1
|
Xie T, Gong J, Zhao Q, Wu C, Wu S, Peng W, Gu Y. Development and validation of peritumoral vascular and intratumoral radiomics to predict pathologic complete responses to neoadjuvant chemotherapy in patients with triple-negative breast cancer. BMC Med Imaging 2024; 24:136. [PMID: 38844842 PMCID: PMC11155097 DOI: 10.1186/s12880-024-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND To develop and validate a peritumoral vascular and intratumoral radiomics model to improve pretreatment predictions for pathologic complete responses (pCRs) to neoadjuvant chemoradiotherapy (NAC) in patients with triple-negative breast cancer (TNBC). METHODS A total of 282 TNBC patients (93 in the primary cohort, 113 in the validation cohort, and 76 in The Cancer Imaging Archive [TCIA] cohort) were retrospectively included. The peritumoral vasculature on the maximum intensity projection (MIP) from pretreatment DCE-MRI was segmented by a Hessian matrix-based filter and then edited by a radiologist. Radiomics features were extracted from the tumor and peritumoral vasculature of the MIP images. The LASSO method was used for feature selection, and the k-nearest neighbor (k-NN) classifier was trained and validated to build a predictive model. The diagnostic performance was assessed using the ROC analysis. RESULTS One hundred of the 282 patient (35.5%) with TNBC achieved pCRs after NAC. In predicting pCRs, the combined peritumoral vascular and intratumoral model (fusion model) yields a maximum AUC of 0.82 (95% confidence interval [CI]: 0.75, 0.88) in the primary cohort, a maximum AUC of 0.67 (95% CI: 0.57, 0.76) in the internal validation cohort, and a maximum AUC of 0.65 (95% CI: 0.52, 0.78) in TCIA cohort. The fusion model showed improved performance over the intratumoral model and the peritumoral vascular model, but not significantly (p > 0.05). CONCLUSION This study suggested that combined peritumoral vascular and intratumoral radiomics model could provide a non-invasive tool to enable prediction of pCR in TNBC patients treated with NAC.
Collapse
Affiliation(s)
- Tianwen Xie
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiufeng Zhao
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, USA
| | - Siyu Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Fritz M, Köppl T, Oden JT, Wagner A, Wohlmuth B, Wu C. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3612. [PMID: 35522186 DOI: 10.1002/cnm.3612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
In this work, we present mixed dimensional models for simulating blood flow and transport processes in breast tissue and the vascular tree supplying it. These processes are considered, to start from the aortic inlet to the capillaries and tissue of the breast. Large variations in biophysical properties and flow conditions exist in this system necessitating the use of different flow models for different geometries and flow regimes. In total, we consider four different model types. First, a system of 1D nonlinear hyperbolic partial differential equations (PDEs) is considered to simulate blood flow in larger arteries with highly elastic vessel walls. Second, we assign 1D linearized hyperbolic PDEs to model the smaller arteries with stiffer vessel walls. The third model type consists of ODE systems (0D models). It is used to model the arterioles and peripheral circulation. Finally, homogenized 3D porous media models are considered to simulate flow and transport in capillaries and tissue within the breast volume. Sink terms are used to account for the influence of the venous and lymphatic systems. Combining the four model types, we obtain two different 1D-0D-3D coupled models for simulating blood flow and transport processes: The first model results in a fully coupled 1D-0D-3D model covering the complete path from the aorta to the breast combining a generic arterial network with a patient specific breast network and geometry. The second model is a reduced one based on the separation of the generic and patient specific parts. The information from a calibrated fully coupled model is used as inflow condition for the patient specific sub-model allowing a significant computational cost reduction. Several numerical experiments are conducted to calibrate the generic model parameters and to demonstrate realistic flow simulations compared to existing data on blood flow in the human breast and vascular system. Moreover, we use two different breast vasculature and tissue data sets to illustrate the robustness of our reduced sub-model approach.
Collapse
Affiliation(s)
- Marvin Fritz
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Tobias Köppl
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - John Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Andreas Wagner
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Frankhouser DE, Dietze E, Mahabal A, Seewaldt VL. Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging. FRONTIERS IN RADIOLOGY 2021; 1:735567. [PMID: 37492179 PMCID: PMC10364989 DOI: 10.3389/fradi.2021.735567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/11/2021] [Indexed: 07/27/2023]
Abstract
Angiogenesis is a key step in the initiation and progression of an invasive breast cancer. High microvessel density by morphological characterization predicts metastasis and poor survival in women with invasive breast cancers. However, morphologic characterization is subject to variability and only can evaluate a limited portion of an invasive breast cancer. Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated to assess vascularity. Recently, through the new field of radiomics, dynamic contrast enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology, and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive tool, there are specific features that limit computational evaluation of blood vessels. These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels, and (3) DCE-MRI images are very difficult to co-register. Here we review computational approaches for detection and analysis of blood vessels in DCE-MRI images and present some of the strategies we have developed for co-registry of DCE-MRI images and early detection of vascularization.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Eric Dietze
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Ashish Mahabal
- Department of Astronomy, Division of Physics, Mathematics, and Astronomy, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Victoria L. Seewaldt
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
4
|
Min H, McClymont D, Chandra SS, Crozier S, Bradley AP. Automatic lesion detection, segmentation and characterization via 3D multiscale morphological sifting in breast MRI. Biomed Phys Eng Express 2020; 6. [PMID: 35045404 DOI: 10.1088/2057-1976/abc45c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Abstract
Previous studies on computer aided detection/diagnosis (CAD) in 4D breast magnetic resonance imaging (MRI) usually regard lesion detection, segmentation and characterization as separate tasks, and typically require users to manually select 2D MRI slices or regions of interest as the input. In this work, we present a breast MRI CAD system that can handle 4D multimodal breast MRI data, and integrate lesion detection, segmentation and characterization with no user intervention. The proposed CAD system consists of three major stages: region candidate generation, feature extraction and region candidate classification. Breast lesions are firstly extracted as region candidates using the novel 3D multiscale morphological sifting (MMS). The 3D MMS, which uses linear structuring elements to extract lesion-like patterns, can segment lesions from breast images accurately and efficiently. Analytical features are then extracted from all available 4D multimodal breast MRI sequences, including T1-, T2-weighted and DCE sequences, to represent the signal intensity, texture, morphological and enhancement kinetic characteristics of the region candidates. The region candidates are lastly classified as lesion or normal tissue by the random under-sampling boost (RUSboost), and as malignant or benign lesion by the random forest. Evaluated on a breast MRI dataset which contains a total of 117 cases with 141 biopsy-proven lesions (95 malignant and 46 benign lesions), the proposed system achieves a true positive rate (TPR) of 0.90 at 3.19 false positives per patient (FPP) for lesion detection and a TPR of 0.91 at a FPP of 2.95 for identifying malignant lesions without any user intervention. The average dice similarity index (DSI) is0.72±0.15for lesion segmentation. Compared with previously proposed lesion detection, detection-segmentation and detection-characterization systems evaluated on the same breast MRI dataset, the proposed CAD system achieves a favourable performance in breast lesion detection and characterization.
Collapse
Affiliation(s)
- Hang Min
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| | - Darryl McClymont
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| | - Shekhar S Chandra
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, Australia
| | - Andrew P Bradley
- Science and Engineering Faculty, Queensland University of Technology, Australia
| |
Collapse
|
5
|
Wu C, Hormuth DA, Oliver TA, Pineda F, Lorenzo G, Karczmar GS, Moser RD, Yankeelov TE. Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2760-2771. [PMID: 32086203 PMCID: PMC7438313 DOI: 10.1109/tmi.2020.2975375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The overall goal of this study is to employ quantitative magnetic resonance imaging (MRI) data to constrain a patient-specific, computational fluid dynamics (CFD) model of blood flow and interstitial transport in breast cancer. We develop image processing methodologies to generate tumor-related vasculature-interstitium geometry and realistic material properties, using dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) data. These data are used to constrain CFD simulations for determining the tumor-associated blood supply and interstitial transport characteristics unique to each patient. We then perform a proof-of-principle statistical comparison between these hemodynamic characteristics in 11 malignant and 5 benign lesions from 12 patients. Significant differences between groups (i.e., malignant versus benign) were observed for the median of tumor-associated interstitial flow velocity ( P = 0.028 ), and the ranges of tumor-associated blood pressure (P = 0.016) and vascular extraction rate (P = 0.040). The implication is that malignant lesions tend to have larger magnitude of interstitial flow velocity, and higher heterogeneity in blood pressure and vascular extraction rate. Multivariable logistic models based on combinations of these hemodynamic data achieved excellent differentiation between malignant and benign lesions with an area under the receiver operator characteristic curve of 1.0, sensitivity of 1.0, and specificity of 1.0. This image-based model system is a fundamentally new way to map flow and pressure fields related to breast tumors using only non-invasive, clinically available imaging data and established laws of fluid mechanics. Furthermore, the results provide preliminary evidence for this methodology's utility for the quantitative characterization of breast cancer.
Collapse
|
6
|
Wu C, Pineda F, Hormuth DA, Karczmar GS, Yankeelov TE. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med 2019; 81:2147-2160. [PMID: 30368906 PMCID: PMC6347496 DOI: 10.1002/mrm.27529] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE We propose a novel methodology to integrate morphological and functional information of tumor-associated vessels to assist in the diagnosis of suspicious breast lesions. THEORY AND METHODS Ultrafast, fast, and high spatial resolution DCE-MRI data were acquired on 15 patients with suspicious breast lesions. Segmentation of the vasculature from the surrounding tissue was performed by applying a Hessian filter to the enhanced image to generate a map of the probability for each voxel to belong to a vessel. Summary measures were generated for vascular morphology, as well as the inputs and outputs of vessels physically connected to the tumor. The ultrafast DCE-MRI data was analyzed by a modified Tofts model to estimate the bolus arrival time, Ktrans (volume transfer coefficient), and vp (plasma volume fraction). The measures were compared between malignant and benign lesions via the Wilcoxon test, and then incorporated into a logistic ridge regression model to assess their combined diagnostic ability. RESULTS A total of 24 lesions were included in the study (13 malignant and 11 benign). The vessel count, Ktrans , and vp showed significant difference between malignant and benign lesions (P = 0.009, 0.034, and 0.010, area under curve [AUC] = 0.76, 0.63, and 0.70, respectively). The best multivariate logistic regression model for differentiation included the vessel count and bolus arrival time (AUC = 0.91). CONCLUSION This study provides preliminary evidence that combining quantitative characterization of morphological and functional features of breast vasculature may provide an accurate means to diagnose breast cancer.
Collapse
Affiliation(s)
- Chengyue Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712
| | - Federico Pineda
- Department of Radiology The University of Chicago, Chicago, Illinois 60637
| | - David A. Hormuth
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Texas 78712
| | | | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712,Department of Diagnostic Medicine, The University of Texas at Austin, Texas 78712,Department of Oncology The University of Texas at Austin, Texas 78712,Institute for Computational and Engineering Sciences, The University of Texas at Austin, Texas 78712
| |
Collapse
|
7
|
Breast Contrast Enhanced MR Imaging: Semi-Automatic Detection of Vascular Map and Predominant Feeding Vessel. PLoS One 2016; 11:e0161691. [PMID: 27571255 PMCID: PMC5003359 DOI: 10.1371/journal.pone.0161691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose To obtain breast vascular map and to assess correlation between predominant feeding vessel and tumor location with a semi-automatic method compared to conventional radiologic reading. Methods 148 malignant and 75 benign breast lesions were included. All patients underwent bilateral MR imaging. Written informed consent was obtained from the patients before MRI. The local ethics committee granted approval for this study. Semi-automatic breast vascular map and predominant vessel detection was performed on MRI, for each patient. Semi-automatic detection (depending on grey levels threshold manually chosen by radiologist) was compared with results of two expert radiologists; inter-observer variability and reliability of semi-automatic approach were assessed. Results Anatomic analysis of breast lesions revealed that 20% of patients had masses in internal half, 50% in external half and the 30% in subareolar/central area. As regards the 44 tumors in internal half, based on radiologic consensus, 40 demonstrated a predominant feeding vessel (61% were supplied by internal thoracic vessels, 14% by lateral thoracic vessels, 16% by both thoracic vessels and 9% had no predominant feeding vessel—p<0.01), based on semi-automatic detection, 38 tumors demonstrated a predominant feeding vessel (66% were supplied by internal thoracic vessels, 11% by lateral thoracic vessels, 9% by both thoracic vessels and 14% had no predominant feeding vessel—p<0.01). As regards the 111 tumors in external half, based on radiologic consensus, 91 demonstrated a predominant feeding vessel (25% were supplied by internal thoracic vessels, 39% by lateral thoracic vessels, 18% by both thoracic vessels and 18% had no predominant feeding vessel—p<0.01), based on semi-automatic detection, 94 demonstrated a predominant feeding vessel (27% were supplied by internal thoracic vessels, 45% by lateral thoracic vessels, 4% by both thoracic vessels and 24% had no predominant feeding vessel—p<0.01). An excellent agreement between two radiologic assessments (k = 0.81) and between radiologic consensus and semi-automatic assessment (k = 0.80) was found to identify origin of predominant feeding vessel. An excellent reliability for semi-automatic assessment (Cronbach's alpha = 0.96) was reported. Conclusions Predominant feeding vessel location was correlated with breast lesion location: internal thoracic artery supplied the highest proportion of breasts with tumor in internal half and lateral thoracic artery supplied the highest proportion of breasts with lateral tumor.
Collapse
|
8
|
Yun S, Sohn YM, Seo M. Differentiation of benign and metastatic axillary lymph nodes in breast cancer: additive value of MRI computer-aided evaluation. Clin Radiol 2016; 71:403.e1-7. [DOI: 10.1016/j.crad.2016.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/27/2015] [Accepted: 01/06/2016] [Indexed: 11/26/2022]
|
9
|
Vignati A, Giannini V, Carbonaro LA, Bertotto I, Martincich L, Sardanelli F, Regge D. A new algorithm for automatic vascular mapping of DCE-MRI of the breast: Clinical application of a potential new biomarker. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 117:482-488. [PMID: 25262335 DOI: 10.1016/j.cmpb.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Vascularity evaluation on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a potential diagnostic value, but it represents a time consuming procedure, affected by intra- and inter-observer variability. This study tests the application of a recently published method to reproducibly quantify breast vascularity, and evaluates if the vascular volume of cancer-bearing breast, calculated from automatic vascular maps (AVMs), may correlate with pathologic tumor response after neoadjuvant chemotherapy (NAC). METHODS Twenty-four patients with unilateral locally advanced breast cancer underwent DCE-MRI before and after NAC, 8 responders and 16 non-responders. A validated algorithm, based on multiscale 3D Hessian matrix analysis, provided AVMs and allowed the calculation of vessel volume before the initiation and after the last NAC cycle for each breast. For cancer bearing breast, the difference in vascular volume before and after NAC was compared in responders and non-responders using the Wilcoxon two-sample test. A radiologist evaluated the vascularity on the subtracted images (first enhanced minus unenhanced), before and after treatment, assigning a vascular score for each breast, according to the number of vessels with length ≥30mm and maximal transverse diameter ≥2mm. The same evaluation was repeated with the support of the simultaneous visualization of the AVMs. The two evaluations were compared in terms of mean number of vessels and mean vascular score per breast, in responders and non-responders, by use of Wilcoxon two sample test. For all the analysis, the statistical significance level was set at 0.05. RESULTS For breasts harboring the cancer, evidence of a difference in vascular volume before and after NAC for responders (median=1.71cc) and non-responders (median=0.41cc) was found (p=0.003). A significant difference was also found in the number of vessels (p=0.03) and vascular score (p=0.02) before or after NAC, according to the evaluation supported by the AVMs. CONCLUSIONS The encouraging, although preliminary, results of this study suggest the use of AVMs as new biomarker to evaluate the pathologic response after NAC, but also support their application in other breast DCE-MRI vessel analysis that are waiting for a reliable quantification method.
Collapse
Affiliation(s)
- A Vignati
- Department of Radiology, Candiolo Cancer Institute - FPO, IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Torino, Italy.
| | - V Giannini
- Department of Radiology, Candiolo Cancer Institute - FPO, IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Torino, Italy
| | - L A Carbonaro
- Radiology Unit, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Milan, Italy
| | - I Bertotto
- Department of Radiology, Candiolo Cancer Institute - FPO, IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Torino, Italy
| | - L Martincich
- Department of Radiology, Candiolo Cancer Institute - FPO, IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Torino, Italy
| | - F Sardanelli
- Radiology Unit, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Piazza E. Malan, 20097 San Donato Milanese, Italy
| | - D Regge
- Department of Radiology, Candiolo Cancer Institute - FPO, IRCCS, Strada Provinciale 142 km 3.95, 10060 Candiolo, Torino, Italy
| |
Collapse
|