radiotherapy Decision Making in Patients With Brain Metastases. Invest Radiol 2025; 60:138-144. [PMID: 39159365 DOI: 10.1097/rli.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
PURPOSE The aim of this study was to assess the effect of gadopiclenol versus gadobenate dimeglumine contrast-enhanced magnetic resonance imaging (MRI) on decision-making between whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) for treatment of brain metastases (BMs). METHODS Patients with BMs underwent 2 separate MRI examinations in a double-blind crossover phase IIb comparative study between the MRI contrast agents gadopiclenol and gadobenate dimeglumine, both administered at 0.1 mmol/kg. The imaging data of a single site using identical MRI scanners and protocols were included in this post hoc analysis. Patients with 1 or more BMs in any of both MRIs were subjected to target volume delineation for treatment planning. Two radiation oncologists contoured all visible lesions and decided upon SRS or WBRT, according to the number of metastases. For each patient, SRS or WBRT treatment plans were calculated for both MRIs, considering the gross target volume (GTV) as the contrast-enhancing aspects of the tumor. Mean GTVs and volume of healthy brain exposed to 12 Gy (V 12 ), as well as Dice similarity coefficient scores, were obtained. The Spearman rank (ρ) correlation was additionally calculated for assessing linear differences. Three different expert radiation oncologists blindly rated the contrast enhancement for contouring purposes. RESULTS Thirteen adult patients were included. Gadopiclenol depicted additional BM as compared with gadobenate dimeglumine in 7 patients (54%). Of a total of 63 identified metastatic lesions in both MRI sets, 3 subgroups could be defined: A, 48 (24 pairs) detected equal GTVs visible in both modalities; B, 13 GTVs only visible in the gadopiclenol set (mean ± SD, 0.16 ± 0.37 cm 3 ); and C, 2 GTVs only visible in the gadobenate dimeglumine set (mean ± SD, 0.01 ± 0.01). Treatment indication was changed for 2 (15%) patients, 1 from no treatment to SRS and for 1 from SRS to WBRT. The mean GTVs and brain V 12 were comparable between both agents ( P = 0.694, P = 0.974). The mean Dice similarity coefficient was 0.70 ± 0.14 (ρ = 0.82). According to the readers, target volume definition was improved in 63.9% of cases (23 of 36 evaluations) with gadopiclenol and 22.2% with gadobenate dimeglumine (8 of 36), whereas equivalence was obtained in 13.9% (5 of 36). CONCLUSIONS Gadopiclenol-enhanced MRI improved BM detection and characterization, with a direct impact on radiotherapy treatment decision between WBRT and SRS. Additionally, a more exact target delineation and planning could be performed with gadopiclenol. A prospective evaluation in a larger cohort of patients is required to confirm these findings.
Collapse
Affiliation(s)
- Gustavo R Sarria
- From the Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany (G.R.S., L.C.S., D.K., A.F.); Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.F., M. Eckl, F.S., A.R., F.A.G.); Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (M.B.); Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada (M. Essig); and University Medical Center Freiburg, Freiburg University, Freiburg, Germany (F.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Heidenreich JF, Chu SY, Grunz JP, Starekova J, Nagpal P, Reeder SB, Grist TM. Gadopiclenol Enables Reduced Gadolinium Dose While Maintaining Quality of Pulmonary Arterial Enhancement for Pulmonary MRA: An Opportunity for Improved Safety and Sustainability. Invest Radiol 2025:00004424-990000000-00287. [PMID: 39847728 DOI: 10.1097/rli.0000000000001154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
RATIONALE AND OBJECTIVES Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol. MATERIALS AND METHODS In this retrospective single-center study, data from 152 patients who underwent pulmonary MRA at 1.5 T were analyzed. Imaging was performed with either 0.05 mmol/kg gadopiclenol (n = 75) or 0.1 mmol/kg gadobenate dimeglumine (n = 77), using dedicated multiphasic imaging protocols with precontrast, pulmonary arterial phase, immediate delayed phase, and a low flip-angle T1-weighted spoiled gradient echo acquisition. Subjective image quality evaluation was performed blinded by 2 radiologists on a 5-point Likert scale. For the estimation of interrater reliability, Cohen weighted κ was calculated. For semiquantitative assessment, signal intensities were measured in the pulmonary arteries, and relative signal enhancement was calculated. Data from groups were compared with Mann-Whitney U tests using Bonferroni corrections. RESULTS Signal enhancement relative to precontrast in the first-pass pulmonary arterial phase was higher with 0.05 mmol/kg gadopiclenol compared with 0.1 mmol/kg gadobenate dimeglumine (20.0-fold ± 5.6-fold vs 17.8-fold ± 5.8-fold; P = 0.015). Readers observed no difference in subjective rating in terms of intravascular contrast, peripheral vessel depiction, and diagnostic confidence with substantial interrater reliability (Cohen κ = 0.73 [95% confidence interval: 0.57-0.89], 0.65 [0.55-0.75], and 0.74 [0.65-0.84], all P's < 0.001). No severe adverse events were recorded for any clinical MRA examination. CONCLUSIONS The high-relaxivity contrast agent gadopiclenol can facilitate a reduction in gadolinium dose by 50% without compromising contrast enhancement for pulmonary MRA. This approach may enhance the safety and sustainability of pulmonary MRA in the long term.
Collapse
Affiliation(s)
- Julius F Heidenreich
- From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Kanal E, Maki JH, Schramm P, Marti‐Bonmati L. Evolving Characteristics of Gadolinium-Based Contrast Agents for MR Imaging: A Systematic Review of the Importance of Relaxivity. J Magn Reson Imaging 2025; 61:52-69. [PMID: 38699938 PMCID: PMC11645498 DOI: 10.1002/jmri.29367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are widely and routinely used to enhance the diagnostic performance of magnetic resonance imaging and magnetic resonance angiography examinations. T1 relaxivity (r1) is the measure of their ability to increase signal intensity in tissues and blood on T1-weighted images at a given dose. Pharmaceutical companies have invested in the design and development of GBCAs with higher and higher T1 relaxivity values, and "high relaxivity" is a claim frequently used to promote GBCAs, with no clear definition of what "high relaxivity" means, or general concurrence about its clinical benefit. To understand whether higher relaxivity values translate into a material clinical benefit, well-designed, and properly powered clinical studies are necessary, while mere in vitro measurements may be misleading. This systematic review of relevant peer-reviewed literature provides high-quality clinical evidence showing that a difference in relaxivity of at least 40% between two GBCAs results in superior diagnostic efficacy for the higher-relaxivity agent when this is used at the same equimolar gadolinium dose as the lower-relaxivity agent, or similar imaging performance when used at a lower dose. Either outcome clearly implies a relevant clinical benefit. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Emanuel Kanal
- Department of RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Division of Emergency RadiologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jeffrey H. Maki
- Department of RadiologyUniversity of Colorado Anschutz Medical CenterAuroraColoradoUSA
| | - Peter Schramm
- Department of NeuroradiologyUniversity Luebeck and Universitaetsklinikum Schleswig‐Holstein Campus LuebeckLuebeckGermany
| | - Luis Marti‐Bonmati
- Department of Radiology and GIBI230 Research Group on Biomedical ImagingHospital Universitario y Politécnico de La Fe and Instituto de Investigación Sanitaria La FeValenciaSpain
| |
Collapse
|
4
|
Bendszus M, Laghi A, Munuera J, Tanenbaum LN, Taouli B, Thoeny HC. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J Magn Reson Imaging 2024; 60:1774-1785. [PMID: 38226697 DOI: 10.1002/jmri.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are routinely used in magnetic resonance imaging (MRI). They are essential for choosing the most appropriate medical or surgical strategy for patients with serious pathologies, particularly in oncologic, inflammatory, and cardiovascular diseases. However, GBCAs have been associated with an increased risk of nephrogenic systemic fibrosis in patients with renal failure, as well as the possibility of deposition in the brain, bones, and other organs, even in patients with normal renal function. Research is underway to reduce the quantity of gadolinium injected, without compromising image quality and diagnosis. The next generation of GBCAs will enable a reduction in the gadolinium dose administered. Gadopiclenol is the first of this new generation of GBCAs, with high relaxivity, thus having the potential to reduce the gadolinium dose while maintaining good in vivo stability due to its macrocyclic structure. High-stability and high-relaxivity GBCAs will be one of the solutions for reducing the dose of gadolinium to be administered in clinical practice, while the development of new technologies, including optimization of MRI acquisitions, new contrast mechanisms, and artificial intelligence may help reduce the need for GBCAs. Future solutions may involve a combination of next-generation GBCAs and image-processing techniques to optimize diagnosis and treatment planning while minimizing exposure to gadolinium. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Josep Munuera
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harriet C Thoeny
- Department of Diagnostic and Interventional Radiology, Fribourg Cantonal Hospital, Fribourg, Switzerland
- Faculty of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Starekova J, Pirasteh A, Reeder SB. Update on Gadolinium-Based Contrast Agent Safety, From the AJR Special Series on Contrast Media. AJR Am J Roentgenol 2024; 223:e2330036. [PMID: 37850581 DOI: 10.2214/ajr.23.30036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Since its introduction more than 35 years ago, gadolinium-enhanced MRI has fundamentally changed medical practice. Although extraordinarily safe, gadolinium-based contrast agents (GBCAs) may have side effects. Four distinct safety considerations include acute allergiclike reactions, nephrogenic systemic fibrosis (NSF), gadolinium deposition, and symptoms associated with gadolinium exposure. Acute reactions after GBCA administration are uncommon-far less than with iodinated contrast agents-and, although rare, serious reactions can occur. NSF is a rare but serious sclerodermalike condition occurring in patients with kidney failure after exposure to American College of Radiology (ACR) group I GBCAs. Group II and III GBCAs are considered lower risk, and, through their use, NSF has largely been eliminated. Unrelated to NSF, retention of trace amounts of gadolinium in the brain and other organs has been recognized for over a decade. Deposition occurs with all agents, although linear agents appear to deposit more than macrocyclic agents. Importantly, to date, no data show any adverse biologic or clinical effects from gadolinium deposition, even with normal kidney function. This article summarizes the latest safety evidence of commercially available GBCAs with a focus on new agents, discusses updates to the ACR NSF GBCA safety classifications, and describes approaches for strengthening the evidence needed for regulatory decisions.
Collapse
Affiliation(s)
- Jitka Starekova
- Department of Radiology, University of Wisconsin Madison, 600 Highland Ave, Madison, WI 53792
| | - Ali Pirasteh
- Department of Radiology, University of Wisconsin Madison, 600 Highland Ave, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin Madison, 600 Highland Ave, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI
- Department of Medicine, University of Wisconsin Madison, Madison, WI
- Department of Emergency Medicine, University of Wisconsin Madison, Madison, WI
| |
Collapse
|
6
|
Iacobellis F, Di Serafino M, Russo C, Ronza R, Caruso M, Dell’Aversano Orabona G, Camillo C, Sabatino V, Grimaldi D, Rinaldo C, Barbuto L, Verde F, Giacobbe G, Schillirò ML, Scarano E, Romano L. Safe and Informed Use of Gadolinium-Based Contrast Agent in Body Magnetic Resonance Imaging: Where We Were and Where We Are. J Clin Med 2024; 13:2193. [PMID: 38673466 PMCID: PMC11051151 DOI: 10.3390/jcm13082193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) have helped to improve the role of magnetic resonance imaging (MRI) for the diagnosis and treatment of diseases. There are currently nine different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body MRI cases, and which are classifiable according to their structures (cyclic or linear) or biodistribution (extracellular-space agents, target/specific-agents, and blood-pool agents). The aim of this review is to illustrate the commercially available MRI contrast agents, their effect on imaging, and adverse reaction on the body, with the goal to lead to their proper selection in different clinical contexts. When we have to choose between the different GBCAs, we have to consider several factors: (1) safety and clinical impact; (2) biodistribution and diagnostic application; (3) higher relaxivity and better lesion detection; (4) higher stability and lower tissue deposit; (5) gadolinium dose/concentration and lower volume injection; (6) pulse sequences and protocol optimization; (7) higher contrast-to-noise ratio at 3.0 T than at 1.5 T. Knowing the patient's clinical information, the relevant GBCAs properties and their effect on body MRI sequences are the key features to perform efficient and high-quality MRI examination.
Collapse
Affiliation(s)
- Francesca Iacobellis
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Marco Di Serafino
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Camilla Russo
- Neuroradiology Unit, Department of Neuroscience Santobono-Pausilipon Children’s Hospital, 80122 Naples, Italy;
| | - Roberto Ronza
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Martina Caruso
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Giuseppina Dell’Aversano Orabona
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Costanza Camillo
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Vittorio Sabatino
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Dario Grimaldi
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Chiara Rinaldo
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Luigi Barbuto
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Francesco Verde
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Giuliana Giacobbe
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Maria Laura Schillirò
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| | - Enrico Scarano
- Department of Radiology, “San Carlo” Hospital, 85100 Potenza, Italy;
| | - Luigia Romano
- Department of General and Emergency Radiology, “A. Cardarelli” Hospital, 80131 Naples, Italy; (M.D.S.); (M.C.); (G.D.O.); (C.C.); (V.S.); (D.G.); (C.R.); (L.B.); (F.V.); (G.G.); (M.L.S.); (L.R.)
| |
Collapse
|
7
|
Rovira À, Ben Salem D, Geraldo AF, Cappelle S, Del Poggio A, Cocozza S, Saatci I, Zlatareva D, Lojo S, Quattrocchi CC, Morales Á, Yousry T. Go Green in Neuroradiology: towards reducing the environmental impact of its practice. Neuroradiology 2024; 66:463-476. [PMID: 38353699 DOI: 10.1007/s00234-024-03305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Raising public awareness about the relevance of supporting sustainable practices is required owing to the phenomena of global warming caused by the rising production of greenhouse gases. The healthcare sector generates a relevant proportion of the total carbon emissions in developed countries, and radiology is estimated to be a major contributor to this carbon footprint. Neuroradiology markedly contributes to this negative environmental effect, as this radiological subspecialty generates a high proportion of diagnostic and interventional imaging procedures, the majority of them requiring high energy-intensive equipment. Therefore, neuroradiologists and neuroradiological departments are especially responsible for implementing decisions and initiatives able to reduce the unfavourable environmental effects of their activities, by focusing on four strategic pillars-reducing energy, water, and helium use; properly recycling and/or disposing of waste and residues (including contrast media); encouraging environmentally friendly behaviour; and reducing the effects of ionizing radiation on the environment. The purpose of this article is to alert neuroradiologists about their environmental responsibilities and to analyse the most productive strategic axes, goals, and lines of action that contribute to reducing the environmental impact associated with their professional activities.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | | | - Ana Filipa Geraldo
- Diagnostic Neuroradiology Unit, Department of Radiology, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Porto, Portugal
| | - Sarah Cappelle
- Department of Radiology, University Hospitals Leuven, Louvain, Belgium
| | - Anna Del Poggio
- Department of Neuroradiology and CERMAC, San Raffaele Hospital, Milan, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples, "Federico II", Naples, Italy
| | - Isil Saatci
- Section of Neurointervention, Neuroradiology, Private Koru Hospitals, Ankara, Turkey
| | - Dora Zlatareva
- Department of Radiology, Medical University Sofia, Sofia, Bulgaria
| | - Sara Lojo
- Department of Radiology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences CISMed, University of Trento, Trento, Italy
- Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy
| | - Ángel Morales
- Department of Radiology, Hospital Universitario Donostia, San Sebastián, Spain
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| |
Collapse
|
8
|
Hao J, Pitrou C, Bourrinet P. A Comprehensive Overview of the Efficacy and Safety of Gadopiclenol: A New Contrast Agent for MRI of the CNS and Body. Invest Radiol 2024; 59:124-130. [PMID: 37812485 PMCID: PMC11441729 DOI: 10.1097/rli.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
ABSTRACT This review describes the pharmacokinetics, efficacy, and safety of gadopiclenol, a new macrocyclic gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration at the dose of 0.05 mmol/kg. Gadopiclenol is a high relaxivity contrast agent that shares similar pharmacokinetic characteristics with other macrocyclic GBCAs, including a predominant renal excretion. In pediatric patients aged 2-17 years, the pharmacokinetic parameters (assessed through a population pharmacokinetics model) were comparable to those observed in adults, indicating no need for age-based dose adjustment. For contrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) and body indications, gadopiclenol at 0.05 mmol/kg was shown to be noninferior to gadobutrol at 0.1 mmol/kg in terms of 3 lesion visualization parameters (ie, lesion border delineation, internal morphology, and contrast enhancement). Moreover, for contrast-enhanced MRI of the CNS, compared with gadobenate dimeglumine at 0.1 mmol/kg, gadopiclenol exhibited superior contrast-to-noise ratio at 0.1 mmol/kg and comparable contrast-to-noise ratio at 0.05 mmol/kg. A pooled safety analysis of 1047 participants showed a favorable safety profile for gadopiclenol. Comparative studies showed that the incidence and nature of adverse drug reactions with gadopiclenol were comparable to those observed with other GBCAs. Importantly, no significant safety concerns were identified in pediatric and elderly patients, as well as in patients with renal impairment. Overall, these findings support the clinical utility and safety of gadopiclenol for MRI in adult and pediatric patients aged 2 years and older in CNS and body indications.
Collapse
Affiliation(s)
- Jing Hao
- From the Department of Clinical Development, Guerbet, Roissy CDG Cedex, France
| | | | | |
Collapse
|
9
|
Gendron C, Bourrinet P, Dencausse A, Fretellier N. Preclinical Safety Assessment of Gadopiclenol: A High-Relaxivity Macrocyclic Gadolinium-Based MRI Contrast Agent. Invest Radiol 2024; 59:108-123. [PMID: 37921752 PMCID: PMC11441737 DOI: 10.1097/rli.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Gadopiclenol is a new high-relaxivity macrocyclic gadolinium-based contrast agent for magnetic resonance imaging of the central nervous system and other body regions. The product has been approved by US Food and Drug Administration and is currently being evaluated by European Medicines Agency. For risk assessment of the single diagnostic use in humans, the safety profile of gadopiclenol was evaluated with a series of preclinical studies. MATERIALS AND METHODS With exception of dose-ranging studies, all safety pharmacology and toxicology studies were performed in compliance with Good Laboratory Practice principles. Safety pharmacology studies were conducted to assess potential effects on cardiovascular (in vitro and in dogs), respiratory (in rats and guinea pigs), neurological (in rats), and renal endpoints (in rats). Toxicology studies were also performed to investigate acute toxicity (in rats and mice), extended single-dose (in rats and dogs) and repeated-dose toxicity (in rats and dogs), reproductive (in rats), developmental (in rats and rabbits) and juvenile toxicity (in rats), as well as genotoxicity (in vitro and in rats), local tolerance (in rabbits), potential immediate hypersensitivity (in guinea pigs), and potential tissue retention of gadolinium (in rats). RESULTS Safety pharmacology studies conducted at high intravenous (IV) doses showed a satisfactory tolerance of gadopiclenol in the main body systems. After either single or repeated IV dosing (14 and 28 days) in rats and dogs, gadopiclenol was well tolerated even at high doses. The no-observed-adverse-effect level values (ie, the highest experimental dose without adverse effects) representing between 8 times in rats and 44 times in dogs (based on the exposure), the exposure achieved in humans at the intended diagnostic dose, provide a high safety margin. No or only minor and reversible effects on body weight, food consumption, clinical signs, clinical pathology parameters, or histology were observed at the highest doses. The main histological finding consists in renal tubular vacuolations (exacerbated after repeated exposure), which supports a well-known finding for this class of compounds that has no physiological consequence on kidney function. Reproductive toxicity studies showed no evidence of effects on reproductive performance, fertility, perinatal and postnatal development in rats, or reproductive development in rats or rabbits. The safety profile of gadopiclenol in juvenile rats was satisfactory like in adults. Gadopiclenol was not genotoxic in vitro in the Ames test, a mouse lymphoma assay, and a rat in vivo micronucleus test. There were no signs of local intolerance at the injection site after IV and intra-arterial administration in rabbits. However, because of minor signs of intolerance after perivenous administration, misadministration must be avoided. Gadopiclenol exhibited no signs of potential to induce immediate hypersensitivity in guinea pigs. CONCLUSIONS High safety margins were observed between the single diagnostic dose of 0.05 mmol/kg in humans and the doses showing effects in animal studies. Gadopiclenol is, therefore, well tolerated in various species (mice, rats, dogs, rabbits, and guinea pigs). All observed preclinical data support the clinical approval.
Collapse
Affiliation(s)
- Célia Gendron
- From the Research and Innovation Department, Guerbet, Aulnay-sous-Bois, France
| | | | | | | |
Collapse
|
10
|
Robert P, Vives V, Rasschaert M, Hao J, Soares M, Lemaître M, Dencausse A, Catoen S. Detection of Brain Metastases by Contrast-Enhanced MRI: Comparison of Gadopiclenol and Gadobenate in a Mouse Model. Invest Radiol 2024; 59:131-139. [PMID: 37921777 PMCID: PMC11441733 DOI: 10.1097/rli.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the capacity of gadopiclenol, a high-relaxivity gadolinium-based contrast agent to detect brain metastases in mice as a function of dose (0.08 mmol/kg or 0.1 mmol/kg) compared with gadobenate at 0.1 mmol/kg. MATERIALS AND METHODS Brain metastases were induced by ultrasound-guided intracardiac implantation of 1.10 5 MDA-MB-231Br cells in the left ventricle of 18 anesthetized Balb/c Nude nu/nu female mice. At day 28 ± 3 after cell injection, each mouse received 2 crossover intravenous injections at 24-hour intervals, randomly selected from 2 doses of gadopiclenol (0.08 mmol/kg or 0.1 mmol/kg) and gadobenate (0.1 mmol/kg) with n = 6 mice/group (3 groups). Brain magnetic resonance imaging sessions were performed at 4 weeks on a 2.35 T magnet with a 3-dimensional T1-weighted high-resolution gradient echo sequence, before and after each injection. Images were blindly and randomly analyzed to detect enhancing lesions. Contrast-to-noise ratio between the metastases and the surrounding healthy parenchyma was calculated, based on region-of-interest signal measurements. In 2 animals per group, an early time point was added to the protocol (day 22 ± 3) to evaluate the sensitivity of detection as a function of time. After the last imaging session, the presence and location of whole-brain metastases were confirmed by histology in 4 mice. RESULTS After gadopiclenol, approximately twice as many metastases were detected compared with gadobenate, regardless of the dose. Contrast-to-noise ratios of the detected metastases were 2.3 and 3.3 times higher with gadopiclenol at 0.08 mmol/kg and 0.1 mmol/kg, respectively, compared with gadobenate at 0.1 mmol/kg ( P < 0.0001). Gadopiclenol at the dose of 0.1 mmol/kg resulted in a 1.4-fold higher contrast compared with gadopiclenol at 0.08 mmol/kg ( P < 0.02). In a subset of mice that were imaged 1 week earlier, 2 metastases were detected with gadopiclenol and not with gadobenate. CONCLUSIONS The high-relaxivity macrocyclic gadolinium-based contrast agent gadopiclenol allowed higher diagnostic performance for detecting brain enhancing metastases in terms of contrast-to-noise ratio and number of detected metastases compared with gadobenate, at both equal (0.1 mmol/kg) dose and 20% lower Gd dose (0.08 mmol/kg). Tumor detection was higher after gadopiclenol at the dose of 0.1 mmol/kg compared with 0.08 mmol/kg.
Collapse
|
11
|
Parsons M, Tong Y, Valenti SC, Gorelik V, Bhatnagar S, Boily M, Gorelik N. Reporting of Participant Demographics in Clinical Trials Published in General Radiology Journals. Curr Probl Diagn Radiol 2024; 53:81-91. [PMID: 37741699 DOI: 10.1067/j.cpradiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVES The reporting of research participant demographics provides insights into study generalizability. Our study aimed to determine the frequency at which participant age, sex/gender, race/ethnicity, and socioeconomic status (SES) are reported and used for subgroup analyses in radiology randomized controlled trials (RCTs) and their secondary analyses; as well as the study characteristics associated with, and the classification systems used for demographics reporting. METHODS RCTs and their secondary analyses published in 8 leading radiology journals between 2013 and 2021 were included. Associations between study characteristics and demographic reporting were tested with the chi-square goodness of fit test for categorical variables, Wilcoxon-Mann-Whitney test for impact factor, and logistic regression for publication year. RESULTS Among 432 included articles, 89.4% (386) reported age, 90.3% (390) sex/gender, 5.6% (24) race/ethnicity, and 3.0% (13) SES. Among articles that reported these demographics and were not specific to a subgroup, results were analyzed by age in 14.2% (55/386), sex/gender in 19.4% (66/340), race/ethnicity in 13.6% (3/22), and SES in 46.2% (6/13). Journal, impact factor, and last author continent were predictors of race/ethnicity and SES reporting. Funding was associated with race/ethnicity reporting. No study reported sex and gender separately, or documented transgender, nonbinary gender spectrum or intersex participants. A single category for race/ethnicity was used in 37.5% (9/24) of studies, consisting of either "White" or "Caucasian." CONCLUSION The reporting of participant demographics in radiology trials is variable and not always representative of the population diversity. Editorial guidelines on the reporting and analysis of participant demographics could help standardize practices.
Collapse
Affiliation(s)
- Marlee Parsons
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Yi Tong
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | - Sahir Bhatnagar
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Mathieu Boily
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Natalia Gorelik
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Zhang JY, Wang YT, Sun L, Wang SQ, Chen ZS. Synthesis and clinical application of new drugs approved by FDA in 2022. MOLECULAR BIOMEDICINE 2023; 4:26. [PMID: 37661221 PMCID: PMC10475455 DOI: 10.1186/s43556-023-00138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
The pharmaceutical industry had a glorious year in 2022, with a total of 37 new drugs including 20 new chemical entities (NCEs) and 17 new biological entities (NBEs) approved by the Food and Drug Administration (FDA). These drugs are mainly concentrated in oncology, central nervous system, antiinfection, hematology, cardiomyopathy, dermatology, digestive system, ophthalmology, MRI enhancer and other therapeutic fields. Of the 37 drugs, 25 (68%) were approved through an expedited review pathway, and 19 (51%) were approved to treat rare diseases. These newly listed drugs have unique structures and new mechanisms of action, which can serve as lead compounds for designing new drugs with similar biological targets and enhancing therapeutic efficacy. This review aims to outline the clinical applications and synthetic methods of 19 NCEs newly approved by the FDA in 2022, but excludes contrast agent (Xenon Xe-129). We believe that an in-depth understanding of the synthetic methods of drug molecules will provide innovative and practical inspiration for the development of new, more effective, and practical synthetic techniques. According to the therapeutic areas of these 2022 FDA-approved drugs, we have classified these 19 NCEs into seven categories and will introduce them in the order of their approval for marketing.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Sun
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Zhongshan Hospital Affiliated to Dalian University, Dalian, 116001, China.
| | - Sai-Qi Wang
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
13
|
Alsogati E, Ghandourah H, Bakhsh A. Review of the Efficacy and Safety of Gadopiclenol: A Newly Emerging Gadolinium-Based Contrast Agent. Cureus 2023; 15:e43055. [PMID: 37680433 PMCID: PMC10480682 DOI: 10.7759/cureus.43055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/09/2023] Open
Abstract
Gadolinium-based contrast agents (GBCAs) are one of the most commonly used agents in magnetic resonance imaging. Gadopiclenol is a new GBCA aimed at providing improved diagnostic efficacy with a favorable safety profile. The proposed advantages are due to its specific pharmacological properties, one of which is high relaxivity values. The aim of this review is to assess the efficacy, diagnostic accuracy, and safety of gadopiclenol in comparison to other currently used gadolinium-based contrast agents. PubMed and other database systems were used to identify relevant studies. The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines were followed, resulting in 10 articles that were included in the review. The outcomes were reviewed according to several factors regarding efficacy and accuracy in terms of qualitative and quantitative descriptors relative to properties of enhancement provided by the contrast agent. In terms of safety profile, a number of outcomes were assessed such as the occurrence of serious adverse effects, severe kidney injury, and organ-based contrast retention. Gadopiclenol was found to provide outcomes comparable to other commonly used GBCAs at lower doses with further favorable results at higher doses while maintaining an acceptable safety profile. However, it was found to have high rates of retention within the liver and can cause nonsignificant QT prolongation in healthy individuals, which arguably creates the need for further research regarding more long-term implications of these possible adverse effects.
Collapse
Affiliation(s)
- Emad Alsogati
- Department of Radiology, King Fahd General Hospital, Jeddah, SAU
| | | | - Amal Bakhsh
- Department of Radiology, King Fahd General Hospital, Jeddah, SAU
| |
Collapse
|
14
|
Hamon N, Bridou L, Roux M, Maury O, Tripier R, Beyler M. Design of Bifunctional Pyclen-Based Lanthanide Luminescent Bioprobes for Targeted Two-Photon Imaging. J Org Chem 2023; 88:8286-8299. [PMID: 37273214 DOI: 10.1021/acs.joc.3c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the past, Lanthanide Luminescent Bioprobes (LLBs) based on pyclen-bearing π-extended picolinate antennas were synthesized and demonstrated well-adapted optical properties for biphotonic microscopy. The objective of this work is to develop a strategy to design bifunctional analogues of the previously studied LLBs presenting an additional reactive chemical group to allow their coupling to biological vectors to reach deep in vivo targeted two-photon bioimaging. Herein, we elaborated a synthetic scheme allowing the introduction of a primary amine on the para position of the macrocyclic pyridine unit. The photophysical and bioimaging studies demonstrate that the introduction of the reactive function does not alter the luminescent properties of the LLBs paving the way for further applications.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Lucile Bridou
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Margaux Roux
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Lyon F-69342, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 BREST, France
| |
Collapse
|
15
|
Kuhl C, Csőszi T, Piskorski W, Miszalski T, Lee JM, Otto PM. Efficacy and Safety of Half-Dose Gadopiclenol versus Full-Dose Gadobutrol for Contrast-enhanced Body MRI. Radiology 2023; 308:e222612. [PMID: 37462494 DOI: 10.1148/radiol.222612] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Background Gadopiclenol is a macrocyclic gadolinium-based contrast agent (GBCA) with higher relaxivity compared with standard GBCAs, potentially allowing gadolinium dose reduction without decreasing efficacy. Purpose To investigate whether gadopiclenol at 0.05 mmol/kg is noninferior to gadobutrol at 0.1 mmol/kg for lesion visualization in body MRI. Materials and Methods A randomized, double-blind, crossover, phase 3 study was conducted between August 2019 and December 2020 at 33 centers in 11 countries. Adults with at least one suspected focal lesion in one of three different body regions (head and neck; breast, thorax, abdomen, or pelvis; or musculoskeletal system) underwent two contrast-enhanced MRI examinations, randomized to start with either gadopiclenol or gadobutrol. MRI examinations were read by three blinded expert readers for each respective body region. Readers rated border delineation, internal morphologic characteristics, and visual contrast enhancement. Three additional blinded readers assessed reader preference. For safety analysis, adverse events were recorded. The differences between gadopiclenol- and gadobutrol-enhanced MRI in terms of lesion visualization were analyzed with a generalized linear mixed model using a two-sided paired t test. Results Among 273 participants (mean age, 57 years ± 13 [SD]; 162 women) who underwent both gadopiclenol- and gadobutrol-enhanced MRI and had at least one correlating lesion, 260 participants without major protocol deviations were analyzed for noninferiority. Gadopiclenol was noninferior to gadobutrol for all qualitative visualization parameters and for all readers (lower limit 95% CI of the difference of at least -0.10, which was above the noninferiority margin [-0.35]; P < .001). For most participants (75%-83% [206-228 of 276]), readers reported no preference between gadopiclenol- and gadobutrol-enhanced images. Adverse events did not differ in frequency, intensity, type, or association with GBCA injection (12 of 288 participants receiving gadopiclenol and 16 of 290 receiving gadobutrol). Conclusion Gadopiclenol at 0.05 mmol/kg was comparable with gadobutrol at 0.1 mmol/kg for lesion evaluation at contrast-enhanced body MRI and had a similar safety profile. Clinical trial registration no. NCT03986138 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Bashir and Thomas in this issue.
Collapse
Affiliation(s)
- Christiane Kuhl
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| | - Tibor Csőszi
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| | - Wojciech Piskorski
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| | - Tomasz Miszalski
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| | - Jeong-Min Lee
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| | - Pamela M Otto
- From the Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Pauwelsstr 30, 52074, Aachen, Germany (C.K.); Department of Oncology, Hetenyi Geza Korhaz, Szolnok, Hungary (T.C.); Department of Medical Oncology, Rydgier Memorial Hospital, Krakow, Poland (W.P.); Department of Clinical Radiology and Imaging Diagnostics, 4th Military Hospital, Wroclaw, Poland (T.M.); Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea (J.M.L.); and Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Tex (P.M.O.)
| |
Collapse
|
16
|
Haase R, Pinetz T, Bendella Z, Kobler E, Paech D, Block W, Effland A, Radbruch A, Deike-Hofmann K. Reduction of Gadolinium-Based Contrast Agents in MRI Using Convolutional Neural Networks and Different Input Protocols: Limited Interchangeability of Synthesized Sequences With Original Full-Dose Images Despite Excellent Quantitative Performance. Invest Radiol 2023; 58:420-430. [PMID: 36735399 DOI: 10.1097/rli.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of this study was to implement a state-of-the-art convolutional neural network used to synthesize artificial T1-weighted (T1w) full-dose images from corresponding noncontrast and low-dose images (using various settings of input sequences) and test its performance on a patient population acquired prospectively. MATERIALS AND METHODS In this monocentric, institutional review board-approved study, a total of 138 participants were included who received an adapted imaging protocol with acquisition of a T1w low dose after administration of 10% of the standard dose and acquisition of a T1w full dose after administration of the remaining 90% of the standard dose of a gadolinium-containing contrast agent. A total of 83 participants formed the training sample (51.7 ± 16.5 years, 36 women), 25 the validation sample (55.3 ± 16.4 years, 11 women), and 30 the test sample (55.0 ± 15.0 years, 9 women). Four input settings were differentiated: only the T1w noncontrast and T1w low-dose images (standard setting), only the T1w noncontrast and T1w low-dose images with a prolonged postinjection time of 5 minutes (5-minute setting), multiple noncontrast sequences (T1w, T2w, diffusion) and the T1w low-dose images (extended setting), and only noncontrast sequences (T1w, T2w, diffusion) were used (zero-dose setting). For each setting, a deep neural network was trained to synthesize artificial T1w full-dose images, which were assessed on the test sample using an objective evaluation based on quantitative metrics and a subjective evaluation through a reader-based study. Three readers scored the overall image quality, the interchangeability in regard to the clinical conclusion compared with the true T1w full-dose sequence, the contrast enhancement of lesions, and their conformity to the respective references in the true T1w full dose. RESULTS Quantitative analysis of the artificial T1w full-dose images of the standard setting provided a peak signal-to-noise ratio of 33.39 ± 0.62 (corresponding to an average improvement of the low-dose sequences of 5.2 dB) and a structural similarity index measure of 0.938 ± 0.005. In the 4-fold cross-validation, the extended setting yielded similar performance to the standard setting in terms of peak signal-to-noise ratio ( P = 0.20), but a slight improvement in structural similarity index measure ( P < 0.0001). For all settings, the reader study found comparable overall image quality between the original and artificial T1w full-dose images. The proportion of scans scored as fully or mostly interchangeable was 55%, 58%, 43%, and 3% and the average counts of false positives per case were 0.42 ± 0.83, 0.34 ± 0.71, 0.82 ± 1.15, and 2.00 ± 1.07 for the standard, 5-minute, extended, and zero-dose setting, respectively. Using a 5-point Likert scale (0 to 4, 0 being the worst), all settings of synthesized full-dose images showed significantly poorer contrast enhancement of lesions compared with the original full-dose sequence (difference of average degree of contrast enhancement-standard: -0.97 ± 0.83, P = <0.001; 5-minute: -0.93 ± 0.91, P = <0.001; extended: -0.96 ± 0.97, P = <0.001; zero-dose: -2.39 ± 1.14, P = <0.001). The average scores of conformity of the lesions compared with the original full-dose sequence were 2.25 ± 1.21, 2.22 ± 1.27, 2.24 ± 1.25, and 0.73 ± 0.93 for the standard, 5-minute, extended, and zero-dose setting, respectively. CONCLUSIONS The tested deep learning algorithm for synthesis of artificial T1w full-dose sequences based on images after administration of only 10% of the standard dose of a gadolinium-based contrast agent showed very good quantitative performance. Despite good image quality in all settings, both false-negative and false-positive signals resulted in significantly limited interchangeability of the synthesized sequences with the original full-dose sequences.
Collapse
Affiliation(s)
| | - Thomas Pinetz
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Zeynep Bendella
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | - Erich Kobler
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | | | - Wolfgang Block
- From the Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn
| | - Alexander Effland
- Institute of Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|
17
|
Loevner LA, Kolumban B, Hutóczki G, Dziadziuszko K, Bereczki D, Bago A, Pichiecchio A. Efficacy and Safety of Gadopiclenol for Contrast-Enhanced MRI of the Central Nervous System: The PICTURE Randomized Clinical Trial. Invest Radiol 2023; 58:307-313. [PMID: 36729404 PMCID: PMC10090311 DOI: 10.1097/rli.0000000000000944] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Developing new high relaxivity gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI) allowing dose reduction while maintaining similar diagnostic efficacy is needed, especially in the context of gadolinium retention in tissues. This study aimed to demonstrate that contrast-enhanced MRI of the central nervous system (CNS) with gadopiclenol at 0.05 mmol/kg is not inferior to gadobutrol at 0.1 mmol/kg, and superior to unenhanced MRI. MATERIALS AND METHODS PICTURE is an international, randomized, double-blinded, controlled, cross-over, phase III study, conducted between June 2019 and September 2020. Adult patients with CNS lesions were randomized to undergo 2 MRIs (interval, 2-14 days) with gadopiclenol (0.05 mmol/kg) then gadobutrol (0.1 mmol/kg) or vice versa. The primary criterion was lesion visualization based on 3 parameters (border delineation, internal morphology, and contrast enhancement), assessed by 3 off-site blinded readers. Key secondary outcomes included lesion-to-background ratio, enhancement percentage, contrast-to-noise ratio, overall diagnostic preference, and adverse events. RESULTS Of the 256 randomized patients, 250 received at least 1 GBCA administration (mean [SD] age, 57.2 [13.8] years; 53.6% women). The statistical noninferiority of gadopiclenol (0.05 mmol/kg) to gadobutrol (0.1 mmol/kg) was achieved for all parameters and all readers (n = 236, lower limit 95% confidence interval of the difference ≥-0.06, above the noninferiority margin [-0.35], P < 0.0001), as well as its statistical superiority over unenhanced images (n = 239, lower limit 95% confidence interval of the difference ≥1.29, P < 0.0001).Enhancement percentage and lesion-to-background ratio were higher with gadopiclenol for all readers ( P < 0.0001), and contrast-to-noise ratio was higher for 2 readers ( P = 0.02 and P < 0.0001). Three blinded readers preferred images with gadopiclenol for 44.8%, 54.4%, and 57.3% of evaluations, reported no preference for 40.7%, 21.6%, and 23.2%, and preferred images with gadobutrol for 14.5%, 24.1%, and 19.5% ( P < 0.001).Adverse events reported after MRI were similar for gadopiclenol (14.6% of patients) and gadobutrol (17.6%). Adverse events considered related to gadopiclenol (4.9%) and gadobutrol (6.9%) were mainly injection site reactions, and none was serious. CONCLUSIONS Gadopiclenol at 0.05 mmol/kg is not inferior to gadobutrol at 0.1 mmol/kg for MRI of the CNS, confirming that gadopiclenol can be used at half the gadolinium dose used for other GBCAs to achieve similar clinical efficacy.
Collapse
Affiliation(s)
- Laurie A. Loevner
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Katarzyna Dziadziuszko
- Department of Radiology
- Early Clinical Trials Centre, Medical University of Gdansk, Gdansk, Poland
| | | | - Attila Bago
- Department of Neuro-oncology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Jurkiewicz E, Tsvetkova S, Grinberg A, Pasquiers B. Pharmacokinetics, Safety, and Efficacy of Gadopiclenol in Pediatric Patients Aged 2 to 17 Years. Invest Radiol 2022; 57:510-516. [PMID: 35318970 PMCID: PMC9390233 DOI: 10.1097/rli.0000000000000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the pharmacokinetic (PK) profile, safety, and efficacy of gadopiclenol, a new high-relaxivity gadolinium-based contrast agent, in children aged 2 to 17 years. MATERIALS AND METHODS Children scheduled to undergo contrast-enhanced magnetic resonance imaging of the central nervous system (CNS cohort) or other organs (body cohort) were included sequentially into 3 age groups (12-17, 7-11, and 2-6 years). Gadopiclenol was administered at the dose of 0.05 mmol/kg. A sparse sampling approach was applied, with 4 blood samples per child collected up to 8 hours postinjection. Population PK modeling was used for the analysis, including the CNS cohort and adult subjects from a previous study. Adverse events were recorded, and efficacy was assessed for all children. RESULTS Eighty children were included, 60 in the CNS cohort and 20 in the body cohort. The 2-compartment model with linear elimination from the central compartment developed in adults was also suitable for children. Pharmacokinetic parameters were very similar between adults and children. Terminal elimination half-life was 1.82 hours for adults and 1.77 to 1.29 hours for age groups 12-17 to 2-6 years. The median clearance ranged from 0.08 L/h/kg in adults and 12-17 years to 0.12 L/h/kg in 2-6 years. The median central and peripheral volumes of distribution were 0.11 to 0.12 L/kg and 0.06 L/kg, respectively, for both adults and children. Simulations of plasma concentrations showed minor differences, and median area under the curve was 590 mg·h/L for adults and 582 to 403 mg·h/L for children. Two patients (2.5%) experienced nonserious adverse events considered related to gadopiclenol: a mild QT interval prolongation and a moderate maculopapular rash. Despite the limited number of patients, this study showed that gadopiclenol improved lesion detection, visualization, and diagnostic confidence. CONCLUSIONS The PK profile of gadopiclenol in children aged 2 to 17 years was similar to that observed in adults. Thus, there is no indication for age-based dose adaptation, and comparable plasma gadopiclenol concentrations are predicted to be achieved with body weight-based dosing in this population. Gadopiclenol at 0.05 mmol/kg seems to have a good safety profile in these patients and could improve lesion detection and visualization, therefore providing better diagnostic confidence.
Collapse
Affiliation(s)
- Elżbieta Jurkiewicz
- From the Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Silvia Tsvetkova
- Department of Diagnostic Imaging, Medical University, Plovdiv, Bulgaria
| | - Anna Grinberg
- Clinical Development Department, Guerbet, Roissy CDG Cedex
| | | |
Collapse
|
19
|
Arnold TC, Tu D, Okar SV, Nair G, By S, Kawatra KD, Robert-Fitzgerald TE, Desiderio LM, Schindler MK, Shinohara RT, Reich DS, Stein JM. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions. Neuroimage Clin 2022; 35:103101. [PMID: 35792417 PMCID: PMC9421456 DOI: 10.1016/j.nicl.2022.103101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI) is a fundamental tool in the diagnosis and management of neurological diseases such as multiple sclerosis (MS). New portable, low-field strength, MRI scanners could potentially lower financial and technical barriers to neuroimaging and reach underserved or disabled populations, but the sensitivity of these devices for MS lesions is unknown. We sought to determine if white matter lesions can be detected on a portable 64mT scanner, compare automated lesion segmentations and total lesion volume between paired 3T and 64mT scans, identify features that contribute to lesion detection accuracy, and explore super-resolution imaging at low-field. In this prospective, cross-sectional study, same-day brain MRI (FLAIR, T1w, and T2w) scans were collected from 36 adults (32 women; mean age, 50 ± 14 years) with known or suspected MS using Siemens 3T (FLAIR: 1 mm isotropic, T1w: 1 mm isotropic, and T2w: 0.34-0.5 × 0.34-0.5 × 3-5 mm) and Hyperfine 64mT (FLAIR: 1.6 × 1.6 × 5 mm, T1w: 1.5 × 1.5 × 5 mm, and T2w: 1.5 × 1.5 × 5 mm) scanners at two centers. Images were reviewed by neuroradiologists. MS lesions were measured manually and segmented using an automated algorithm. Statistical analyses assessed accuracy and variability of segmentations across scanners and systematic scanner biases in automated volumetric measurements. Lesions were identified on 64mT scans in 94% (31/33) of patients with confirmed MS. The average smallest lesions manually detected were 5.7 ± 1.3 mm in maximum diameter at 64mT vs 2.1 ± 0.6 mm at 3T, approaching the spatial resolution of the respective scanner sequences (3T: 1 mm, 64mT: 5 mm slice thickness). Automated lesion volume estimates were highly correlated between 3T and 64mT scans (r = 0.89, p < 0.001). Bland-Altman analysis identified bias in 64mT segmentations (mean = 1.6 ml, standard error = 5.2 ml, limits of agreement = -19.0-15.9 ml), which over-estimated low lesion volume and under-estimated high volume (r = 0.74, p < 0.001). Visual inspection revealed over-segmentation was driven venous hyperintensities on 64mT T2-FLAIR. Lesion size drove segmentation accuracy, with 93% of lesions > 1.0 ml and all lesions > 1.5 ml being detected. Using multi-acquisition volume averaging, we were able to generate 1.6 mm isotropic images on the 64mT device. Overall, our results demonstrate that in established MS, a portable 64mT MRI scanner can identify white matter lesions, and that automated estimates of total lesion volume correlate with measurements from 3T scans.
Collapse
Affiliation(s)
- T Campbell Arnold
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danni Tu
- Penn Statistics in Imaging and Visualization Center and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serhat V Okar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Karan D Kawatra
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Timothy E Robert-Fitzgerald
- Penn Statistics in Imaging and Visualization Center and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa M Desiderio
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew K Schindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center and Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Joel M Stein
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Funke SKI, Factor C, Rasschaert M, Lezius L, Sperling M, Karst U, Robert P. Long-term Gadolinium Retention in the Healthy Rat Brain: Comparison between Gadopiclenol, Gadobutrol, and Gadodiamide. Radiology 2022; 305:179-189. [PMID: 35727155 DOI: 10.1148/radiol.212600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Safety concerns caused by gadolinium retention call for the development of high-relaxivity gadolinium-based contrast agents (GBCAs) allowing minimal dosing. Purpose To investigate brain gadolinium retention in healthy rats after exposure to gadopiclenol (Elucirem, Guerbet; macrocyclic GBCA) compared with gadobutrol (Gadovist or Gadavist, Bayer; macrocyclic GBCA) and gadodiamide (Omniscan, GE Healthcare; linear GBCA) over 1 year. Materials and Methods In this study conducted between May 2018 and April 2020, 9-week-old healthy Sprague Dawley rats received five injections of either gadopiclenol, gadobutrol, or gadodiamide (2.4 mmol of gadolinium per kilogram of body weight for each), or saline (control animals) over a period of 5 weeks. Rats were randomly assigned to different groups (six female and six male rats per group). MRI examinations were performed before euthanasia at 1, 3, 5, or 12 months after the last injection. Brains were sampled to determine the total gadolinium content via inductively coupled plasma mass spectrometry (ICP-MS), to characterize gadolinium species with size exclusion chromatography (SEC)-ICP-MS, and to perform elemental mapping with laser ablation (LA)-ICP-MS. Mann-Whitney tests were performed on pairwise comparisons of the same time points. Results For both macrocyclic agents, no T1 signal hyperintensities were observed in the cerebellum, and approximately 80% of gadolinium washout was found between 1 month (gadobutrol, 0.30 nmol/g; gadopiclenol, 0.37 nmol/g) and 12 months (gadobutrol, 0.062 nmol/g; gadopiclenol, 0.078 nmol/g). After 12 months, only low-molecular-weight gadolinium species were detected in the soluble fraction. Gadodiamide led to significantly higher gadolinium concentrations after 1 month in the cerebellum (gadodiamide, 2.65 nmol/g; P < .001 vs both macrocyclics) combined with only 15% washout after 12 months (gadodiamide, 2.25 nmol/g) and with gadolinium detected bound to macromolecules. Elemental bioimaging enabled visualization of gadolinium deposition patterns colocalized with iron. Conclusion Gadopiclenol and gadobutrol demonstrated similar in vivo distribution and washout of gadolinium in the healthy rat brain, markedly differing from gadodiamide up to 12 months after the last injection. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Sabrina K I Funke
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Cécile Factor
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Marlène Rasschaert
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Lena Lezius
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Michael Sperling
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Uwe Karst
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| | - Philippe Robert
- From the Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (S.K.I.F., L.L., M.S., U.K.); and Department of Research and Innovation, Guerbet Group, BP57400, Roissy 95943, France (C.F., M.R., P.R.)
| |
Collapse
|
21
|
From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study. Invest Radiol 2022; 57:527-535. [PMID: 35446300 DOI: 10.1097/rli.0000000000000867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate a deep learning method designed to increase the contrast-to-noise ratio in contrast-enhanced gradient echo T1-weighted brain magnetic resonance imaging (MRI) acquisitions. The processed images are quantitatively evaluated in terms of lesion detection performance. MATERIALS AND METHODS A total of 250 multiparametric brain MRIs, acquired between November 2019 and March 2021 at Gustave Roussy Cancer Campus (Villejuif, France), were considered for inclusion in this retrospective monocentric study. Independent training (107 cases; age, 55 ± 14 years; 58 women) and test (79 cases; age, 59 ± 14 years; 41 women) samples were defined. Patients had glioma, brain metastasis, meningioma, or no enhancing lesion. Gradient echo and turbo spin echo with variable flip angles postcontrast T1 sequences were acquired in all cases. For the cases that formed the training sample, "low-dose" postcontrast gradient echo T1 images using 0.025 mmol/kg injections of contrast agent were also acquired. A deep neural network was trained to synthetically enhance the low-dose T1 acquisitions, taking standard-dose T1 MRI as reference. Once trained, the contrast enhancement network was used to process the test gradient echo T1 images. A read was then performed by 2 experienced neuroradiologists to evaluate the original and processed T1 MRI sequences in terms of contrast enhancement and lesion detection performance, taking the turbo spin echo sequences as reference. RESULTS The processed images were superior to the original gradient echo and reference turbo spin echo T1 sequences in terms of contrast-to-noise ratio (44.5 vs 9.1 and 16.8; P < 0.001), lesion-to-brain ratio (1.66 vs 1.31 and 1.44; P < 0.001), and contrast enhancement percentage (112.4% vs 85.6% and 92.2%; P < 0.001) for cases with enhancing lesions. The overall image quality of processed T1 was preferred by both readers (graded 3.4/4 on average vs 2.7/4; P < 0.001). Finally, the proposed processing improved the average sensitivity of gradient echo T1 MRI from 88% to 96% for lesions larger than 10 mm (P = 0.008), whereas no difference was found in terms of the false detection rate (0.02 per case in both cases; P > 0.99). The same effect was observed when considering all lesions larger than 5 mm: sensitivity increased from 70% to 85% (P < 0.001), whereas false detection rates remained similar (0.04 vs 0.06 per case; P = 0.48). With all lesions included regardless of their size, sensitivities were 59% and 75% for original and processed T1 images, respectively (P < 0.001), and the corresponding false detection rates were 0.05 and 0.14 per case, respectively (P = 0.06). CONCLUSION The proposed deep learning method successfully amplified the beneficial effects of contrast agent injection on gradient echo T1 image quality, contrast level, and lesion detection performance. In particular, the sensitivity of the MRI sequence was improved by up to 16%, whereas the false detection rate remained similar.
Collapse
|
22
|
Ammari S, Bône A, Balleyguier C, Moulton E, Chouzenoux É, Volk A, Menu Y, Bidault F, Nicolas F, Robert P, Rohé MM, Lassau N. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study. Invest Radiol 2022; 57:99-107. [PMID: 34324463 DOI: 10.1097/rli.0000000000000811] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
MATERIALS AND METHODS This monocentric retrospective study leveraged 200 multiparametric brain MRIs acquired between November 2019 and February 2020 at Gustave Roussy Cancer Campus (Villejuif, France). A total of 145 patients were included: 107 formed the training sample (55 ± 14 years, 58 women) and 38 the separate test sample (62 ± 12 years, 22 women). Patients had glioma, brain metastases, meningioma, or no enhancing lesion. T1, T2-FLAIR, diffusion-weighted imaging, low-dose, and standard-dose postcontrast T1 sequences were acquired. A deep network was trained to process the precontrast and low-dose sequences to predict "virtual" surrogate images for contrast-enhanced T1. Once trained, the deep learning method was evaluated on the test sample. The discrepancies between the predicted virtual images and the standard-dose MRIs were qualitatively and quantitatively evaluated using both automated voxel-wise metrics and a reader study, where 2 radiologists graded image qualities and marked all visible enhancing lesions. RESULTS The automated analysis of the test brain MRIs computed a structural similarity index of 87.1% ± 4.8% between the predicted virtual sequences and the reference contrast-enhanced T1 MRIs, a peak signal-to-noise ratio of 31.6 ± 2.0 dB, and an area under the curve of 96.4% ± 3.1%. At Youden's operating point, the voxel-wise sensitivity (SE) and specificity were 96.4% and 94.8%, respectively. The reader study found that virtual images were preferred to standard-dose MRI in terms of image quality (P = 0.008). A total of 91 reference lesions were identified in the 38 test T1 sequences enhanced with full dose of contrast agent. On average across readers, the brain lesion SE of the virtual images was 83% for lesions larger than 10 mm (n = 42), and the associated false detection rate was 0.08 lesion/patient. The corresponding positive predictive value of detected lesions was 92%, and the F1 score was 88%. Lesion detection performance, however, dropped when smaller lesions were included: average SE was 67% for lesions larger than 5 mm (n = 74), and 56% with all lesions included regardless of their size. The false detection rate remained below 0.50 lesion/patient in all cases, and the positive predictive value remained above 73%. The composite F1 score was 63% at worst. CONCLUSIONS The proposed deep learning method for virtual contrast-enhanced T1 brain MRI prediction showed very high quantitative performance when evaluated with standard voxel-wise metrics. The reader study demonstrated that, for lesions larger than 10 mm, good detection performance could be maintained despite a 4-fold division in contrast agent usage, unveiling a promising avenue for reducing the gadolinium exposure of returning patients. Small lesions proved, however, difficult to handle for the deep network, showing that full-dose injections remain essential for accurate first-line diagnosis in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | - Émilie Chouzenoux
- Center for Visual Computing, CentraleSupélec, Inria, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Yves Menu
- From the Imaging Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif
| | - François Bidault
- From the Imaging Department, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif
| | | | | | | | | |
Collapse
|
23
|
Violas X, Rasschaert M, Santus R, Factor C, Corot C, Catoen S, Idée JM, Robert P. Small Brain Lesion Enhancement and Gadolinium Deposition in the Rat Brain: Comparison Between Gadopiclenol and Gadobenate Dimeglumine. Invest Radiol 2022; 57:130-139. [PMID: 34411032 PMCID: PMC8746880 DOI: 10.1097/rli.0000000000000819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of the set of studies was to compare gadopiclenol, a new high relaxivity gadolinium (Gd)-based contrast agent (GBCA) to gadobenate dimeglumine in terms of small brain lesion enhancement and Gd retention, including T1 enhancement in the cerebellum. MATERIALS AND METHODS In a first study, T1 enhancement at 0.1 mmol/kg body weight (bw) of gadopiclenol or gadobenate dimeglumine was evaluated in a small brain lesions rat model at 2.35 T. The 2 GBCAs were injected in an alternated and cross-over manner separated by an interval of 4.4 ± 1.0 hours (minimum, 3.5 hours; maximum, 6.1 hours; n = 6). In a second study, the passage of the GBCAs into cerebrospinal fluid (CSF) was evaluated by measuring the fourth ventricle T1 enhancement in healthy rats at 4.7 T over 23 minutes after a single intravenous (IV) injection of 1.2 mmol/kg bw of gadopiclenol or gadobenate dimeglumine (n = 6/group). In a third study, Gd retention at 1 month was evaluated in healthy rats who had received 20 IV injections of 1 of the 2 GBCAs (0.6 mmol/kg bw) or a similar volume of saline (n = 10/group) over 5 weeks. T1 enhancement of the deep cerebellar nuclei (DCN) was assessed by T1-weighted magnetic resonance imaging at 2.35 T, performed before the injection and thereafter once a week up to 1 month after the last injection. Elemental Gd levels in central nervous system structures, in muscle and in plasma were determined by inductively coupled plasma mass spectrometry (ICP-MS) 1 month after the last injection. RESULTS The first study in a small brain lesion rat model showed a ≈2-fold higher number of enhanced voxels in lesions with gadopiclenol compared with gadobenate dimeglumine. T1 enhancement of the fourth ventricle was observed in the first minutes after a single IV injection of gadopiclenol or gadobenate dimeglumine (study 2), resulting, in the case of gadopiclenol, in transient enhancement during the injection period of the repeated administrations study (study 3). In terms of Gd retention, T1 enhancement of the DCN was noted in the gadobenate dimeglumine group during the month after the injection period. No such enhancement of the DCN was observed in the gadopiclenol group. Gadolinium concentrations 1 month after the injection period in the gadopiclenol group were slightly increased in plasma and lower by a factor of 2 to 3 in the CNS structures and muscles, compared with gadobenate dimeglumine. CONCLUSIONS In the small brain lesion rat model, gadopiclenol provides significantly higher enhancement of brain lesions compared with gadobentate dimeglumine at the same dose. After repeated IV injections, as expected for a macrocyclic GBCA, Gd retention is minimalized in the case of gadopiclenol compared with gadobenate dimeglumine, resulting in no T1 hypersignal in the DCN.
Collapse
|
24
|
Do QN, Lenkinski RE, Tircso G, Kovacs Z. How the Chemical Properties of GBCAs Influence Their Safety Profiles In Vivo. Molecules 2021; 27:58. [PMID: 35011290 PMCID: PMC8746842 DOI: 10.3390/molecules27010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023] Open
Abstract
The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents.
Collapse
Affiliation(s)
- Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Robert E. Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Gyula Tircso
- Department of Physical Chemistry Debrecen, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Fretellier N, Rasschaert M, Bocanegra J, Robert P, Factor C, Seron A, Idée JM, Corot C. Safety and Gadolinium Distribution of the New High-Relaxivity Gadolinium Chelate Gadopiclenol in a Rat Model of Severe Renal Failure. Invest Radiol 2021; 56:826-836. [PMID: 34091462 DOI: 10.1097/rli.0000000000000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxicological profile of gadopiclenol, a new high-relaxivity macrocyclic gadolinium-based contrast agent (GBCA), in renally impaired rats, in comparison with 2 other macrocyclic GBCAs, gadoterate meglumine and gadobutrol, and 1 linear and nonionic GBCA, gadodiamide. METHODS Renal failure was induced by adding 0.75% wt/wt adenine to the diet for 3 weeks. During the second week of adenine-enriched diet, the animals (n = 8/group × 5 groups) received 5 consecutive intravenous injections of GBCA at 2.5 mmol/kg per injection, resulting in a cumulative dose of 12.5 mmol/kg or saline followed by a 3-week treatment-free period after the last injection. The total (elemental) gadolinium (Gd) concentration in different tissues (brain, cerebellum, femoral epiphysis, liver, skin, heart, kidney, spleen, plasma, urine, and feces) was measured by inductively coupled plasma mass spectrometry. Transmission electron microscopy (and electron energy loss spectroscopy analysis of metallic deposits) was used to investigate the presence and localization of Gd deposits in the skin. Relaxometry was used to evaluate the presence of dissociated Gd in the skin, liver, and bone. Skin histopathology was performed to investigate the presence of nephrogenic systemic fibrosis-like lesions. RESULTS Gadodiamide administrations were associated with high morbidity-mortality but also with macroscopic and microscopic skin lesions in renally impaired rats. No such effects were observed with gadopiclenol, gadoterate, or gadobutrol. Overall, elemental Gd concentrations were significantly higher in gadodiamide-treated rats than in rats treated with the other GBCAs for all tissues except the liver (where no significant difference was found with gadopiclenol) and the kidney and the heart (where statistically similar Gd concentrations were observed for all GBCAs). No plasma biochemical abnormalities were observed with gadopiclenol or the control GBCAs. Histopathology revealed a normal skin structure in the rats treated with gadopiclenol, gadoterate, and gadobutrol, contrary to those treated with gadodiamide. No evidence of Gd deposits on collagen fibers and inclusions in fibroblasts was found with gadopiclenol and its macrocyclic controls, unlike with gadodiamide. Animals of all test groups had Gd-positive lysosomal inclusions in the dermal macrophages. However, the textures differed for the different products (speckled texture for gadodiamide and rough-textured appearance for the 2 tested macrocyclic GBCAs). CONCLUSIONS No evidence of biochemical toxicity or pathological abnormalities of the skin was observed, and similar to other macrocyclic GBCAs, gadoterate and gadobutrol, tissue retention of Gd was found to be low (except in the liver) in renally impaired rats treated with the new high-relaxivity GBCA gadopiclenol.
Collapse
Affiliation(s)
- Nathalie Fretellier
- From the Research and Innovation Department, Guerbet, Aulnay-sous-Bois, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bradu A, Penescu M, Pitrou C, Hao J, Bourrinet P. Pharmacokinetics, Dialysability, and Safety of Gadopiclenol, a New Gadolinium-Based Contrast Agent, in Patients With Impaired Renal Function. Invest Radiol 2021; 56:486-493. [PMID: 34197356 DOI: 10.1097/rli.0000000000000764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate the pharmacokinetics (PK) of gadopiclenol, a new macrocyclic gadolinium based-contrast agent, in subjects with impaired renal function, and to assess its dialysability in subjects with end-stage renal disease (ESRD). METHODS AND MATERIALS This 2-center, open-label, phase 1 study included 5 successive cohorts of 8 adult subjects: healthy subjects (cohort 1), subjects with mild (cohort 2), moderate (cohort 3), severe (cohort 4) renal impairment, or ESRD (cohort 5), who received a single intravenous injection of gadopiclenol (0.1 mmol/kg). Blood and urine samples were collected at different time points in cohorts 1 to 4, and blood and dialysate samples were collected at each hemodialysis session (4-hour session on day 1, day 3, and day 5) in cohort 5. Gadopiclenol elimination and safety were assessed for up to 6 months. Pharmacokinetics parameters were calculated using noncompartmental analysis. RESULTS A total of 40 subjects were included, with a mean age of 51.5 years (range, 18-71 years). No significant difference in the mean maximum concentration values and the distribution volume was observed among cohorts 1 to 4. Urinary excretion of unchanged gadopiclenol was delayed with the degree of renal impairment and ranged between 96% and 84% in subjects with mild to severe renal impairment. Compared with that of healthy subjects, the mean area under the plasma concentration curve was 54%, 148%, and 769% higher in subjects with mild, moderate, or severe renal impairment, respectively. The mean terminal half-life was prolonged with the degree of renal impairment (1.9, 3.3, 3.8, and 11.7 hours for cohorts 1-4). In ESRD subjects, gadopiclenol was effectively removed from the plasma (95% to 98%) after the first hemodialysis session. Gadopiclenol concentration in plasma was below the limit of quantification for all subjects after the second hemodialysis session. Gadopiclenol concentration was below limit of quantification in all plasma and urine samples collected at 1, 3, and 6 months. Five subjects (12.5%) experienced adverse events related to gadopiclenol, none serious and all resolved. Laboratory measurements, vital signs, and electrocardiography did not raise any safety concern. CONCLUSIONS Gadopiclenol elimination half-life was prolonged in subjects with mild to severe renal impairment, yet its renal clearance remains complete or nearly complete. In ESRD subjects, gadopiclenol was effectively removed from the plasma after 1 hemodialysis session, and up to 3 hemodialysis sessions were sufficient to completely clear it. No safety concern was raised. Therefore, no dose adjustment seems necessary in this patient population.
Collapse
Affiliation(s)
- Andrei Bradu
- From the Department of Urology and Surgical Nephrology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chișinău, Republic of Moldova
| | - Mircea Penescu
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Jing Hao
- Guerbet, Roissy CDG Cedex, France
| | | |
Collapse
|
27
|
Abstract
Gadolinium-based contrast agents have been used in hundreds of millions of patients in the past 30 years, with an exemplary safety record. However, assumptions made at their inception have been recently challenged, rekindling innovation efforts. This critical review outlines the motivations, technical obstacles, problems, and the most recent published progress toward the creation of alternatives to the existing gadolinium-based contrast agent.
Collapse
Affiliation(s)
- Michael F Tweedle
- From the Radiology Department, Wright Center of Innovation in Biomedical Imaging, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
28
|
Zanardo M, Sardanelli F, Rainford L, Monti CB, Murray JG, Secchi F, Cradock A. Technique and protocols for cardiothoracic time-resolved contrast-enhanced magnetic resonance angiography sequences: a systematic review. Clin Radiol 2020; 76:156.e9-156.e18. [PMID: 33008622 DOI: 10.1016/j.crad.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
AIM To review contrast medium administration protocols used for cardiothoracic applications of time-resolved, contrast-enhanced magnetic resonance angiography (MRA) sequences. MATERIALS AND METHODS A systematic search of the literature (Medline/EMBASE) was performed to identify articles utilising time-resolved MRA sequences, focusing on type of sequence, adopted technical parameters, contrast agent (CA) issues, and acquisition workflow. Study design, year of publication, population, magnetic field strength, type, dose, and injection parameters of CA, as well as technical parameters of time-resolved MRA sequences were extracted. RESULTS Of 117 retrieved articles, 16 matched the inclusion criteria. The study design was prospective in 9/16 (56%) articles, and study population ranged from 5 to 185 patients, for a total of 506 patients who underwent cardiothoracic time-resolved MRA. Magnetic field strength was 1.5 T in 13/16 (81%), and 3 T in 3/16 (19%) articles. The administered CA was gadobutrol (Gadovist) in 6/16 (37%) articles, gadopentetate dimeglumine (Magnevist) in 5/16 (31%), gadobenate dimeglumine (MultiHance) in 2/16 (13%), gadodiamide (Omniscan) in 2/16 (13%), gadofosveset trisodium (Ablavar, previously Vasovist) in 1/16 (6%). CA showed highly variable doses among studies: fixed amount or based on patient body weight (0.02-0.2 mmol/kg) and was injected with a flow rate ranging 1-5 ml/s. Sequences were TWIST in 13/16 (81%), TRICKS in 2/16 (13%), and CENTRA 1/16 articles (6%). CONCLUSION Time-resolved MRA sequences were adopted in different clinical settings with a large spectrum of technical approaches, mostly in association with different CA dose, type, and injection method. Further studies in relation to specific clinical indications are warranted to provide a common standardised acquisition protocol.
Collapse
Affiliation(s)
- M Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy.
| | - F Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - C B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - J G Murray
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - F Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - A Cradock
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
|
30
|
Funck-Brentano C, Felices M, Le Fur N, Dubourdieu C, Desché P, Vanhoutte F, Voiriot P. Randomized study of the effect of gadopiclenol, a new gadolinium-based contrast agent, on the QTc interval in healthy subjects. Br J Clin Pharmacol 2020; 86:2174-2181. [PMID: 32302009 DOI: 10.1111/bcp.14309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
AIMS We investigated the effect of gadopiclenol, a new gadolinium-based contrast agent, on the QTc interval at clinical and supraclinical dose, considering the relative hyperosmolarity of this product. METHODS This was a single centre, randomized, double-blind, placebo- and positive-controlled, 4-way crossover study. Forty-eight healthy male and female subjects were included to receive single intravenous (i.v.) administrations of gadopiclenol at the clinical dose of 0.1 mmol kg-1 , standard for current gadolinium-based contrast agents, the supraclinical dose of 0.3 mmol kg-1 , placebo and a single oral dose of 400 mg moxifloxacin. RESULTS The largest time-matched placebo-corrected, mean change from-baseline in QTcF (ΔΔQTcF) was observed 3 hours after administration of 0.1 mmol kg-1 gadopiclenol (2.39 ms, 90% confidence interval [CI]: 0.35, 4.43 ms) and 5 minutes after administration of 0.3 mmol kg-1 (4.81 ms, 90%CI: 2.84, 6.78 ms). The upper limit of the 90% CI was under the threshold of 10 ms, demonstrating no significant effect of gadopiclenol on QTc interval. From 1.5 to 4 hours postdose moxifloxacin, the lower limit of the 90% CI of ΔΔQTcF exceeded 5 ms demonstrating assay sensitivity. Although there was a positive slope, the concentration-response analysis estimated that the values of ΔΔQTcF at the maximal concentration of gadopiclenol at 0.1 and 0.3 mmol kg-1 were 0.41 and 2.23 ms, respectively, with the upper limit of the 90% CI not exceeding 10 ms. No serious or severe adverse events or treatment discontinuations due to adverse events were reported. CONCLUSION This thorough QT/QTc study demonstrated that gadopiclenol did not prolong the QT interval at clinical and supraclinical doses and was well tolerated in healthy volunteers. The positive slope of the QTc prolongation vs concentration relationship suggests that hyperosmolarity could be associated with QTc prolongation. However, the amplitude of this effects is unlikely to be associated with proarrhythmia.
Collapse
Affiliation(s)
- Christian Funck-Brentano
- INSERM, CIC-1901 and UMRS 1166, Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and CIC-1901, Paris, France; Sorbonne Université Médecine, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | | | | | | | | | | |
Collapse
|