1
|
Fujita S, Hagiwara A, Kamagata K, Aoki S. Clinical Neuroimaging Over the Last Decade: Achievements and What Lies Ahead. Invest Radiol 2025:00004424-990000000-00324. [PMID: 40239043 DOI: 10.1097/rli.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The past decade has witnessed notable advancements in clinical neuroimaging facilitated by technological innovations and significant scientific discoveries. In conjunction with Investigative Radiology's 60th anniversary, this review examines key contributions from the past 10 years, emphasizing the journal's most accessed articles and their impact on clinical practice and research. Advances in imaging technologies, including photon-counting computed tomography, and innovations in low-field and high-field magnetic resonance imaging systems have expanded diagnostic capabilities. Progress in the development and translation of contrast media and rapid quantitative imaging techniques has further improved diagnostic accuracy. Additionally, the integration of advanced data analysis methods, particularly deep learning and medical informatics, has improved image interpretation and operational efficiency. Beyond technological developments, this review highlights basic neuroscience findings, such as the discovery and characterization of the glymphatic system. These insights have provided a deeper understanding of central nervous system physiology and pathology, bridging the gap between research and clinical applications. This review integrates these advancements to provide an overview of the progress and ongoing challenges in clinical neuroimaging, offering insights into its current state and potential future directions within the broader field of radiology.
Collapse
Affiliation(s)
- Shohei Fujita
- From the Department of Radiology, Juntendo University, Tokyo, Japan (S.F., A.H., K.K., S.A.); Department of Radiology, The University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, The University of Tokyo, Tokyo, Japan (A.H.); Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA (S.F.); and Department of Radiology, Harvard Medical School, Boston, MA (S.F.)
| | | | | | | |
Collapse
|
2
|
Lin S, Guo M, Liang Q, Lin X, Chen S, Li Y, Chen P, Qiu Y. Evaluation of Glymphatic System Development in Neonatal Brain via Diffusion Analysis along the Perivascular Space Index. Ann Neurol 2024; 96:970-980. [PMID: 39096048 DOI: 10.1002/ana.27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Glymphatic system is a recently discovered macroscopic waste clearance system associated with numerous neurological diseases. However, little is known about glymphatic system development in neonates. We sought to evaluate diffusion along the perivascular space (ALPS) index, a proxy for glymphatic system function, in neonates and investigate its potential associations with maturation, sex, and preterm birth. METHODS Diffusion magnetic resonance imaging (MRI) data in 418 neonates, including 92 preterm neonates (57 males) and 326 term neonates (175 males), from the Developing Human Connectome Project were used for evaluating ALPS index. Linear regression modeling was performed to assess group differences in the ALPS index according to preterm birth and sex. Pearson's and partial correlation analysis were performed to assess the association between the ALPS index and gestational age (GA) as well as postmenstrual age (PMA) at MRI. Moderation analysis was performed to assess the moderation effect of preterm birth on the relationship between the ALPS index and PMA. RESULTS Compared to term neonates, preterm neonates exhibited lower ALPS indices (p < 0.001). The ALPS index positively correlated with PMA (p = 0.004) and GA (p < 0.001). Preterm birth (p = 0.013) had a significant moderation effect on the relationship between the ALPS index and PMA. Sex had no significant direct effect (p = 0.639) or moderation effect (p = 0.333) on ALPS index. INTERPRETATION Glymphatic system development is a dynamic process in neonates, which can be moderated by preterm birth, the ALPS index could serve as a sensitive biomarker for monitoring this process. ANN NEUROL 2024;96:970-980.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meifen Guo
- Department of Radiology, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ying Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Peiqi Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Arshad NH, Abu Hassan H, Omar NF, Zainudin Z. Quantifying myelin in neonates using magnetic resonance imaging: a systematic literature review. Clin Exp Pediatr 2024; 67:371-385. [PMID: 38062713 PMCID: PMC11298773 DOI: 10.3345/cep.2023.00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/03/2024] Open
Abstract
This review aimed to assess the usefulness of various magnetic resonance imaging (MRI) techniques for the quantification of neonatal white matter myelination. The Scopus, PubMed, and Web of Science databases were searched to identify studies following the PRISMA (preferred reporting items for systematic reviews and meta-analyses) statement using quantitative MRI techniques to examine samples collected from neonates to quantify myelin. Twelve studies were ultimately included. The results demonstrated that in validation studies, relaxometry is the most frequently explored approach (83.33%), followed by magnetization transfer imaging (8.33%) and a new automatic segmentation technique (8.33%). Synthetic MRI is recommended for quantifying myelin in neonates because of several advantages that outweigh a few negligible limitations.
Collapse
Affiliation(s)
- Nabila Hanem Arshad
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Radiology, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hasyma Abu Hassan
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Farhayu Omar
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zurina Zainudin
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
4
|
Kim HG, Han D, Kim J, Choi JS, Cho KO. 3D MR fingerprinting-derived myelin water fraction characterizing brain development and leukodystrophy. J Transl Med 2023; 21:914. [PMID: 38102606 PMCID: PMC10725020 DOI: 10.1186/s12967-023-04788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Magnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water fraction (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy in mice and children, demonstrating its potential applicability in animal and human studies. METHODS 3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencephalopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was carried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The associations between 'MWF and PLP' and 'MWF and age' were evaluated in C57BL/6 mice. MWF values were compared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected and the association between MWF and age was assessed. RESULTS In 35 C57BL/6 mice (age range; 3 weeks-48 weeks), MWF showed positive relations with PLP immunoreactivity in the corpus callosum (β = 0.0006, P = 0.04) and cortex (β = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF showed positive relations with PLP immunoreactivity (β = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum (β = 0.0022, P < 0.001) and cortex (β = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 children (median age, 126 months; range, 0-199 months) were evaluated and their MWF values according to age showed the best fit for the third-order regression model (adjusted R2 range, 0.44-0.94, P < 0.001). CONCLUSION MWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystrophy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain myelin content in both mice and humans.
Collapse
Affiliation(s)
- Hyun Gi Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Jimin Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Sun Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
5
|
Kim JS, Cho HH, Shin JY, Park SH, Min YS, Park B, Hong J, Park SY, Hahm MH, Hwang MJ, Lee SM. Diagnostic performance of synthetic relaxometry for predicting neurodevelopmental outcomes in premature infants: a feasibility study. Eur Radiol 2023; 33:7340-7351. [PMID: 37522898 DOI: 10.1007/s00330-023-09881-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To investigate the predictability of synthetic relaxometry for neurodevelopmental outcomes in premature infants and to evaluate whether a combination of relaxation times with clinical variables or qualitative MRI abnormalities improves the predictive performance. METHODS This retrospective study included 33 premature infants scanned with synthetic MRI near or at term equivalent age. Based on neurodevelopmental assessments at 18-24 months of corrected age, infants were classified into two groups (no/mild disability [n = 23] vs. moderate/severe disability [n = 10]). Clinical and MRI characteristics associated with moderate/severe disability were explored, and combined models incorporating independent predictors were established. Ultimately, the predictability of relaxation times, clinical variables, MRI findings, and a combination of the two were evaluated and compared. The models were internally validated using bootstrap resampling. RESULTS Prolonged T1-frontal/parietal and T2-parietal periventricular white matter (PVWM), moderate-to-severe white matter abnormality, and bronchopulmonary dysplasia were significantly associated with moderate/severe disability. The overall predictive performance of each T1-frontal/-parietal PVWM model was comparable to that of individual MRI finding and clinical models (AUC = 0.71 and 0.76 vs. 0.73 vs. 0.83, respectively; p > 0.27). The combination of clinical variables and T1-parietal PVWM achieved an AUC of 0.94, sensitivity of 90%, and specificity of 91.3%, outperforming the clinical model alone (p = 0.049). The combination of MRI finding and T1-frontal PVWM yielded AUC of 0.86, marginally outperforming the MRI finding model (p = 0.09). Bootstrap resampling showed that the models were valid. CONCLUSIONS It is feasible to predict adverse outcomes in premature infants by using early synthetic relaxometry. Combining relaxation time with clinical variables or MRI finding improved prediction. CLINICAL RELEVANCE STATEMENT Synthetic relaxometry performed during the neonatal period may serve as a biomarker for predicting adverse neurodevelopmental outcomes in premature infants. KEY POINTS • Synthetic relaxometry based on T1 relaxation time of parietal periventricular white matter showed acceptable performance in predicting adverse outcome with an AUC of 0.76 and an accuracy of 78.8%. • The combination of relaxation time with clinical variables and/or structural MRI abnormalities improved predictive performance of adverse outcomes. • Synthetic relaxometry performed during the neonatal period helps predict adverse neurodevelopmental outcome in premature infants.
Collapse
Affiliation(s)
- Ji Sook Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Hyun-Hae Cho
- Department of Radiology and Medical Research Institute, College of Medicine, Ewha Womans University Seoul Hospital, 260 Gonghang-daero, Gangseo-gu, Seoul, 07804, South Korea
| | - Ji-Yeon Shin
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, South Korea
| | - Sook-Hyun Park
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
- Department of Pediatrics, Yonsei University College of Medicine, Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Yu-Sun Min
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Byunggeon Park
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Jihoon Hong
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Seo Young Park
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Myong-Hun Hahm
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea
| | - Moon Jung Hwang
- General Electric (GE) Healthcare Korea, 416 Hangsng-daero, Jung-gu, Seoul, 04637, South Korea
| | - So Mi Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, South Korea.
| |
Collapse
|
6
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
7
|
Dong Y, Deng X, Xie M, Yu L, Qian L, Chen G, Zhang Y, Tang Y, Zhou Z, Long L. Gestational age-related changes in relaxation times of neonatal brain by quantitative synthetic magnetic resonance imaging. Brain Behav 2023:e3068. [PMID: 37248768 DOI: 10.1002/brb3.3068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE This study aimed to explore the correlation between T1 and T2 relaxation times of synthetic MRI (SyMRI) and gestational age (GA) in each hemisphere of preterm and term newborns at the initial 28 days of birth. METHODS Seventy preterm and full-term infants were prospectively included in this study. All subjects completed 3.0 T routine MRI and SyMRI (MAGiC) one-stop scanning within 28 days of birth (aged 34-42 W at examination). The SyMRI postprocessing software (v8.0.4) was used to measure the T1 and T2 relaxation values of each brain region. The linear regression equations of quantitative relaxation values with GA were established to compare the variation speed in each brain region. RESULTS A significant linear and negative correlation was found between relaxation times and GA in the neonate cerebral cortex and subcortical gray and white matter regions (All p<.05). The relaxation time of the left centrum semiovale decreased with maximum variance with increasing GA among all white matter regions (T1: b = -51.45, β = -0.65, p < .0001; T2: b = -8.77, β = -0.71, p < .0001), whereas the right posterior limb of internal capsule showed minimal variance (T1: b = -27.94, β = -0.60, p < .0001; T2: b = -3.25, β = -0.68, p < .0001). Among all gray matter regions, the right globus pallidus and thalamus indicated the most significant decreasing degree of T1 and T2 relaxation values with GA (right globus pallidus T1: b = -33.14, β = -0.64, p < .0001; right thalamus T2: b = -3.94, β = -0.81, p < .0001), and the right and left occipital lobes indicated the least significant decreasing degree of T1 and T2 relaxation values with GA, respectively (right occipital lobes T1: b = -11.18, β = -0.26, p = .028; left occipital lobes T2: b = -1.22, β = -0.27, p = .024). CONCLUSIONS SyMRI could quantitatively evaluate the linear changes of T1 and T2 relaxation values with GA in brain gray and white matter of preterm and term neonates.
Collapse
Affiliation(s)
- Yan Dong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Xianyu Deng
- Department of Cardiovascular, Guilin People's Hospital, Guilin, China
| | - Meizhen Xie
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lan Yu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Ge Chen
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yali Zhang
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yanyun Tang
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Zhipeng Zhou
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|