1
|
Stamatelatou A, Rizzo R, Simsek K, van Asten JJA, Heerschap A, Scheenen T, Kreis R. Diffusion-weighted MR spectroscopy of the prostate. Magn Reson Med 2024; 92:1323-1337. [PMID: 38775024 DOI: 10.1002/mrm.30141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle. This study presents the development and pioneering utilization of 1H-DW-MRS in the prostate, accompanied by in vitro studies to support interpretations of in vivo findings. METHODS Nine healthy volunteers underwent a prostate MR examination (mean age, 56 years; range, 31-66). Metabolic complexation was studied in vitro using solutions with major compounds found in prostatic fluid of the lumen. DW-MRS was performed at 3 T with a non-water-suppressed single-voxel sequence with metabolite-cycling to concurrently measure metabolite and water signals. The water signal was used in postprocessing as a reference in a motion-compensation scheme. The spectra were fitted simultaneously in the spectral and diffusion-weighting dimensions. Apparent diffusion coefficients (ADCs) were derived by fitting signal decays that were assumed to be mono-exponential for metabolites and biexponential for water. RESULTS DW-MRS of the prostate revealed relatively low ADCs for Cho and Cr compounds, aligning with their intracellular location and higher ADCs for citrate and spermine supporting their luminal origin. In vitro assessments of the ADCs of citrate and spermine demonstrated their complex formation and protein binding. Tissue concentrations of MRS-detectable metabolites were as expected for the voxel location. CONCLUSIONS This work successfully demonstrates the feasibility of 1H-DW-MRS of the prostate and its potential for providing valuable microstructural information.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rudy Rizzo
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Jack J A van Asten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Pavlovic B, Bräutigam K, Dartiguenave F, Martel P, Rakauskas A, Cesson V, Veit M, Oechslin P, Gu A, Hermanns T, Saba K, Poyet C, Hötker AM, Rupp NJ, Valerio M, Derré L, Eberli D, Banzola I. Urine biomarkers can predict prostate cancer and PI-RADS score prior to biopsy. Sci Rep 2024; 14:18148. [PMID: 39103428 PMCID: PMC11300834 DOI: 10.1038/s41598-024-68026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Prostate-Specific Antigen (PSA) based screening of prostate cancer (PCa) needs refinement. The aim of this study was the identification of urinary biomarkers to predict the Prostate Imaging-Reporting and Data System (PI-RADS) score and the presence of PCa prior to prostate biopsy. Urine samples from patients with elevated PSA were collected prior to prostate biopsy (cohort = 99). The re-analysis of mass spectrometry data from 45 samples was performed to identify urinary biomarkers to predict the PI-RADS score and the presence of PCa. The most promising candidates, i.e. SPARC-like protein 1 (SPARCL1), Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), Alpha-1-microglobulin/bikunin precursor (AMBP), keratin 13 (KRT13), cluster of differentiation 99 (CD99) and hornerin (HRNR), were quantified by ELISA and validated in an independent cohort of 54 samples. Various biomarker combinations showed the ability to predict the PI-RADS score (AUC = 0.79). In combination with the PI-RADS score, the biomarkers improve the detection of prostate carcinoma-free men (AUC = 0.89) and of those with clinically significant PCa (AUC = 0.93). We have uncovered the potential of urinary biomarkers for a test that allows a more stringent prioritization of mpMRI use and improves the decision criteria for prostate biopsy, minimizing patient burden by decreasing the number of unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Blaz Pavlovic
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Konstantin Bräutigam
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Florence Dartiguenave
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
| | - Paul Martel
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
| | - Arnas Rakauskas
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
| | - Valérie Cesson
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
| | - Markus Veit
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Pascal Oechslin
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Alexander Gu
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Karim Saba
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Andreas M Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zürich, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Pestalozzistrasse 3, 8032, Zürich, Switzerland
| | - Massimo Valerio
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
- Department of Urology, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Laurent Derré
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, Rue du Bugnon 46, 1005, Lausanne, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland
| | - Irina Banzola
- Department of Urology, University Hospital of Zürich, Frauenklinikstrasse 10, 8091, Zürich, Switzerland.
| |
Collapse
|
3
|
Zhao Y, Haworth A, Rowshanfarzad P, Ebert MA. Focal Boost in Prostate Cancer Radiotherapy: A Review of Planning Studies and Clinical Trials. Cancers (Basel) 2023; 15:4888. [PMID: 37835581 PMCID: PMC10572027 DOI: 10.3390/cancers15194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Focal boost radiotherapy was developed to deliver elevated doses to functional sub-volumes within a target. Such a technique was hypothesized to improve treatment outcomes without increasing toxicity in prostate cancer treatment. PURPOSE To summarize and evaluate the efficacy and variability of focal boost radiotherapy by reviewing focal boost planning studies and clinical trials that have been published in the last ten years. METHODS Published reports of focal boost radiotherapy, that specifically incorporate dose escalation to intra-prostatic lesions (IPLs), were reviewed and summarized. Correlations between acute/late ≥G2 genitourinary (GU) or gastrointestinal (GI) toxicity and clinical factors were determined by a meta-analysis. RESULTS By reviewing and summarizing 34 planning studies and 35 trials, a significant dose escalation to the GTV and thus higher tumor control of focal boost radiotherapy were reported consistently by all reviewed studies. Reviewed trials reported a not significant difference in toxicity between focal boost and conventional radiotherapy. Acute ≥G2 GU and late ≥G2 GI toxicities were reported the most and least prevalent, respectively, and a negative correlation was found between the rate of toxicity and proportion of low-risk or intermediate-risk patients in the cohort. CONCLUSION Focal boost prostate cancer radiotherapy has the potential to be a new standard of care.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA 6000, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison WI 53706, USA
| |
Collapse
|
4
|
Sun H, Du F, Liu Y, Li Q, Liu X, Wang T. DCE-MRI and DWI can differentiate benign from malignant prostate tumors when serum PSA is ≥10 ng/ml. Front Oncol 2022; 12:925186. [PMID: 36578948 PMCID: PMC9792168 DOI: 10.3389/fonc.2022.925186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background This study investigated the diagnostic utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) parameters for distinguishing between benign and malignant prostate tumors when serum prostate-specific antigen (PSA) level is ≥10 ng/ml. Methods Patients with prostate cancer (PCa) and benign prostatic hyperplasia (BPH) with serum PSA ≥10 ng/ml before treatment were recruited. Transrectal ultrasound-guided biopsy or surgery was performed for tumor classification and patients were stratified accordingly into PCa and BPH groups. Patients underwent DCE-MRI and DWI scanning and the transfer constant (Ktrans), rate constant (Kep), fractional volume of the extravascular extracellular space, plasma volume (Vp), and Prostate Imaging Reporting and Data System Version 2 (PI-RADS v2) score were determined. The apparent diffusion coefficient (ADC) was calculated from DWI. The diagnostic performance of these parameters was assessed by receiver operating characteristic (ROC) curve analysis, and those showing a significant difference between the PCa and BPH groups were combined into a multivariate logistic regression model for PCa diagnosis. Spearman's correlation was used to analyze the relationship between Gleason score and imaging parameters. Results The study enrolled 65 patients including 32 with PCa and 33 with BPH. Ktrans (P=0.006), Kep (P=0.001), and Vp (P=0.009) from DCE-MRI and ADC (P<0.001) from DWI could distinguish between the 2 groups when PSA was ≥10 ng/ml. PI-RADS score (area under the ROC curve [AUC]=0.705), Ktrans (AUC=0.700), Kep (AUC=0.737), Vp (AUC=0.688), and ADC (AUC=0.999) showed high diagnostic performance for discriminating PCa from BPH. A combined model based on PI-RADS score, Ktrans, Kep, Vp, and ADC had a higher AUC (1.000), with a sensitivity of 0.998 and specificity of 0.999. Imaging markers showed no significant correlation with Gleason score in PCa. Conclusion DCE-MRI and DWI parameters can distinguish between benign and malignant prostate tumors in patients with serum PSA ≥10 ng/ml.
Collapse
Affiliation(s)
- Hongmei Sun
- Department of Magenetic Resonance Imaging (MRI), Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China,*Correspondence: Hongmei Sun,
| | - Fengli Du
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Qian Li
- Department of Magenetic Resonance Imaging (MRI), Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Xinai Liu
- Department of Magenetic Resonance Imaging (MRI), Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Tongming Wang
- Department of Magenetic Resonance Imaging (MRI), Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| |
Collapse
|
5
|
The utility of ADC parameters in the diagnosis of clinically significant prostate cancer by 3.0-Tesla diffusion-weighted magnetic resonance imaging. Pol J Radiol 2021; 86:e262-e268. [PMID: 34136043 PMCID: PMC8186305 DOI: 10.5114/pjr.2021.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose This study has focused on investigating the relationship between the exponential apparent diffusion coefficient (exp-ADC), selective apparent diffusion coefficient (sel-ADC) values, the ADC ratio (ADCr), and prostate cancer aggressiveness with transrectal ultrasound-guided prostate biopsy in patients with prostate cancer. Material and methods All patients underwent a multiparametric magnetic resonance imaging (mpMRI) including tri-planar T2-weighted (T2W), dynamic contrast-enhanced (DCE), diffusion-weighted sequences using a 3.0-Tesla MR scanner (Skyra, Siemens Medical Systems, Germany) with a dedicated 18-channel body coil and a spine coil underneath the pelvis, with the patient in the supine position. Exp-ADC, sel-ADC, and ADCr of defined lesions were evaluated using region-of-interest-based measurements. Exp-ADC, sel-ADC, and ADCr were correlated with the Gleason score obtained through transrectal ultrasound-guided biopsy. Results Patients were divided into 2 groups. Group I is Gleason score ≥ 3 + 4, group II is Gleason score = 6. Sel-ADC and exp-ADC were statistically significant between 2 groups (0.014 and 0.012, respectively). However, the ADCr difference between nonclinical significant prostate cancer from clinically significant prostate cancer was not significant (p = 0.09). Conclusions This study is the first to evaluate exp-ADC and sel-ADC values of prostate carcinoma with ADCr. One limitation of this study might be the limited number of patients. Exp-ADC and sel-ADC values in prostate MRI imaging improved the specificity, accuracy, and area under the curve (AUC) for detecting clinically relevant prostate carcinoma. Adding exp-ADC and sel-ADC values to ADCr can be used to increase the diagnostic accuracy of DWI.
Collapse
|
6
|
Value of an online PI-RADS v2.1 score calculator for assessment of prostate MRI. Eur J Radiol Open 2021; 8:100332. [PMID: 33681427 PMCID: PMC7930347 DOI: 10.1016/j.ejro.2021.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the value of a browser-based PI-RADS Score Calculator (PCalc) compared to MRI reporting using the official PI-RADS v2.1 document (PDoc) for non-specialized radiologists in terms of reporting efficiency, interrater agreement and diagnostic accuracy for detection of clinically significant prostate cancer (PCa). Methods Between 09/2013 and 04/2015, 100 patients (median age, 64.8; range 47.5-78.2) who underwent prostate-MRI at a 3 T scanner and who received transperineal prostate mapping biopsy within <6 months were included in this retrospective study. Two non-specialized radiology residents (R1, R2) attributed a PI-RADS version 2.1 score for the most suspect (i. e. index) lesion (i) using the original PI-RADS v2.1 document only and after a 6-week interval (ii) using a browser-based PCalc. Reading time was measured. Reading time differences were assessed using Wilcoxon signed rank test. Intraclass-correlation Coefficient (ICC) was used to assess interrater agreement (IRA). Parameters of diagnostic accuracy and ROC curves were used for assessment of lesion-based diagnostic accuracy. Results Cumulative reading time was 32:55 (mm:ss) faster when using the PCalc, the difference being statistically significant for both readers (p < 0.05). The difference in IRA between the image sets (ICC 0.55 [0.40, 0.68]) and 0.75 [0.65, 0.82] for the image set with PDoc and PCalc, respectively) was not statistically significant. There was no statistically significant difference in lesion-based diagnostic accuracy (AUC 0.83 [0.74, 0.92] and 0.82 [95 %CI: 0.74, 0.91]) for images assessed with PDoc as compared to PCalc (AUC 0.82 [0.74, 0.91] and 0.74 [95 %CI: 0.64, 0.83]) for R1 and R2, respectively. Conclusion Non-specialized radiologists may increase reading speed in prostate MRI with the help of a browser-based PI-RADS Score Calculator compared to reporting using the official PI-RADS v2.1 document without impairing interreader agreement or lesion-based diagnostic accuracy for detection of clinically significant PCa.
Collapse
|
7
|
A Single-Arm, Multicenter Validation Study of Prostate Cancer Localization and Aggressiveness With a Quantitative Multiparametric Magnetic Resonance Imaging Approach. Invest Radiol 2020; 54:437-447. [PMID: 30946180 DOI: 10.1097/rli.0000000000000558] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The aims of this study were to assess the discriminative performance of quantitative multiparametric magnetic resonance imaging (mpMRI) between prostate cancer and noncancer tissues and between tumor grade groups (GGs) in a multicenter, single-vendor study, and to investigate to what extent site-specific differences affect variations in mpMRI parameters. MATERIALS AND METHODS Fifty patients with biopsy-proven prostate cancer from 5 institutions underwent a standardized preoperative mpMRI protocol. Based on the evaluation of whole-mount histopathology sections, regions of interest were placed on axial T2-weighed MRI scans in cancer and noncancer peripheral zone (PZ) and transition zone (TZ) tissue. Regions of interest were transferred to functional parameter maps, and quantitative parameters were extracted. Across-center variations in noncancer tissues, differences between tissues, and the relation to cancer grade groups were assessed using linear mixed-effects models and receiver operating characteristic analyses. RESULTS Variations in quantitative parameters were low across institutes (mean [maximum] proportion of total variance in PZ and TZ, 4% [14%] and 8% [46%], respectively). Cancer and noncancer tissues were best separated using the diffusion-weighted imaging-derived apparent diffusion coefficient, both in PZ and TZ (mean [95% confidence interval] areas under the receiver operating characteristic curve [AUCs]; 0.93 [0.89-0.96] and 0.86 [0.75-0.94]), followed by MR spectroscopic imaging and dynamic contrast-enhanced-derived parameters. Parameters from all imaging methods correlated significantly with tumor grade group in PZ tumors. In discriminating GG1 PZ tumors from higher GGs, the highest AUC was obtained with apparent diffusion coefficient (0.74 [0.57-0.90], P < 0.001). The best separation of GG1-2 from GG3-5 PZ tumors was with a logistic regression model of a combination of functional parameters (mean AUC, 0.89 [0.78-0.98]). CONCLUSIONS Standardized data acquisition and postprocessing protocols in prostate mpMRI at 3 T produce equivalent quantitative results across patients from multiple institutions and achieve similar discrimination between cancer and noncancer tissues and cancer grade groups as in previously reported single-center studies.
Collapse
|
8
|
Ikoma Y, Kishimoto R, Tachibana Y, Omatsu T, Kasuya G, Makishima H, Higashi T, Obata T, Tsuji H. Reference region extraction by clustering for the pharmacokinetic analysis of dynamic contrast-enhanced MRI in prostate cancer. Magn Reson Imaging 2019; 66:185-192. [PMID: 31487532 DOI: 10.1016/j.mri.2019.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures changes in the concentration of an administered contrast agent to quantitatively evaluate blood circulation in a tumor or normal tissues. This method uses a pharmacokinetic analysis based on the time course of a reference region, such as muscle, rather than arterial input function. However, it is difficult to manually define a homogeneous reference region. In the present study, we developed a method for automatic extraction of the reference region using a clustering algorithm based on a time course pattern for DCE-MRI studies of patients with prostate cancer. METHODS Two feature values related to the shape of the time course were extracted from the time course of all voxels in the DCE-MRI images. Each voxel value of T1-weighted images acquired before administration were also added as anatomical data. Using this three-dimensional feature vector, all voxels were segmented into five clusters by the Gaussian mixture model, and one of these clusters that included the gluteus muscle was selected as the reference region. RESULTS Each region of arterial vessel, muscle, and fat was segmented as a different cluster from the tumor and normal tissues in the prostate. In the extracted reference region, other tissue elements including scattered fat and blood vessels were removed from the muscle region. CONCLUSIONS Our proposed method can automatically extract the reference region using the clustering algorithm with three types of features based on the time course pattern and anatomical data. This method may be useful for evaluating tumor circulatory function in DCE-MRI studies.
Collapse
Affiliation(s)
- Yoko Ikoma
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Riwa Kishimoto
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yasuhiko Tachibana
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tokuhiko Omatsu
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Goro Kasuya
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hirokazu Makishima
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Tsuji
- Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
|
10
|
Lee J, Carver E, Feldman A, Pantelic MV, Elshaikh M, Wen N. Volumetric and Voxel-Wise Analysis of Dominant Intraprostatic Lesions on Multiparametric MRI. Front Oncol 2019; 9:616. [PMID: 31334128 PMCID: PMC6624674 DOI: 10.3389/fonc.2019.00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: Multiparametric MR imaging (mpMRI) has shown promising results in the diagnosis and localization of prostate cancer. Furthermore, mpMRI may play an important role in identifying the dominant intraprostatic lesion (DIL) for radiotherapy boost. We sought to investigate the level of correlation between dominant tumor foci contoured on various mpMRI sequences. Methods: mpMRI data from 90 patients with MR-guided biopsy-proven prostate cancer were obtained from the SPIE-AAPM-NCI Prostate MR Classification Challenge. Each case consisted of T2-weighted (T2W), apparent diffusion coefficient (ADC), and Ktrans images computed from dynamic contrast-enhanced sequences. All image sets were rigidly co-registered, and the dominant tumor foci were identified and contoured for each MRI sequence. Hausdorff distance (HD), mean distance to agreement (MDA), and Dice and Jaccard coefficients were calculated between the contours for each pair of MRI sequences (i.e., T2 vs. ADC, T2 vs. Ktrans, and ADC vs. Ktrans). The voxel wise spearman correlation was also obtained between these image pairs. Results: The DILs were located in the anterior fibromuscular stroma, central zone, peripheral zone, and transition zone in 35.2, 5.6, 32.4, and 25.4% of patients, respectively. Gleason grade groups 1-5 represented 29.6, 40.8, 15.5, and 14.1% of the study population, respectively (with group grades 4 and 5 analyzed together). The mean contour volumes for the T2W images, and the ADC and Ktrans maps were 2.14 ± 2.1, 2.22 ± 2.2, and 1.84 ± 1.5 mL, respectively. Ktrans values were indistinguishable between cancerous regions and the rest of prostatic regions for 19 patients. The Dice coefficient and Jaccard index were 0.74 ± 0.13, 0.60 ± 0.15 for T2W-ADC and 0.61 ± 0.16, 0.46 ± 0.16 for T2W-Ktrans. The voxel-based Spearman correlations were 0.20 ± 0.20 for T2W-ADC and 0.13 ± 0.25 for T2W-Ktrans. Conclusions: The DIL contoured on T2W images had a high level of agreement with those contoured on ADC maps, but there was little to no quantitative correlation of these results with tumor location and Gleason grade group. Technical hurdles are yet to be solved for precision radiotherapy to target the DILs based on physiological imaging. A Boolean sum volume (BSV) incorporating all available MR sequences may be reasonable in delineating the DIL boost volume.
Collapse
Affiliation(s)
- Joon Lee
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Eric Carver
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Aharon Feldman
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Milan V Pantelic
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
11
|
Richenberg J, Løgager V, Panebianco V, Rouviere O, Villeirs G, Schoots IG. The primacy of multiparametric MRI in men with suspected prostate cancer. Eur Radiol 2019; 29:6940-6952. [PMID: 31172275 PMCID: PMC6828624 DOI: 10.1007/s00330-019-06166-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Background Multiparametric MRI (mpMRI) became recognised in investigating those with suspected prostate cancer between 2010 and 2012; in the USA, the preventative task force moratorium on PSA screening was a strong catalyst. In a few short years, it has been adopted into daily urological and oncological practice. The pace of clinical uptake, born along by countless papers proclaiming high accuracy in detecting clinically significant prostate cancer, has sparked much debate about the timing of mpMRI within the traditional biopsy-driven clinical pathways. There are strongly held opposing views on using mpMRI as a triage test regarding the need for biopsy and/or guiding the biopsy pattern. Objective To review the evidence base and present a position paper on the role of mpMRI in the diagnosis and management of prostate cancer. Methods A subgroup of experts from the ESUR Prostate MRI Working Group conducted literature review and face to face and electronic exchanges to draw up a position statement. Results This paper considers diagnostic strategies for clinically significant prostate cancer; current national and international guidance; the impact of pre-biopsy mpMRI in detection of clinically significant and clinically insignificant neoplasms; the impact of pre-biopsy mpMRI on biopsy strategies and targeting; the notion of mpMRI within a wider risk evaluation on a patient by patient basis; the problems that beset mpMRI including inter-observer variability. Conclusions The paper concludes with a set of suggestions for using mpMRI to influence who to biopsy and who not to biopsy at diagnosis. Key Points • Adopt mpMRI as the first, and primary, investigation in the workup of men with suspected prostate cancer. • PI-RADS assessment categories 1 and 2 have a high negative predictive value in excluding significant disease, and systematic biopsy may be postponed, especially in men with low-risk of disease following additional risk stratification. • PI-RADS assessment category lesions 4 and 5 should be targeted; PI-RADS assessment category lesion 3 may be biopsied as a target, as part of systematic biopsies or may be observed depending on risk stratification. Electronic supplementary material The online version of this article (10.1007/s00330-019-06166-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Richenberg
- Department of Imaging, Brighton & Sussex University Hospitals NHS Trust and Brighton and Sussex Medical School, Brighton, BN2 5BE, UK.
| | - Vibeke Løgager
- Department of Radiology, Herlev University Hospital Copenhagen University, Herlev, Denmark
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Olivier Rouviere
- Hospices civils de Lyon, Department of Urinary and Vascular Radiology, hôpital Édouard-Herriot, 69437, Lyon, France.,Faculté de médecine Lyon Est, Université Lyon 1, 69003, Lyon, France
| | - Geert Villeirs
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Head-to-Head Comparison Between Biparametric and Multiparametric MRI for the Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2018; 211:W226-W241. [DOI: 10.2214/ajr.18.19880] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
High-Quality 3-Dimensional 1H Magnetic Resonance Spectroscopic Imaging of the Prostate Without Endorectal Receive Coil Using A Semi-LASER Sequence. Invest Radiol 2018. [PMID: 28632688 DOI: 10.1097/rli.0000000000000395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Inclusion of 3-dimensional H magnetic resonance spectroscopic imaging (3D-H-MRSI) in routine multiparametric MRI of the prostate requires good quality spectra and easy interpretable metabolite maps of the whole organ obtained without endorectal coil in clinically feasible acquisition times. We evaluated if a semi-LASER pulse sequence with gradient offset independent adiabaticity refocusing pulses (GOIA-sLASER) for volume selection can meet these requirements. MATERIALS AND METHODS Thirteen patients with suspicion of prostate cancer and 1 patient known to have prostate cancer were examined at 3 T with a multichannel body-receive coil. A 3D-H-MRSI sequence with GOIA-sLASER volume selection (echo time, 88 milliseconds) was added to a routine clinical multiparametric MRI examination of these patients. Repetition times from 630 to 1000 milliseconds and effective voxel sizes of approximately 0.9 and 0.6 cm were tested. Spectral components were quantified by LCModel software for quality assessment and to construct choline and citrate maps. RESULTS Three-dimensional MRSI of the prostate was successfully performed in all patients in measurement times of 5 to 10 minutes. Analysis of the multiparametric MRI examination or of biopsies did not reveal malignant tissue in the prostate of the 13 patients. In 1404 evaluated voxels acquired from 13 patients, the citrate resonance could be fitted with a high reliability (Cramér-Rao lower bound <30%), 100% for 7 × 7 × 7-mm voxels and 96 ± 7 in 6 × 6 × 6-mm voxels. The percentage of 7 × 7 × 7-mm voxels in which the choline signal was fitted with Cramér-Rao lower bound of less than 30% was approximately 50% at a TR of 630 milliseconds and increased to more than 80% for TRs of 800 milliseconds and above. In the patient with prostate cancer, choline was detectable throughout the prostate in spectra recorded at a TR of 700 milliseconds. The homogeneous B1 field over the prostate of the receive coil enabled the generation of whole organ metabolite maps, revealing choline and citrate variations between areas with normal prostate tissue, seminal vesicles, proliferative benign prostatic hyperplasia, and tumor. CONCLUSIONS The good signal-to-noise ratio and low chemical shift artifacts of GOIA-sLASER at an echo time of 88 milliseconds enable acquisition of high-quality 3D-H-MRSI of the prostate without endorectal coil in less than 10 minutes. This facilitates reconstruction of easy interpretable, quantitative metabolite maps for routine clinical applications of prostate MRSI.
Collapse
|
14
|
Borofsky S, George AK, Gaur S, Bernardo M, Greer MD, Mertan FV, Taffel M, Moreno V, Merino MJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B. What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate. Radiology 2017; 286:186-195. [PMID: 29053402 DOI: 10.1148/radiol.2017152877] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose To characterize clinically important prostate cancers missed at multiparametric (MP) magnetic resonance (MR) imaging. Materials and Methods The local institutional review board approved this HIPAA-compliant retrospective single-center study, which included 100 consecutive patients who had undergone MP MR imaging and subsequent radical prostatectomy. A genitourinary pathologist blinded to MP MR findings outlined prostate cancers on whole-mount pathology slices. Two readers correlated mapped lesions with reports of prospectively read MP MR images. Readers were blinded to histopathology results during prospective reading. At histopathologic examination, 80 clinically unimportant lesions (<5 mm; Gleason score, 3+3) were excluded. The same two readers, who were not blinded to histopathologic findings, retrospectively reviewed cancers missed at MP MR imaging and assigned a Prostate Imaging Reporting and Data System (PI-RADS) version 2 score to better understand false-negative lesion characteristics. Descriptive statistics were used to define patient characteristics, including age, prostate-specific antigen (PSA) level, PSA density, race, digital rectal examination results, and biopsy results before MR imaging. Student t test was used to determine any demographic differences between patients with false-negative MP MR imaging findings and those with correct prospective identification of all lesions. Results Of the 162 lesions, 136 (84%) were correctly identified with MP MR imaging. Size of eight lesions was underestimated. Among the 26 (16%) lesions missed at MP MR imaging, Gleason score was 3+4 in 17 (65%), 4+3 in one (4%), 4+4 in seven (27%), and 4+5 in one (4%). Retrospective PI-RADS version 2 scores were assigned (PI-RADS 1, n = 8; PI-RADS 2, n = 7; PI-RADS 3, n = 6; and PI-RADS 4, n = 5). On a per-patient basis, MP MR imaging depicted clinically important prostate cancer in 99 of 100 patients. At least one clinically important tumor was missed in 26 (26%) patients, and lesion size was underestimated in eight (8%). Conclusion Clinically important lesions can be missed or their size can be underestimated at MP MR imaging. Of missed lesions, 58% were not seen or were characterized as benign findings at second-look analysis. Recognition of the limitations of MP MR imaging is important, and new approaches to reduce this false-negative rate are needed. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Samuel Borofsky
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Arvin K George
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Sonia Gaur
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Marcelino Bernardo
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Matthew D Greer
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Francesca V Mertan
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Myles Taffel
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Vanesa Moreno
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Maria J Merino
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Bradford J Wood
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Peter A Pinto
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Peter L Choyke
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| | - Baris Turkbey
- From the Molecular Imaging Program (S.B., S.G., M.B., M.D.G., F.V.M., P.L.C., B.T.), Urologic Oncology Branch (A.K.G.), and Laboratory of Pathology (V.M., M.J.M.), National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892; Department of Radiology, George Washington University Hospital, Washington, DC (S.B., M.T., P.A.P.); and Center for Interventional Oncology, National Cancer Institute, and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (B.J.W.)
| |
Collapse
|
15
|
Comparison of Prostate Imaging Reporting and Data System versions 1 and 2 for the Detection of Peripheral Zone Gleason Score 3 + 4 = 7 Cancers. AJR Am J Roentgenol 2017; 209:W365-W373. [PMID: 28981356 DOI: 10.2214/ajr.17.17964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The objective of our study was to compare Prostate Imaging Reporting and Data System version 1 (PI-RADSv1) and Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) for the detection of peripheral zone (PZ) Gleason score 3 + 4 = 7 cancers. MATERIALS AND METHODS Forty-seven consecutive patients with 52 PZ Gleason score 3 + 4 = 7 cancers that were 0.5 cm3 or larger underwent radical prostatectomy (RP) and 3-T MRI between 2012 and 2015. Two blinded radiologists (readers 1 and 2) retrospectively assigned PI-RADSv1 sequence (T2-weighted imaging, DWI, dynamic contrast-enhanced MRI [DCE-MRI]) and sum scores and PI-RADSv2 assessment categories. A third blinded radiologist (reader 3) measured apparent diffusion coefficient (ADC) ratio (ADC of tumor / ADC of normal PZ) using RP-MRI maps. Sensitivity, false-positive rate, and overall accuracy were compared using McNemar test. Pearson correlation was performed. RESULTS Using PI-RADSv1, reader 1 detected 86.5% (45/52) of the cancers and reader 2, 76.9% (40/52) of the cancers. Using PI-RADSv2, reader 1 detected 78.9% (41/52) and reader 2, 67.3% (35/52). Reader 1 detected 7.7% (4/52) and reader 2 detected 9.6% (5/52) more tumors using PI-RADSv1 due to T2-weighted imaging score ≥ 4 or DCE-MRI score ≥ 3. Sensitivity was higher for PI-RADSv1 (p = 0.01 and 0.03, readers 1 and 2). False-positive rates were higher with PI-RADSv1 than with PI-RADSv2 (1.8% vs 0.9% for reader 1; 3.6% vs 1.8% for reader 2) without significant differences in false-positive rate (p = 0.41 and 0.25) or overall accuracy (p = 0.06 and 0.23). PI-RADSv1 sum scores correlated strongly with PI-RADSv2 categories (B = 0.78-0.93, p < 0.0001). The mean ADC ratio was 0.61 ± 0.14 mm2/s with no difference between visible and nonvisible tumors (p = 0.06-0.5). Interobserver agreement was moderate for PI-RADSv2 (κ = 0.41) and ranged from slight to substantial for PI-RADSv1 (T2-weighted imaging, κ = 0.32; DWI, κ = 0.52; DCE-MRI, κ = 0.13). CONCLUSION There was no difference in overall detection of cancers comparing PI-RADSv1 and PI-RADSv2; however, PI-RADSv1 sequence scores on T2-weighted imaging and DCE-MRI detected approximately 10% more tumors that were otherwise underestimated on DWI and using PI-RADSv2 decision-tree rules.
Collapse
|
16
|
Bourne R, Liang S, Panagiotaki E, Bongers A, Sved P, Watson G. Measurement and modeling of diffusion time dependence of apparent diffusion coefficient and fractional anisotropy in prostate tissue ex vivo. NMR IN BIOMEDICINE 2017; 30:e3751. [PMID: 28665041 DOI: 10.1002/nbm.3751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to measure and model the diffusion time dependence of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate diffusion-weighted imaging methods as used in recommended multiparametric MRI protocols. Diffusion tensor imaging (DTI) was performed at 9.4 T with three radical prostatectomy specimens, with diffusion times in the range 10-120 ms and b-values 0-3000 s/mm2 . ADC and FA were calculated from DTI measurements at b-values of 800 and 1600 s/mm2 . Independently, a two-component model (restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data, from which ADC and FA were predicted and compared with the measured values. Measured ADC and FA exhibited a diffusion time dependence, which was closely predicted by the two-component model. ADC decreased by about 0.10-0.15 μm2 /ms as diffusion time increased from 10 to 120 ms. FA increased with diffusion time at b-values of 800 and 1600 s/mm2 but was predicted to be independent of diffusion time at b = 3000 s/mm2 . Both ADC and FA exhibited diffusion time dependence that could be modeled as two unmixed water pools - one having isotropic restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the importance of considering and reporting diffusion times in conventional ADC and FA calculations and protocol recommendations, and inform the development of improved diffusion methods for prostate cancer imaging.
Collapse
Affiliation(s)
- Roger Bourne
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| | - Sisi Liang
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| | - Eleftheria Panagiotaki
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| | - Andre Bongers
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| | - Paul Sved
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| | - Geoffrey Watson
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcomb, New South Wales, Australia
| |
Collapse
|
17
|
Shah TT, To WKL, Ahmed HU. Magnetic resonance imaging in the early detection of prostate cancer and review of the literature on magnetic resonance imaging-stratified clinical pathways. Expert Rev Anticancer Ther 2017; 17:1159-1168. [PMID: 28933973 DOI: 10.1080/14737140.2017.1383899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION With level 1 evidence now available on the diagnostic accuracy of multiparametric magnetic resonance imaging (MRI) we must now utilise this data in developing an MRI-stratified diagnostic pathway for the early detection of prostate cancer. Areas covered: A literature review was conducted and identified seven randomised control trials (RCT's) assessing the diagnostic accuracy of such a pathway against the previously accepted systematic/random trans-rectal ultrasound guided (TRUS) biopsy pathway. The studies were heterogeneous in their design. Five studies assessed the addition of MRI-targeted biopsies to a standard care systematic TRUS biopsy pathway. Three of these studies showed either an increase in their diagnostic accuracy or the potential to remove systematic biopsies. Two studies looked specifically at a targeted biopsy only pathway and although the results were again mixed, there was no decrease in the diagnostic rate and overall significantly fewer biopsy cores were taken in the MRI group. Expert commentary: Results from these RCT's together with multiple retrospective and prospective studies point towards either an improved diagnostic rate for clinically significant cancer and/or a reduction in the need for systematic biopsies with a MRI-stratified pathway. The challenge for the urological community will be to implement pre-biopsy MRI into a routine clinical pathway with likely independent monitoring of standards.
Collapse
Affiliation(s)
- Taimur Tariq Shah
- a Division of Surgery, Department of Surgery and Cancer , Imperial College London , London , UK.,b Imperial Urology, Charing Cross Hospital , Imperial College Healthcare NHS Trust , London , UK.,c Division of Surgery and Interventional Sciences , University College London , London , UK.,d Department of Urology , Whittington Hospitals NHS Trust , London , UK
| | - Wilson King Lim To
- c Division of Surgery and Interventional Sciences , University College London , London , UK
| | - Hashim Uddin Ahmed
- a Division of Surgery, Department of Surgery and Cancer , Imperial College London , London , UK.,b Imperial Urology, Charing Cross Hospital , Imperial College Healthcare NHS Trust , London , UK
| |
Collapse
|
18
|
Lee DH, Nam JK, Lee SS, Han JY, Lee JW, Chung MK, Park SW. Comparison of Multiparametric and Biparametric MRI in First Round Cognitive Targeted Prostate Biopsy in Patients with PSA Levels under 10 ng/mL. Yonsei Med J 2017; 58:994-999. [PMID: 28792144 PMCID: PMC5552655 DOI: 10.3349/ymj.2017.58.5.994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To determine the efficacy of cognitive targeted prostate biopsy using biparametric magnetic resonance imaging (b-MRI) for patients with prostate-specific antigen levels under 10 ng/mL. MATERIALS AND METHODS We reviewed data from 123 consecutive patients who underwent cognitive targeted prostate biopsy using prostate MRI. Of these patients, the first 55 underwent prostate biopsy using multiparametric MRI (mp-MRI), and the remaining 68 underwent prostate biopsy using b-MRI. For b-MRI, we generated T2 weighted axial imaging and diffusion-weighted imaging sequences. We found that 62 of the 123 men had suspicious lesions on MRI (32 of the 55 men in the mp-MRI group and 30 of the 68 men in the b-MRI group). We compared the prostate cancer detection rates and the proportions of clinically significant prostate cancer between the different MRI sequences. RESULTS Between the two MRI groups, there were no statistically significant differences in prostate cancer detection rate and proportions of clinically significant prostate cancer (41.8% vs. 30.9%, p=0.208 and 82.6% vs. 76.2%, p=0.598). Among the 62 men who had suspicious lesions on MRI, the prostate cancer detection rates were 62.5% and 63.3% (p=0.709) in the mp-MRI and b-MRI groups, respectively, and the proportions of clinically significant prostate cancer were 95.0% and 84.2% (p=0.267). CONCLUSION Prostate biopsy using b-MRI showed similar performance to that using mp-MRI for detecting prostate cancer and clinically significant prostate cancer. Considering the satisfactory performance and cost effectiveness of b-MRI, this technique could be a good option for obtaining intraprostatic information for first round prostate biopsy.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Seung Soo Lee
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Ji Yeon Han
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Joon Woo Lee
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Moon Kee Chung
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Sung Woo Park
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea.
| |
Collapse
|
19
|
Marin L, Ezziane M, Comperat E, Mozer P, Cancel-Tassin G, Coté JF, Racoceanu D, Boudghene F, Lucidarme O, Cussenot O, Renard Penna R. Comparison of semi-automated and manual methods to measure the volume of prostate cancer on magnetic resonance imaging. Diagn Interv Imaging 2017; 98:423-428. [DOI: 10.1016/j.diii.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
|
20
|
Barth BK, De Visschere PJL, Cornelius A, Nicolau C, Vargas HA, Eberli D, Donati OF. Detection of Clinically Significant Prostate Cancer: Short Dual-Pulse Sequence versus Standard Multiparametric MR Imaging-A Multireader Study. Radiology 2017; 284:725-736. [PMID: 28346073 DOI: 10.1148/radiol.2017162020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose To compare the diagnostic performance of a short dual-pulse sequence magnetic resonance (MR) imaging protocol versus a standard six-pulse sequence multiparametric MR imaging protocol for detection of clinically significant prostate cancer. Materials and Methods This HIPAA-compliant study was approved by the regional ethics committee. Between July 2013 and March 2015, 63 patients from a prospectively accrued study population who underwent MR imaging of the prostate including transverse T1-weighted; transverse, coronal, and sagittal T2-weighted; diffusion-weighted; and dynamic contrast material-enhanced MR imaging with a 3-T imager at a single institution were included in this retrospective study. The short MR imaging protocol image set consisted of transverse T2-weighted and diffusion-weighted images only. The standard MR imaging protocol image set contained images from all six pulse sequences. Three expert readers from different institutions assessed the likelihood of prostate cancer on a five-point scale. Diagnostic performance on a quadrant basis was assessed by using areas under the receiver operating characteristic curves, and differences were evaluated by using 83.8% confidence intervals. Intra- and interreader agreement was assessed by using the intraclass correlation coefficient. Transperineal template saturation biopsy served as the standard of reference. Results At histopathologic evaluation, 84 of 252 (33%) quadrants were positive for cancer in 38 of 63 (60%) men. There was no significant difference in detection of tumors larger than or equal to 0.5 mL for any of the readers of the short MR imaging protocol, with areas under the curve in the range of 0.74-0.81 (83.8% confidence interval [CI]: 0.64, 0.89), and for readers of the standard MR imaging protocol, areas under the curve were 0.71-0.77 (83.8% CI: 0.62, 0.86). Ranges for sensitivity were 0.76-0.95 (95% CI: 0.53, 0.99) and 0.76-0.86 (95% CI: 0.53, 0.97) and those for specificity were 0.84-0.90 (95% CI: 0.79, 0.94) and 0.82-0.90 (95% CI: 0.77, 0.94) for the short and standard MR protocols, respectively. Ranges for interreader agreement were 0.48-0.60 (83.8% CI: 0.41, 0.66) and 0.49-0.63 (83.8% CI: 0.42, 0.68) for the short and standard MR imaging protocols. Conclusion For the detection of clinically significant prostate cancer, no difference was found in the diagnostic performance of the short MR imaging protocol consisting of only transverse T2-weighted and diffusion-weighted imaging pulse sequences compared with that of a standard multiparametric MR imaging protocol. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Borna K Barth
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Pieter J L De Visschere
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Alexander Cornelius
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Carlos Nicolau
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Hebert Alberto Vargas
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Daniel Eberli
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| | - Olivio F Donati
- From the Institute of Diagnostic and Interventional Radiology (B.K.B., O.F.D.) and Department of Urology (D.E.), University Hospital Zürich, Rämistrasse 100, CH-8091 Zurich, Switzerland; Department of Radiology, Ghent University Hospital, Ghent, Belgium (P.J.L.D.V.); Department for Radiology, Cantonal Hospital Aarau, Aarau, Switzerland (A.C.); Department of Radiology, CDIC, Hospital Clínic de Barcelona, Barcelona, Spain (C.N.); and Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.)
| |
Collapse
|
21
|
Waseda Y, Yoshida S, Takahara T, Kwee TC, Matsuoka Y, Saito K, Kihara K, Fujii Y. Utility of computed diffusion-weighted MRI for predicting aggressiveness of prostate cancer. J Magn Reson Imaging 2017; 46:490-496. [DOI: 10.1002/jmri.25593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yuma Waseda
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Soichiro Yoshida
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Taro Takahara
- Biomedical Engineering; Tokai University School of Engineering; Kanagawa Japan
| | | | - Yoh Matsuoka
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Kazutaka Saito
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Kazunori Kihara
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| | - Yasuhisa Fujii
- Urology; Tokyo Medical and Dental University Graduate School; Tokyo Japan
| |
Collapse
|
22
|
Comparison of image quality and patient discomfort in prostate MRI: pelvic phased array coil vs. endorectal coil. Abdom Radiol (NY) 2016; 41:2218-2226. [PMID: 27369051 DOI: 10.1007/s00261-016-0819-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare image quality (IQ) and patient discomfort during prostate MRI using a pelvic phased array (PPA) coil and an endorectal (ER) coil. MATERIALS AND METHODS Ninety-eight patients (median age, 65.7; range 42.1-78.1) underwent prostate MRI on a 3T scanner including T2w and DWI acquired with PPA and an ER coil within the same exam. Acquisition time was kept similar for both acquisitions. Two radiologists evaluated aspects of IQ on a 5-point Likert scale and classified image artifacts. All patients completed a questionnaire on discomfort/pain regarding the ER coil using a visual analogue scale from 1 to 10. RESULTS There was no significant difference in overall IQ for T2w images for both readers (reader 1, 3.27 ± 0.91 and 3.07 ± 0.84, p = 0.057; reader 2, 3.70 ± 0.75 and 3.77 ± 0.81, p = 0.555) for PPA and ER coils, respectively. Overall IQ for DWI acquired with PPA and ER coils was rated similar by reader 1 (3.03 ± 1.10 and 3.08 ± 0.80, respectively, (p = 0.67)), while reader 2 preferred ER coil images (3.27 ± 0.81 and 3.66 ± 0.85 (p < 0.05)). Susceptibility artifacts were more frequent in ER than in PPA coil images (109 vs. 75). Discomfort and pain experienced during insertion of the ER coil was low altogether (VAS score, 3.5 ± 2.1 for "discomfort" and 2.4 ± 2.4 for "pain"). CONCLUSION T2-weighted images may be acquired with comparable IQ using a PPA coil as compared to an ER coil, while DWI images showed better IQ using the ER coil for one of two readers. The insertion of the ER coil caused low to moderate discomfort and pain in patients.
Collapse
|
23
|
Dezortova M, Jiru F, Skoch A, Capek V, Ryznarova Z, Vik V, Hajek M. The aging effect on prostate metabolite concentrations measured by 1H MR spectroscopy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:65-74. [PMID: 27522359 DOI: 10.1007/s10334-016-0584-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The effects of aging, magnetic field and the voxel localization on measured concentrations of citrate (Cit), creatine (Cr), cholines (Cho) and polyamines (PA) in a healthy prostate were evaluated. MATERIALS AND METHODS 36 examinations at both 1.5T and 3T imagers of 52 healthy subjects aged 19-71 years were performed with PRESS 3D-CSI sequences (TE = 120 and 145 ms). Concentrations in laboratory units and their ratios to citrate were calculated using the LCModel technique. Absolute concentrations were also obtained after the application of correction coefficients. Statistical analysis was performed using a robust linear mixed effects model. RESULTS Significant effects of aging, the magnetic field strength and the voxel position in central (CZ) or peripheral (PZ) zones on all measured metabolites were found. The concentrations (mmol/kg wet tissue) including prediction intervals in a range of 20-70 years were found: Cit: 7.9-17.2; Cho: 1.4-1.7; Cr: 2.8-2.5; PA (as spermine): 0.6-2.1 at 3T in CZ. In PZ, the concentrations were higher by about 10 % as compared to CZ. CONCLUSION Increasing citrate and spermine concentrations with age are significant and correlate well with a recently described increase of zinc in the prostate. These findings should be considered in decision-making if the values obtained from a subject are in the range of control values.
Collapse
Affiliation(s)
- Monika Dezortova
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic.
| | - Filip Jiru
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic
| | - Antonin Skoch
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic
| | - Vaclav Capek
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic
| | - Zuzana Ryznarova
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic
| | - Viktor Vik
- Department of Urology, Thomayer Hospital, Videnska 800, 14000, Prague 4, Czech Republic
| | - Milan Hajek
- MR-Unit, Department of Diagnostic and Interventional Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021, Prague 4, Czech Republic
| |
Collapse
|
24
|
Venderink W, de Rooij M, Sedelaar JPM, Huisman HJ, Fütterer JJ. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis. Eur Urol Focus 2016; 4:219-227. [PMID: 28753777 DOI: 10.1016/j.euf.2016.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
CONTEXT The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. OBJECTIVE The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. EVIDENCE ACQUISITION The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. EVIDENCE SYNTHESIS Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21-1.73, p<0.0001) and 1.40 (95% CI: 1.13-1.75, p=0.002), respectively. No significant difference was seen between the subgroups (p=0.83). Pooling subgroups resulted in an OR of 1.43 (95% CI: 1.25-1.63, p<0.00001). CONCLUSIONS No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of csPCa; however, both techniques detected more csPCa than TRUS-guided biopsy alone. PATIENT SUMMARY We did not identify any significant differences in prostate cancer detection between two distinct magnetic resonance imaging-transrectal ultrasound fusion systems which vary in their method of compensating for prostate deformation.
Collapse
Affiliation(s)
- Wulphert Venderink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Maarten de Rooij
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henkjan J Huisman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen J Fütterer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Selnæs KM, Vettukattil R, Bertilsson H, Wright AJ, Heerschap A, Angelsen A, Tessem MB, Bathen TF. Tissue Microstructure Is Linked to MRI Parameters and Metabolite Levels in Prostate Cancer. Front Oncol 2016; 6:146. [PMID: 27379208 PMCID: PMC4905954 DOI: 10.3389/fonc.2016.00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) can portray spatial variations in tumor heterogeneity, architecture, and its microenvironment in a non-destructive way. The objective of this study was to assess the relationship between MRI parameters measured on patients in vivo, individual metabolites measured in prostatectomy tissue ex vivo, and quantitative histopathology. MATERIALS AND METHODS Fresh frozen tissue samples (n = 53 from 15 patients) were extracted from transversal prostate slices and linked to in vivo MR images, allowing spatially matching of ex vivo measured metabolites with in vivo MR parameters. Color-based segmentation of cryosections of each tissue sample was used to identify luminal space, stroma, and nuclei. RESULTS Cancer samples have significantly lower area percentage of lumen and higher area percentage of nuclei than non-cancer samples (p ≤ 0.001). Apparent diffusion coefficient is significantly correlated with percentage area of lumen (ρ = 0.6, p < 0.001) and percentage area of nuclei (ρ = -0.35, p = 0.01). There is a positive correlation (ρ = 0.31, p = 0.053) between citrate and percentage area of lumen. Choline is negatively correlated with lumen (ρ = -0.38, p = 0.02) and positively correlated with percentage area of nuclei (ρ = 0.38, p = 0.02). CONCLUSION Microstructures that are observed by histopathology are linked to MR characteristics and metabolite levels observed in prostate cancer.
Collapse
Affiliation(s)
- Kirsten Margrete Selnæs
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; St. Olavs Hospital, Trondheim, Norway
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim , Norway
| | - Helena Bertilsson
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Urology, St. Olavs Hospital, Trondheim, Norway
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge , Cambridge , UK
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Nijmegen , Netherlands
| | - Anders Angelsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim , Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim , Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim , Norway
| |
Collapse
|
26
|
Porpiglia F, Cantiello F, De Luca S, De Pascale A, Manfredi M, Mele F, Bollito E, Cirillo S, Damiano R, Russo F. Multiparametric magnetic resonance imaging and active surveillance: How to better select insignificant prostate cancer? Int J Urol 2016; 23:752-7. [DOI: 10.1111/iju.13138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Porpiglia
- Division of Urology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Francesco Cantiello
- Urology Unit; Magna Graecia University of Catanzaro; Catanzaro Italy
- Master in Laparoscopic and Robotic Surgery; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Stefano De Luca
- Division of Urology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Agostino De Pascale
- Division of Radiology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Matteo Manfredi
- Division of Urology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Fabrizio Mele
- Division of Urology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | - Enrico Bollito
- Division of Pathology; San Luigi Gonzaga Hospital and University of Turin; Turin Italy
| | | | - Rocco Damiano
- Urology Unit; Magna Graecia University of Catanzaro; Catanzaro Italy
| | - Filippo Russo
- Division of Radiology; Institute for Cancer Research and Treatment; Turin Italy
| |
Collapse
|
27
|
Radiotherapy Boost for the Dominant Intraprostatic Cancer Lesion—A Systematic Review and Meta-Analysis. Clin Genitourin Cancer 2016; 14:189-97. [DOI: 10.1016/j.clgc.2015.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
|
28
|
Bourne R, Panagiotaki E. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate. Diagnostics (Basel) 2016; 6:E21. [PMID: 27240408 PMCID: PMC4931416 DOI: 10.3390/diagnostics6020021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is the most effective component of the modern multi-parametric magnetic resonance imaging (mpMRI) scan for prostate pathology. DWI provides the strongest prediction of cancer volume, and the apparent diffusion coefficient (ADC) correlates moderately with Gleason grade. Notwithstanding the demonstrated cancer assessment value of DWI, the standard measurement and signal analysis methods are based on a model of water diffusion dynamics that is well known to be invalid in human tissue. This review describes the biophysical limitations of the DWI component of the current standard mpMRI protocol and the potential for significantly improved cancer assessment performance based on more sophisticated measurement and signal modeling techniques.
Collapse
Affiliation(s)
- Roger Bourne
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
29
|
Hill DK, Kim E, Teruel JR, Jamin Y, Widerøe M, Søgaard CD, Størkersen Ø, Rodrigues DN, Heindl A, Yuan Y, Bathen TF, Moestue SA. Diffusion-weighted MRI for early detection and characterization of prostate cancer in the transgenic adenocarcinoma of the mouse prostate model. J Magn Reson Imaging 2016; 43:1207-17. [PMID: 26559017 DOI: 10.1002/jmri.25087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To improve early diagnosis of prostate cancer to aid clinical decision-making. Diffusion-weighted magnetic resonance imaging (DW-MRI) is sensitive to water diffusion throughout tissues, which correlates with Gleason score, a histological measure of prostate cancer aggressiveness. In this study the ability of DW-MRI to detect prostate cancer onset and development was evaluated in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. MATERIALS AND METHODS T2 -weighted and DW-MRI were acquired using a 7T MR scanner, 200 mm bore diameter; 10 TRAMP and 6 C57BL/6 control mice were scanned every 4 weeks from 8 weeks of age until sacrifice at 28-30 weeks. After sacrifice, the genitourinary tract was excised and sectioned for histological analysis. Histology slides registered with DW-MR images allowed for validation of DW-MR images and the apparent diffusion coefficient (ADC) as tools for cancer detection and disease stratification. An automated early assessment tool based on ADC threshold values was developed to aid cancer detection and progression monitoring. RESULTS The ADC differentiated between control prostate ((1.86 ± 0.20) × 10(-3) mm(2) /s) and normal TRAMP prostate ((1.38 ± 0.10) × 10(-3) mm(2) /s) (P = 0.0001), between TRAMP prostate and well-differentiated cancer ((0.93 ± 0.18) × 10(-3) mm(2) /s) (P = 0.0006), and between well-differentiated cancer and poorly differentiated cancer ((0.63 ± 0.06) × 10(-3) mm(2) /s) (P = 0.02). CONCLUSION DW-MRI is a tool for early detection of cancer, and discrimination between cancer stages in the TRAMP model. The incorporation of DW-MRI-based prostate cancer stratification and monitoring could increase the accuracy of preclinical trials using TRAMP mice.
Collapse
Affiliation(s)
- Deborah K Hill
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olavs University Hospital, Trondheim, Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olavs University Hospital, Trondheim, Norway
| | - Jose R Teruel
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olavs University Hospital, Trondheim, Norway
| | - Yann Jamin
- Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Trust, London, UK
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline D Søgaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel N Rodrigues
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Andreas Heindl
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Liang S, Panagiotaki E, Bongers A, Shi P, Sved P, Watson G, Bourne R. Information-based ranking of 10 compartment models of diffusion-weighted signal attenuation in fixed prostate tissue. NMR IN BIOMEDICINE 2016; 29:660-671. [PMID: 26999065 DOI: 10.1002/nbm.3510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
This study compares the theoretical information content of single- and multi-compartment models of diffusion-weighted signal attenuation in prostate tissue. Diffusion-weighted imaging (DWI) was performed at 9.4 T with multiple diffusion times and an extended range of b values in four whole formalin-fixed prostates. Ten models, including different combinations of isotropic, anisotropic and restricted components, were tested. Models were ranked using the Akaike information criterion. In all four prostates, two-component models, comprising an anisotropic Gaussian component and an isotropic restricted component, ranked highest in the majority of voxels. Single-component models, whether isotropic (apparent diffusion coefficient, ADC) or anisotropic (diffusion tensor imaging, DTI), consistently ranked lower than multi-component models. Model ranking trends were independent of voxel size and maximum b value in the range tested (1.6-16 mm(3) and 3000-10,000 s/mm(2)). This study characterizes the two major water components previously identified by biexponential models and shows that models incorporating both anisotropic and restricted components provide more information-rich descriptions of DWI signals in prostate tissue than single- or multi-component anisotropic models and models that do not account for restricted diffusion.
Collapse
Affiliation(s)
- Sisi Liang
- College of Engineering and Science, Victoria University, Melbourne, Australia
| | | | - Andre Bongers
- Mark Wainright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Peng Shi
- College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Paul Sved
- Department of Urology, Royal Prince Alfred Hospital, School of Medicine, University of Sydney, Sydney, Australia
| | - Geoffrey Watson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Roger Bourne
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Wu LM, Zhao ZZ, Chen XX, Lu Q, Suo ST, Liu Q, Hu J, Haccke EM, Xu JR. Comparison of T2(*) mapping with diffusion-weighted imaging in the characterization of low-grade vs intermediate-grade and high-grade prostate cancer. Br J Radiol 2016; 89:20151076. [PMID: 27089897 DOI: 10.1259/bjr.20151076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the diagnostic value of T2(*) mapping compared with apparent diffusion coefficient (ADC) mapping in the characterization of low-grade (Gleason score, ≤6) vs intermediate-grade and high-grade (Gleason score ≥7) prostate cancer (PCa). METHODS 62 patients who underwent MRI before prostatectomy were evaluated. Two readers independently scored the probabilities of tumours in 12 regions of the prostate on T2(*) and ADC images. The data were divided into two groups, i.e. low- vs intermediate- and high-grade PCa, and correlated with the histopathological results. The diagnostic performance parameters, areas under the receiver-operating characteristic curves and interreader agreements were calculated. RESULTS For Reader 2, ADC mapping exhibited a greater accuracy for intermediate-grade PCas than for high-grade PCas (0.77 vs 0.83, p < 0.05). For both readers, T2(*) mapping exhibited a greater accuracy for intermediate-grade PCas than for high-grade PCas (Reader 1, 0.86 vs 0.81; Reader 2, 0.83 vs 0.78; p < 0.05). The areas under the curve of T2(*) mappings were greater than those of the ADC mappings for the intermediate- and high-grade PCas (Reader 1, 0.83 vs 0.78; Reader 2, 0.80 vs 0.75; p < 0.05) but not for the low-grade PCas (Reader 1, 0.86 vs 0.84; Reader 2, 0.83 vs 0.82; p > 0.05). The weighted κ value of T2(*) mapping was 0.59. CONCLUSION T2(*) mapping improves the accuracy of the characterization of intermediate- and high-grade PCas but not low-grade PCas compared with ADC mapping. ADVANCES IN KNOWLEDGE T2(*) mapping exhibited greater diagnostic accuracy than ADC mapping in the characterization of intermediate- and high-grade PCas. T2(*) mapping exhibited limited value in the characterization of low-grade PCa.
Collapse
Affiliation(s)
- Lian-Ming Wu
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhou Zhao
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xi Chen
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Teng Suo
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- 2 Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiani Hu
- 3 Department of Radiology, Wayne State University, Detroit, MI, USA
| | - E Mark Haccke
- 3 Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Jian-Rong Xu
- 1 Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv Ther 2016; 33:1-28. [PMID: 26809251 PMCID: PMC4735235 DOI: 10.1007/s12325-015-0275-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. FUNDING Bayer HealthCare.
Collapse
Affiliation(s)
- Jessica Lohrke
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Thomas Frenzel
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Jan Endrikat
- Global Medical Affairs Radiology, Bayer HealthCare, Berlin, Germany
- Saarland University Hospital, Homburg, Germany
| | | | - Thomas M Grist
- Radiology, Medical Physics and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Meng Law
- Radiology and Neurological Surgery, University of South California, Keck School of Medicine, USC University Hospital, Los Angeles, CA, USA
| | - Jeong Min Lee
- College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tim Leiner
- Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Kun-Cheng Li
- Radiology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Konstantin Nikolaou
- Radiology, Ludwig-Maximilians University, University Hospitals, Munich, Germany
| | - Martin R Prince
- Radiology, Weill Cornell Medical College, New York, NY, USA
- Columbia College of Physicians and Surgeons, New York, NY, USA
| | | | | | - Kohki Yoshikawa
- Graduate Division of Medical Health Sciences, Graduate School of Komazawa University, Tokyo, Japan
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany.
| |
Collapse
|
33
|
Multiparametric Prostate Magnetic Resonance Imaging at 3 T: Failure of Magnetic Resonance Spectroscopy to Provide Added Value. J Comput Assist Tomogr 2015; 39:674-80. [PMID: 25938212 DOI: 10.1097/rct.0000000000000261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the effect of proton magnetic resonance spectroscopy imaging (MRSI) on the accuracy of multiparametric magnetic resonance imaging (mpMRI) at 3 T for prostate cancer detection. MATERIALS AND METHODS Thirty-four patients with prostate cancer were included in this retrospective study. All patients underwent preoperative mpMRI on a 3-T scanner before radical prostatectomy. Magnetic resonance imaging evaluation was based on the prostate imaging-reporting and data system classification system. The accuracy of mpMRI with and without MRSI was determined using receiver operating characteristic analysis, with histology as the reference standard. RESULTS Multiparametric MRI including MRSI had a sensitivity of 57.0% and a specificity of 89.2% for sextant-based cancer detection. Multiparametric MRI without MRSI had a sensitivity of 58.1% and a specificity of 87.4%. There was no significant difference regarding the accuracy of mpMRI with and without MRSI (P = 0.48). CONCLUSION The addition of MRSI does not improve the accuracy of 3 T mpMRI for sextant localization of prostate cancer.
Collapse
|
34
|
|
35
|
Bourne RM, Bongers A, Chatterjee A, Sved P, Watson G. Diffusion anisotropy in fresh and fixed prostate tissue ex vivo. Magn Reson Med 2015; 76:626-34. [PMID: 26445008 DOI: 10.1002/mrm.25908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate diffusion anisotropy in whole human prostate specimens METHODS Seven whole radical prostatectomy specimens were obtained with informed patient consent and institutional ethics approval. Diffusion tensor imaging was performed at 9.4 Tesla. Diffusion tensors were calculated from the native acquired data and after progressive downsampling RESULTS Fractional anisotropy (FA) decreased as voxel volume increased, and differed widely between prostates. Fixation decreased mean FA by ∼0.05-0.08 at all voxel volumes but did not alter principle eigenvector orientation. In unfixed tissue high FA (> 0.6) was found only in voxels of volume <0.5 mm(3) , and then only in a small fraction of all voxels. At typical clinical voxel volumes (4-16 mm(3) ) less than 50% of voxels had FA > 0.25. FA decreased at longer diffusion times (Δ = 60 or 80 ms compared with 20 ms), but only by ∼0.02 at typical clinical voxel volume. Peripheral zone FA was significantly lower than transition zone FA in five of the seven prostates CONCLUSION FA varies widely between prostates. The very small proportion of clinical size voxels with high FA suggests that in clinical DWI studies ADC based on three-direction measurements will be minimally affected by anisotropy. Magn Reson Med 76:626-634, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Paul Sved
- University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | | |
Collapse
|
36
|
Cash H, Maxeiner A, Stephan C, Fischer T, Durmus T, Holzmann J, Asbach P, Haas M, Hinz S, Neymeyer J, Miller K, Günzel K, Kempkensteffen C. The detection of significant prostate cancer is correlated with the Prostate Imaging Reporting and Data System (PI-RADS) in MRI/transrectal ultrasound fusion biopsy. World J Urol 2015; 34:525-32. [PMID: 26293117 DOI: 10.1007/s00345-015-1671-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To evaluate the performance of real-time MRI/ultrasound (MRI/US) fusion-guided targeted biopsy (TB) in men with primary and repeat biopsies and correlate the prostate cancer detection rate (CDR) with the PI-RADS score. METHODS Analysis included 408 consecutive men with primary and prior negative biopsies who underwent TB and 10-core random biopsy (RB) between January 2012 and January 2015. TB was performed with a real-time MRI/US fusion platform with sensor-based registration. Clinically significant PCa was defined as Gleason score (GS) ≥ 7 or GS 6 with maximal cancer core length ≥ 4 mm for TB and according to Epstein criteria for RB. RESULTS The overall CDR was 56 % (227/408). The CDR for primary biopsy was 74 % (60/81) and 57 % (67/117), 49 % (62/126), 45 % (38/84) for patients with 1, 2 and ≥ 3 prior negative biopsies. CDRs correlated with PI-RADS 2/3/4/5 were 16 % (5/32), 26 % (29/113), 62 % (94/152) and 89 % (99/111), respectively. The rates of significant tumors in relation to PI-RADS 2/3/4/5 were 60 % (3/5), 66 % (19/29), 74 % (70/94), 95 % (94/99). In 139 (61 %) cases with radical prostatectomy (RP), the rates of ≥ pT3 tumors in correlation with PI-RADS 4 and 5 were 20 % (11/56) and 49 % (32/65). PI-RADS constituted the strongest predictor of significant PCa detection (p < 0.007). CONCLUSIONS Real-time MRI/US fusion-guided TB combined with RB improved PCa detection in patients with primary and repeat biopsies. The CDR was strongly correlated with a rising PI-RADS score, values of 4 and 5 increasing the detection of clinically significant tumors and leading to a higher histological stage after RP.
Collapse
Affiliation(s)
- Hannes Cash
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Andreas Maxeiner
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Carsten Stephan
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Tahir Durmus
- Department of Radiology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Josephine Holzmann
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Patrick Asbach
- Department of Radiology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Matthias Haas
- Department of Radiology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Hinz
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jörg Neymeyer
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Kurt Miller
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Karsten Günzel
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Carsten Kempkensteffen
- Department of Urology, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
37
|
Cho E, Chung DJ, Yeo DM, Sohn D, Son Y, Kim T, Hahn ST. Optimal cut-off value of perfusion parameters for diagnosing prostate cancer and for assessing aggressiveness associated with Gleason score. Clin Imaging 2015; 39:834-40. [PMID: 26001659 DOI: 10.1016/j.clinimag.2015.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
To determine cut-off value of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters for differentiation of prostate malignant from benign and cancer with high-grade Gleason score (GS) (GS>7) from low-grade GS (GS≤7), 35 patients (24 malignant and 11 benign) who underwent DCE-MRI were included. Difference between malignant and benign was statistically significant for all magnetic resonance parameters except Ve. The cut-off values were K(trans)=0.184min(-1), Kep=0.695min(-1), iAUC=4.219mmol/l/min, and ADC=1340.5mm(2)/s. A significant difference in mean values of K(trans) and Kep between cancer with high-grade GS and low-grade GS was also observed. K(trans) and Kep showed a significant correlation with GS.
Collapse
Affiliation(s)
- Eunkyung Cho
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dong Jin Chung
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dong Myung Yeo
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Dongwan Sohn
- Department of Urology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Yohan Son
- Imaging and Therapy Systems Division, SIEMENS Healthcare Korea, Poongsan Building 6th Floor, 23, Chungjeong-ro, Seodaemun-gu, Seoul, Korea, 120-714.
| | - Taejung Kim
- Department of Pathology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| | - Sung-Tae Hahn
- Department of Radiology, The Catholic University of Korea, Yeouido St. Mary's Hospital, 62, Yeouido-dong, Yeoungdeungpo-gu, Seoul, Korea, 150-713.
| |
Collapse
|
38
|
Riches SF, Payne GS, Morgan VA, Dearnaley D, Morgan S, Partridge M, Livni N, Ogden C, deSouza NM. Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters. Eur Radiol 2015; 25:1247-56. [PMID: 25749786 DOI: 10.1007/s00330-014-3479-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The objectives are determine the optimal combination of MR parameters for discriminating tumour within the prostate using linear discriminant analysis (LDA) and to compare model accuracy with that of an experienced radiologist. METHODS Multiparameter MRIs in 24 patients before prostatectomy were acquired. Tumour outlines from whole-mount histology, T2-defined peripheral zone (PZ), and central gland (CG) were superimposed onto slice-matched parametric maps. T2, Apparent Diffusion Coefficient, initial area under the gadolinium curve, vascular parameters (K(trans),Kep,Ve), and (choline+polyamines+creatine)/citrate were compared between tumour and non-tumour tissues. Receiver operating characteristic (ROC) curves determined sensitivity and specificity at spectroscopic voxel resolution and per lesion, and LDA determined the optimal multiparametric model for identifying tumours. Accuracy was compared with an expert observer. RESULTS Tumours were significantly different from PZ and CG for all parameters (all p < 0.001). Area under the ROC curve for discriminating tumour from non-tumour was significantly greater (p < 0.001) for the multiparametric model than for individual parameters; at 90 % specificity, sensitivity was 41 % (MRSI voxel resolution) and 59 % per lesion. At this specificity, an expert observer achieved 28 % and 49 % sensitivity, respectively. CONCLUSION The model was more accurate when parameters from all techniques were included and performed better than an expert observer evaluating these data. KEY POINTS • The combined model increases diagnostic accuracy in prostate cancer compared with individual parameters • The optimal combined model includes parameters from diffusion, spectroscopy, perfusion, and anatominal MRI • The computed model improves tumour detection compared to an expert viewing parametric maps.
Collapse
Affiliation(s)
- S F Riches
- CRUK & EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Evaluation of the prostate imaging reporting and data system for the detection of prostate cancer by the results of targeted biopsy of the prostate. Invest Radiol 2015; 49:411-20. [PMID: 24598440 DOI: 10.1097/rli.0000000000000030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the magnetic resonance prostate imaging reporting and data system (PI-RADS) for the detection of prostate cancer by the results of magnetic resonance imaging (MRI)-guided biopsy of the prostate as a reference standard. PATIENTS AND METHODS In 55 patients who had undergone MRI-guided biopsy of the prostate, we retrospectively matched every biopsy core with the corresponding lesion in previously acquired endorectal multiparametric MRI including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-MRI) at 1.5 T. Two readers blinded to the results of the biopsy evaluated each biopsied lesion according to the PI-RADS scoring system. The results of the targeted biopsy were used as a reference standard. Receiver operating characteristic analysis was performed for statistical analysis. RESULTS A total of 113 lesions in the 55 patients were evaluated; 30 lesions were malignant. When evaluated according to the criteria of the PI-RADS scoring system, DCE-MRI revealed a lower area under the receiver operating characteristic curve (AUC) (0.76) compared with T2WI (0.88; P=0.06) and DWI (0.93; P=0.004). A sum score combining T2WI, DWI, and DCE-MRI yielded an AUC of 0.93, whereas a sum score combining only T2WI and DWI yielded an AUC of 0.95. In central gland lesions, T2WI showed a numerically higher AUC compared with DWI (0.98 and 0.95), whereas, in peripheral zone lesions, DWI was superior (AUC of 0.93 and 0.73; P=0.04). An approach assigning a PI-RADS score for T2WI to central gland lesions and for DWI to peripheral zone lesions yielded an AUC of 0.96 and was numerically superior compared with any sequence alone and sum scores combining T2WI and DWI as well as T2WI, DWI, and DCE-MRI. CONCLUSIONS The PI-RADS scoring system shows a good diagnostic performance for the detection of prostate cancer when using a sum score. However, DCE-MRI does not seem to add significant value when evaluated according to the recommended criteria. Assigning a score for T2WI to central gland lesions and for DWI to peripheral zone lesions might be sufficient for stratification of patients for further diagnostic workup.
Collapse
|
40
|
Bratan F, Melodelima C, Souchon R, Hoang Dinh A, Mège-Lechevallier F, Crouzet S, Colombel M, Gelet A, Rouvière O. How accurate is multiparametric MR imaging in evaluation of prostate cancer volume? Radiology 2014; 275:144-54. [PMID: 25423145 DOI: 10.1148/radiol.14140524] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the factors influencing multiparametric (MP) magnetic resonance (MR) imaging accuracy in estimating prostate cancer histologic volume (Vh). MATERIALS AND METHODS A prospective database of 202 patients who underwent MP MR imaging before radical prostatectomy was retrospectively used. Institutional review board approval and informed consent were obtained. Two independent radiologists delineated areas suspicious for cancer on images (T2-weighted, diffusion-weighted, dynamic contrast material-enhanced [DCE] pulse sequences) and scored their degree of suspicion of malignancy by using a five-level Likert score. One pathologist delineated cancers on whole-mount prostatectomy sections and calculated their volume by using digitized planimetry. Volumes of MR true-positive lesions were measured on T2-weighted images (VT2), on ADC maps (VADC), and on DCE images [VDCE]). VT2, VADC, VDCE and the greatest volume determined on images from any of the individual MR pulse sequences (Vmax) were compared with Vh (Bland-Altman analysis). Factors influencing MP MR imaging accuracy, or A, calculated as A = Vmax/Vh, were evaluated using generalized linear mixed models. RESULTS For both readers, Vh was significantly underestimated with VT2 (P < .0001, both), VADC (P < .0001, both), and VDCE (P = .02 and P = .003, readers 1 and 2, respectively), but not with Vmax (P = .13 and P = .21, readers 1 and 2, respectively). Mean, 25th percentile, and 75th percentile, respectively, for Vmax accuracy were 0.92, 0.54, and 1.85 for reader 1 and 0.95, 0.57, and 1.77 for reader 2. At generalized linear mixed (multivariate) analysis, tumor Likert score (P < .0001), Gleason score (P = .009), and Vh (P < .0001) significantly influenced Vmax accuracy (both readers). This accuracy was good in tumors with a Gleason score of 7 or higher or a Likert score of 5, with a tendency toward underestimation of Vh; accuracy was poor in small (<0.5 cc) or low-grade (Gleason score ≤6) tumors, with a tendency toward overestimation of Vh. CONCLUSION Vh can be estimated by using Vmax in aggressive tumors or in tumors with high Likert scores.
Collapse
Affiliation(s)
- Flavie Bratan
- From the Departments of Urinary and Vascular Radiology (F.B., O.R.), Pathology (F.M.), and Urology (S.C., M.C., A.G.), Hospices Civils de Lyon, Hôpital Edouard Herriot, 5 place d'Arsonval, 69437 Lyon Cedex 03, France; Université de Lyon, Lyon, France (F.B., S.C., M.C., O.R.); Université Lyon 1, Faculté de Médecine Lyon Est, Lyon, France (F.B., S.C., M.C., O.R.); Inserm, U1032, LabTau, Lyon, France (F.B., R.S., A.H.D., S.C., A.G., O.R.); Laboratoire d'Ecologie Alpine, Université Joseph Fourier, Grenoble, France (C.M.); and CNRS, UMR 5553, Grenoble, France (C.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Assessment of Prostate Cancer With Dynamic Contrast-Enhanced Computed Tomography Using an En Bloc Approach. Invest Radiol 2014; 49:571-8. [DOI: 10.1097/rli.0000000000000055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Diffusion-weighted MRI of the Prostate: Advantages of Zoomed EPI with Parallel-transmit-accelerated 2D-selective Excitation Imaging. Eur Radiol 2014; 24:3233-41. [DOI: 10.1007/s00330-014-3347-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
|
43
|
Yamamoto H, Nir D, Vyas L, Chang RT, Popert R, Cahill D, Challacombe B, Dasgupta P, Chandra A. A Workflow to Improve the Alignment of Prostate Imaging with Whole-mount Histopathology. Acad Radiol 2014; 21:1009-19. [PMID: 25018073 DOI: 10.1016/j.acra.2014.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Evaluation of prostate imaging tests against whole-mount histology specimens requires accurate alignment between radiologic and histologic data sets. Misalignment results in false-positive and -negative zones as assessed by imaging. We describe a workflow for three-dimensional alignment of prostate imaging data against whole-mount prostatectomy reference specimens and assess its performance against a standard workflow. MATERIALS AND METHODS Ethical approval was granted. Patients underwent motorized transrectal ultrasound (Prostate Histoscanning) to generate a three-dimensional image of the prostate before radical prostatectomy. The test workflow incorporated steps for axial alignment between imaging and histology, size adjustments following formalin fixation, and use of custom-made parallel cutters and digital caliper instruments. The control workflow comprised freehand cutting and assumed homogeneous block thicknesses at the same relative angles between pathology and imaging sections. RESULTS Thirty radical prostatectomy specimens were histologically and radiologically processed, either by an alignment-optimized workflow (n = 20) or a control workflow (n = 10). The optimized workflow generated tissue blocks of heterogeneous thicknesses but with no significant drifting in the cutting plane. The control workflow resulted in significantly nonparallel blocks, accurately matching only one out of four histology blocks to their respective imaging data. The image-to-histology alignment accuracy was 20% greater in the optimized workflow (P < .0001), with higher sensitivity (85% vs. 69%) and specificity (94% vs. 73%) for margin prediction in a 5 × 5-mm grid analysis. CONCLUSIONS A significantly better alignment was observed in the optimized workflow. Evaluation of prostate imaging biomarkers using whole-mount histology references should include a test-to-reference spatial alignment workflow.
Collapse
|
44
|
Magnetic Resonance Dispersion Imaging for Localization of Angiogenesis and Cancer Growth. Invest Radiol 2014; 49:561-9. [DOI: 10.1097/rli.0000000000000056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Invest Radiol 2014; 48:779-86. [PMID: 23907102 DOI: 10.1097/rli.0b013e31829705bb] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Computed diffusion-weighted magnetic resonance imaging (cDWI) refers to the synthesizing of arbitrary b value diffusion-weighted images (DWI) from a set of measured b value images by voxelwise fitting. The objectives of this study were to quantitatively analyze the noise and the contrast-to-noise ratio (CNR) in cDWI as a function of b value by numerical simulations and by measurements in patients with prostate cancer and to compare cDWI to directly measured DWI at a b value of 1400 s/mm2. MATERIALS AND METHODS Numerical simulations were performed to assess image noise and CNR in both cDWI and regular DWI. Forty-two patients with prostate cancer (age, 51-73 years; prostate specific antigen level, 0.5-30 ng/mL; and biopsy Gleason score, 6-9) received 2 DWI examinations at 3.0 T (one with b values of 100, 500, and 1400 s/mm2 and another with b values of 0, 100, 400, and 800 s/mm2) to create cDWI images at arbitrary b values, both with and without incorporating a b value of 0 s/mm2 in their calculation. Regions of interest were drawn to compare the scan time adjusted CNR (CNR eff) between cDWI and directly measured DWI at b = 1400 s/mm2 on tumor-suspicious lesions and normal-appearing regions. RESULTS In the numerical simulations, noise depended strongly on the b value, the diffusion coefficient, and the signal intensity at a b value of 0 s/mm2 in cDWI but not in regular DWI. The CNR between simulated tumor and normal regions showed a continuous increase with increasing b value. Both these findings were also observed in tumor-suspicious and normal-appearing regions in in vivo data. In vivo prostate DWI at a b value of 1400 s/mm2 showed a similar CNR eff between the tumor-suspicious regions and the normal-appearing tissue in cDWI as in the directly measured DWI (P = 0.395). CONCLUSIONS The CNR eff between tumor-suspicious and normal-appearing prostate tissue in DWI images at a b value of 1400 s/mm2 is comparable in cDWI and directly measured DWI. Computed DWI at even higher b values, calculated from measured images with b values between 0 and 800 s/mm2, yields higher CNR eff than measured DWI, which may be of clinical aid in the management of prostate cancer.
Collapse
|
46
|
Jie C, Rongbo L, Ping T. The value of diffusion-weighted imaging in the detection of prostate cancer: a meta-analysis. Eur Radiol 2014; 24:1929-41. [PMID: 24865693 PMCID: PMC4082652 DOI: 10.1007/s00330-014-3201-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
Objectives To evaluate the diagnostic performance of diffusion-weighted imaging (DWI) as a single non-invasive method in detecting prostate cancer (PCa) and to deduce its clinical utility. Methods A systematic literature search was performed to identify relevant original studies. Quality of included studies was assessed by QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies). Data were extracted to calculate sensitivity and specificity as well as running the test of heterogeneity and threshold effect. The summary receiver operating characteristic (SROC) curve was drawn and area under SROC curve (AUC) served as a determination of the diagnostic performance of DWI for the detection of PCa. Results A total of 21 studies were included, with 27 subsets of data available for analysis. The pooled sensitivity and specificity with corresponding 95 % confidence interval (CI) were 0.62 (95 % CI 0.61–0.64) and 0.90 (95 % CI 0.89–0.90), respectively. Pooled positive likelihood ratio and negative likelihood ratio were 5.83 (95 % CI 4.61–7.37) and 0.30 (95 % CI 0.23–0.39), respectively. The AUC was 0.8991. Significant heterogeneity was observed. There was no notable publication bias. Conclusions DWI is an informative MRI modality in detecting PCa and shows moderately high diagnostic accuracy. General clinical application was limited because of the absence of standardized DW-MRI techniques. Key points • DWI provides incremental information for the detection and evaluation of PCa • DWI has moderately high diagnostic accuracy in detecting PCa • Patient condition, imaging protocols and study design positively influence diagnostic performance • General clinical application requires optimization of image acquisition and interpretation
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | | | | |
Collapse
|
47
|
Rosenkrantz AB, Geppert C, Grimm R, Block TK, Glielmi C, Feng L, Otazo R, Ream JM, Romolo MM, Taneja SS, Sodickson DK, Chandarana H. Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: preliminary experience. J Magn Reson Imaging 2014; 41:1365-73. [PMID: 24833417 DOI: 10.1002/jmri.24661] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To demonstrate dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate with both high spatial and temporal resolution via a combination of golden-angle radial k-space sampling, compressed sensing, and parallel-imaging reconstruction (GRASP), and to compare image quality and lesion depiction between GRASP and conventional DCE in prostate cancer patients. MATERIALS AND METHODS Twenty prostate cancer patients underwent two 3T prostate MRI examinations on separate dates, one using standard DCE (spatial resolution 3.0 × 1.9 × 1.9 mm, temporal resolution 5.5 sec) and the other using GRASP (spatial resolution 3.0 × 1.1 × 1.1 mm, temporal resolution 2.3 sec). Two radiologists assessed measures of image quality and dominant lesion size. The experienced reader recorded differences in contrast arrival times between the dominant lesion and benign prostate. RESULTS Compared with standard DCE, GRASP demonstrated significantly better clarity of the capsule, peripheral/transition zone boundary, urethra, and periprostatic vessels; image sharpness; and lesion conspicuity for both readers (P < 0.001-0.020). GRASP showed improved interreader correlation for lesion size (GRASP: r = 0.691-0.824, standard: r = 0.495-0.542). In 8/20 cases, only GRASP showed earlier contrast arrival in tumor than benign; in no case did only standard DCE show earlier contrast arrival in tumor. CONCLUSION High spatiotemporal resolution prostate DCE is possible with GRASP, which has the potential to improve image quality and lesion depiction as compared with standard DCE.
Collapse
|
48
|
Diffusion-weighted magnetic resonance imaging in the prostate transition zone: histopathological validation using magnetic resonance-guided biopsy specimens. Invest Radiol 2014; 48:693-701. [PMID: 23614975 DOI: 10.1097/rli.0b013e31828eeaf9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the apparent diffusion coefficient (ADC) of diffusion-weighted magnetic resonance (MR) imaging for the differentiation of transition zone cancer from non-cancerous transition zone with and without prostatitis and for the differentiation of transition zone cancer Gleason grade (GG) using MR-guided biopsy specimens as a reference standard. MATERIALS AND METHODS From consecutive MR-guided prostate biopsies (2008-2012) in our referral center, we retrospectively included patients from whom diffusion-weighted MR imaging ADC values were acquired during MR-guided biopsy and whose biopsy cores had a (cancer) core length 10 mm or greater and originated from the transition zone. Two radiologists, who were blinded to the ADC data, annotated regions of interest on biopsy sampling locations of MR-guided biopsy confirmation scans in consensus. Median ADC (mADC) of the regions of interest was related to histopathology outcome in MR-guided biopsy core specimens. Mixed model analysis was used to evaluate mADC differences between 7 histopathology categories predefined as MR-guided biopsy core specimens with primary and secondary GG 4-5 (I), primary GG 4-5 secondary GG 2-3 (II), primary GG 2-3 secondary GG 4-5 (III) and primary and secondary GG 2-3 cancer (IV), and noncancerous tissue without (V) or with degree 1 (VI) or degree 2 prostatitis (VII). Diagnostic accuracy was evaluated using areas under the receiver operating characteristic (AUC) curve. RESULTS Fifty-two patients with 87 cancer-containing biopsy cores and 53 patients with 101 non-cancerous biopsy cores were included. Significant mean mADC differences were present between cancers (mean mADC, 0.77-0.86 × 10 mm/s) and noncancerous transition zone without (1.12 × 10 mm/s) and with degree 1 to 2 prostatitis (1.05-1.12 × 10 mm/s; P < 0.0001-0.05). Exceptions were mixed primary and secondary GG cancers versus a degree 2 of prostatitis (P = 0.06-0.09). No significant differences were found between subcategories of primary and secondary GG cancers (P = 0.17-0.91) and between a degree 1 and 2 prostatitis and non-cancerous transition zone without prostatitis (P = 0.48-0.94).The mADC had an AUC of 0.84 to differentiate cancer versus non-cancerous transition zone. AUCs of 0.84 and 0.56 were found for mADC to differentiate prostatitis from cancer and from non-cancerous transition zone. The mADC had an AUC of 0.62 to differentiate a primary GG 4 versus GG 3 cancer. CONCLUSIONS The mADC values can differentiate transition zone cancer from non-cancerous transition zone and from a degree 1, and from most cases of a degree 2 prostatitis. However, because of substantial overlap, mADC has a moderate accuracy to differentiate between different primary and secondary GG subcategories and cannot be used to differentiate non-cancerous transition zone from degrees 1 to 2 of prostatitis. Diffusion-weighted imaging ADC may therefore contribute in the detection of transition zone cancers; however, as a single functional MR imaging technique, diffusion-weighted imaging has a moderate diagnostic accuracy in separating higher from lower GG transition zone cancers and in differentiating prostatitis from non-cancerous transition zone.
Collapse
|
49
|
Murray LJ, Lilley J, Thompson CM, Cosgrove V, Mason J, Sykes J, Franks K, Sebag-Montefiore D, Henry AM. Prostate stereotactic ablative radiation therapy using volumetric modulated arc therapy to dominant intraprostatic lesions. Int J Radiat Oncol Biol Phys 2014; 89:406-15. [PMID: 24685447 PMCID: PMC4018668 DOI: 10.1016/j.ijrobp.2014.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/20/2014] [Accepted: 01/25/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). METHODS AND MATERIALS Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV(Prostate) prescription, and PTV(DIL) prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. RESULTS When treating the prostate alone, the median PTV(DIL) prescription was 125% (range: 110%-140%) of the PTV(Prostate) prescription. Median PTV(DIL) D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV(DIL) prescriptions and similar PTV(DIL) median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm(3) of rectum (Dmax(0.5cc)), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. CONCLUSIONS Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal constraints are required including Dmax(0.5cc). If the α/β ratio of prostate cancer is 1.5 Gy or less, then high TCP and low NTCP can be achieved by prescribing SABR to the whole prostate, without the need for DIL boosting.
Collapse
Affiliation(s)
- Louise J Murray
- Department of Clinical Oncology, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom; University of Leeds, Leeds, United Kingdom
| | - John Lilley
- Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom
| | - Christopher M Thompson
- Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom
| | - Vivian Cosgrove
- Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom
| | - Josh Mason
- Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom; University of Leeds, Leeds, United Kingdom
| | - Jonathan Sykes
- Department of Medical Physics, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom
| | - Kevin Franks
- Department of Clinical Oncology, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom
| | - David Sebag-Montefiore
- Department of Clinical Oncology, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom; University of Leeds, Leeds, United Kingdom
| | - Ann M Henry
- Department of Clinical Oncology, Leeds Cancer Centre, St. James's University Hospital, Leeds, United Kingdom.
| |
Collapse
|
50
|
Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014; 66:22-9. [PMID: 24666839 DOI: 10.1016/j.eururo.2014.03.002] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/04/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND The current diagnosis of prostate cancer (PCa) uses transrectal ultrasound-guided biopsy (TRUSGB). TRUSGB leads to sampling errors causing delayed diagnosis, overdetection of indolent PCa, and misclassification. Advances in multiparametric magnetic resonance imaging (mpMRI) suggest that imaging and selective magnetic resonance (MR)-guided biopsy (MRGB) may be superior to TRUSGB. OBJECTIVE To compare the diagnostic efficacy of the magnetic resonance imaging (MRI) pathway with TRUSGB. DESIGN, SETTING, AND PARTICIPANTS A total of 223 consecutive biopsy-naive men referred to a urologist with elevated prostate-specific antigen participated in a single-institution, prospective, investigator-blinded, diagnostic study from July 2012 through January 2013. INTERVENTION All participants had mpMRI and TRUSGB. Men with equivocal or suspicious lesions on mpMRI also underwent MRGB. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary outcome was PCa detection. Secondary outcomes were histopathologic details of biopsy and radical prostatectomy specimens, adverse events, and MRI reader performance. Sensitivity, specificity, negative predictive values (NPVs), and positive predictive values were estimated and basic statistics presented by number (percentage) or median (interquartile range). RESULTS AND LIMITATIONS Of 223 men, 142 (63.7%) had PCa. TRUSGB detected 126 cases of PCa in 223 men (56.5%) including 47 (37.3%) classed as low risk. MRGB detected 99 cases of PCa in 142 men (69.7%) with equivocal or suspicious mpMRI, of which 6 (6.1%) were low risk. The MRGB pathway reduced the need for biopsy by 51%, decreased the diagnosis of low-risk PCa by 89.4%, and increased the detection of intermediate/high-risk PCa by 17.7%. The estimated NPVs of TRUSGB and MRGB for intermediate/high-risk disease were 71.9% and 96.9%, respectively. The main limitation is the lack of long follow-up. CONCLUSIONS We found that mpMRI/MRGB reduces the detection of low-risk PCa and reduces the number of men requiring biopsy while improving the overall rate of detection of intermediate/high-risk PCa. PATIENT SUMMARY We compared the results of standard prostate biopsies with a magnetic resonance (MR) image-based targeted biopsy diagnostic pathway in men with elevated prostate-specific antigen. Our results suggest patient benefits of the MR pathway. Follow-up of negative investigations is required.
Collapse
|