1
|
Chang MH, Wang WT, Teng HC, Wang SC, Cheng HW, Huang JS, Wu MT. Multi-average high-acceleration modified volumetric interpolated breath-hold examination (VIBE) for free-breathing multiphase contrast-enhanced liver MRI: a comparative study with breath-hold VIBE. Acta Radiol 2024; 65:735-743. [PMID: 38343006 DOI: 10.1177/02841851231222607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Breath-hold volumetric interpolated breath-hold examination (BH-VIBE) of multiphase contrast-enhanced liver magnetic resonance imaging (MPCE-LMRI) requires good cooperative individuals to comply with multiple breath-holds. PURPOSE To develop a free-breathing modified VIBE (FB-mVIBE) as a substitute of BH-VIBE in MPCE-LMRI. MATERIAL AND METHODS We modified VIBE with a high acceleration factor (2 × 2) and four averages to produce the mVIBE scan. A total of 90 individuals (40 men; mean age = 54.6 ± 10.0 years) who had received MPCE-LMRI as part of a voluntary health check-up for oncology survey were enrolled. Each participant was scanned in four phases (pre-contrast, arterial phase, venous phase, and delay phase), and each phase had two sequential scans. To encounter the timing effect of contrast enhancement, three scan orders were designed: BH-VIBE and FB-mVIBE (group A, n = 30); BH-VIBE and FB-VIBE (group B, n = 30); and FB-mVIBE and BH-VIBE (group C, n = 30). The comparisons included the objective measurements and 25 visual-score by two abdominal radiologists independently. RESULTS Consistency between raters was observed for all three sequences (intraclass correlation coefficient [ICC] = 0.741-0.829). For rater 1, the mean scores of FB-mVIBE (23.67 ± 1.32) were equal to those of BH-VIBE (23.83 ± 1.98) in groups C and B (P = 0.852). The mean scores of FB-mVIBE (22.07 ± 3.02), but significantly higher than those of FB-VIBE (14.7 ± 3.41) in groups A and B (P <0.001). Similar scores were found for rater 2. The objective measurement of FB-mVIBE were equal to or higher than BH-VIBE and markedly superior to FB-VIBE. CONCLUSION FB-mVIBE is a practical alternative to BH-VIBE for individuals who cannot cooperate with multiple breath-holds for MPCE-LMRI.
Collapse
Affiliation(s)
- Ming-Hwa Chang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Teng Wang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Hui-Chung Teng
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Shu-Chin Wang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsiu-Wen Cheng
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jer-Shyung Huang
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Ting Wu
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Jiang J, Yang D, Yang Z, Han X, Xu L, Wang Y, Wang X, Yang Z, Xu H. The timing phase affected the inconsistency of APHE subtypes of liver observations in patients at risk for HCC on the multi-hepatic arterial phase imaging. Abdom Radiol (NY) 2024; 49:1092-1102. [PMID: 38195799 DOI: 10.1007/s00261-023-04096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To investigate whether liver observations in patients at risk for hepatocellular carcinoma (HCC) display inconsistent arterial phase hyperenhancement (APHE) subtypes on the multi-hepatic arterial phase imaging (mHAP) and to further investigate factors affecting inconsistent APHE subtype of observations on mHAP imaging. METHODS From April 2018 to June 2021, a total of 141 patients at high risk of HCC with 238 liver observations who underwent mHAP MRI acquisitions were consecutively included in this retrospective study. Two experienced radiologists reviewed individual arterial phase imaging independently and assessed the enhancement pattern of each liver observation according to LI-RADS. Another two experienced radiologists identified and recorded the genuine timing phase of each phase independently. When a disagreement appeared between the two radiologists, another expert participated in the discussion to get a final decision. A separate descriptive analysis was used for all observations scored APHE by the radiologists. The Kappa coefficient was used to determine the agreement between the two radiologists. Univariate analysis was performed to investigate the factors affecting inconsistent APHE subtype of liver observations on mHAP imaging. RESULTS The interobserver agreement was substantial to almost perfect agreement on the assessment of timing phase (κ = 0.712-0.887) and evaluation of APHE subtype (κ = 0.795-0.901). A total of 87.8% (209/238) of the observations showed consistent nonrim APHE and 10.2% (24/238) of the observations showed consistent rim APHE on mHAP imaging. A total of 2.1% (5/238) of the liver observations were considered inconsistent APHE subtypes, and all progressed nonrim to rim on mHAP imaging. 87.9% (124/141) of the mHAP acquisitions were all arterial phases and 12.1% (17/141) of the mHAP acquisitions obtained both the arterial phase and portal venous phase. Univariate analysis was performed and found that the timing phase of mHAP imaging affected the consistency of APHE subtype of liver observations. When considering the timing phase and excluding the portal venous phase acquired by mHAP imaging, none of the liver observations showed inconsistent APHE subtypes on mHAP imaging. CONCLUSION The timing phase which mHAP acquisition contained portal venous phase affected the inconsistency of APHE subtype of liver observations on mHAP imaging. When evaluating the APHE subtype of liver observations, it's necessary to assess the timing of each phase acquired by the mHAP technique at first.
Collapse
Affiliation(s)
- Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenzhen Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xinjun Han
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Lixue Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yuxin Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Xiaopei Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Morana G, Beleù A, Geraci L, Tomaiuolo L, Venturini S. Imaging of the Liver and Pancreas: The Added Value of MRI. Diagnostics (Basel) 2024; 14:693. [PMID: 38611607 PMCID: PMC11011374 DOI: 10.3390/diagnostics14070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
MR is a powerful diagnostic tool in the diagnosis and management of most hepatic and pancreatic diseases. Thanks to its multiple sequences, the use of dedicated contrast media and special techniques, it allows a multiparametric approach able to provide both morphological and functional information for many pathological conditions. The knowledge of correct technique is fundamental in order to obtain a correct diagnosis. In this paper, different MR sequences will be illustrated in the evaluation of liver and pancreatic diseases, especially those sequences which provide information not otherwise obtainable with other imaging techniques. Practical MR protocols with the most common indications of MR in the study of the liver and pancreas are provided.
Collapse
Affiliation(s)
- Giovanni Morana
- Radiological Department, General Hospital Treviso, 31100 Treviso, Italy; (A.B.); (L.G.); (L.T.)
| | | | | | | | | |
Collapse
|
4
|
Zhao J, Lin C, Liu D, Liu B, Chen Q, Gu J. The diagnostic value of morphological features of fat deposition of sacroiliac joint steatosis in axial spondyloarthritis. Front Med (Lausanne) 2023; 10:1218834. [PMID: 37692786 PMCID: PMC10484708 DOI: 10.3389/fmed.2023.1218834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Background Findings of fatty lesions in the context of other imaging manifestations, especially bone marrow edema and erosions can effectively assist in the diagnosis of axSpA. Chemical shift-encoded MRI is a sequence which allows for the quantification of fat signal and has been applied in the imaging evaluation of the SIJ in axSpA. The objective of this study was to investigate the diagnostic performance of morphological features of fatty lesions visualized by CSE-MRI in the imaging evaluation of SIJ in axSpA. Methods Fatty lesions with morphological features (subchondral, homogeneity and distinct border) were assessed and recorded as a binary variable in each quadrant of the SIJ. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for different morphological features as well as the anatomical distribution in patients with nr-axSpA and r-axSpA. T1-weighted images and CSE-MRI fat fraction maps were directly compared in the recognition of different morphological features. Results Eighty-two patients [non-SpA (n = 21), nr-axSpA (n = 23), r-axSpA (n = 38)] with lower back pain (LBP) were enrolled. Presence of the three morphological features of fatty lesions had a specificity of 90.48% in axSpA. The sensitivities of being subchondral, homogeneity and distinct border were 52.17, 39.13 and 39.13% in nr-axSpA on T1-weighted images. For patients with r-axSpA, the sensitivities reached 86.84, 76.32 and 57.89%. No significant difference was found in the distribution of fatty lesions between T1-weighted images and CSE-MRI. However, CSE-MRI fat fraction maps could detect significantly more fatty lesions with homogeneity (p = 0.0412) and distinct border (p = 0.0159) than T1-weighted images in the sacroiliac joint, but not subchondral lesions (p = 0.6831). Conclusion The homogeneity and distinct border are more relevant for the diagnosis of axSpA. Moreover, CSE-MRI could detect more typical morphological features of fatty lesions than T1-weighted images in showing these two features. The presence of all three features was more likely to be indicative of axSpA.
Collapse
Affiliation(s)
- Jiaoshi Zhao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Churong Lin
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Budian Liu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qilong Chen
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Shetty AS, Fraum TJ, Ludwig DR, Hoegger MJ, Zulfiqar M, Ballard DH, Strnad BS, Rajput MZ, Itani M, Salari R, Lanier MH, Mellnick VM. Body MRI: Imaging Protocols, Techniques, and Lessons Learned. Radiographics 2022; 42:2054-2074. [DOI: 10.1148/rg.220025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anup S. Shetty
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Tyler J. Fraum
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Daniel R. Ludwig
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Mark J. Hoegger
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Maria Zulfiqar
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - David H. Ballard
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Benjamin S. Strnad
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Mohamed Z. Rajput
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Reza Salari
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Michael H. Lanier
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| | - Vincent M. Mellnick
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box 8131, St Louis, MO 63110
| |
Collapse
|
6
|
Magnetic Resonance Imaging and Magnetic Resonance Imaging Cholangiopancreatography of the Pancreas in Small Animals. Vet Sci 2022; 9:vetsci9080378. [PMID: 35893771 PMCID: PMC9332374 DOI: 10.3390/vetsci9080378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In human medicine Magnetic resonance imaging (MRI) and MR cholangiopancreatography (MRCP) play a consistent role in the investigation of pancreatic and pancreatic duct disorders. In veterinary medicine the number of studies focused on MR and MRCP for pancreatic disease is scant, and the protocols are not yet standardized. This review will focus on the MRI and MRCP technical aspects of the protocols used for the investigation of pancreatic disease in veterinary medicine. The aim of this review is to elucidate the value and the potential of each MR and MRCP sequence listed in the different protocols, either in canine or feline patients, with the intention to build a valid and solid tool for further innovative studies. Abstract Magnetic resonance imaging (MRI) and MR cholangiopancreatography (MRCP) have emerged as non-invasive diagnostic techniques for the diagnosis of pancreatic and pancreatic duct disorders in humans. The number of studies focused on MR and MRCP for pancreatic disease in small animals is very limited. MR has been described for the evaluation of insulinoma in dogs and to investigate pancreatitis in cats. The studies were based on a standard protocol with T2 weighted (w) fast recovery fast spin-echo (FRFSE) with and without fat suppression, T1w FSE pre-contrast and T1w FSE post-contrast with and without fat suppression. MRCP after secretin stimulation has been described in cats to assess the pancreatic ductal system, taking advantage of pulse sequences heavily T2w as rapid acquisition with rapid enhancement (RARE), fast-recovery fast spin-echo (FRFSE) sequences and single-shot fast spin-echo (SSFSE) sequences. In addition to the standard protocol, fast spoiled gradient recalled echo pulse sequences (fSPGR) and volume interpolated 3D gradient-echo T1w pulse sequences pre and post-contrast have also been used in cats, reaching the goal of assessing the biliary tree and the pancreatic duct with the same sequence and in multiple planes. Despite the small amount of data, the results show potential, and the most recent technical innovations, in particular, focused on diffusion MRI and fast acquisition, further support the need for continued evaluation of MRI as an effective instrument for the investigation of pancreatic disease.
Collapse
|
7
|
Young Park J, Min Lee S, Sub Lee J, Chang W, Hee Yoon J. Free-breathing dynamic T1WI using compressed sensing-golden angle radial sparse parallel imaging for liver MRI in patients with limited breath-holding capability. Eur J Radiol 2022; 152:110342. [DOI: 10.1016/j.ejrad.2022.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
|
8
|
Herrmann J, Nickel D, Mugler JP, Arberet S, Gassenmaier S, Afat S, Nikolaou K, Othman AE. Development and Evaluation of Deep Learning-Accelerated Single-Breath-Hold Abdominal HASTE at 3 T Using Variable Refocusing Flip Angles. Invest Radiol 2021; 56:645-652. [PMID: 33965966 DOI: 10.1097/rli.0000000000000785] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Deep learning (DL) reconstruction enables substantial acceleration of image acquisition while maintaining diagnostic image quality. The aims of this study were to overcome the drawback of specific absorption rate (SAR)-related limitations at 3 T and to develop a DL-accelerated single-breath-hold half-Fourier acquisition single-shot turbo spin echo (HASTE) sequence for 2-dimesional T2-weighted fat-suppressed magnetic resonance imaging of the abdomen at 3 T using a variable flip angle (FA) evolution for the refocusing radiofrequency pulses, as well as to evaluate its feasibility and image quality in comparison to state-of-the-art T2-weighted fat-suppressed imaging technique (BLADE). MATERIALS AND METHODS First, a suitable FA evolution with low cardiac motion-related signal loss (CRSL) and low SAR was determined through a prospective volunteer study with 11 participants. Image quality and diagnostic confidence with 5 different FA evolutions of a HASTEDL were assessed to identify the most suitable FA evolution. Second, the identified FA evolution was implemented clinically and evaluated in 51 patients undergoing a clinically indicated liver magnetic resonance imaging at 3 T. Two radiologists assessed the HASTEDL and standard sequences regarding overall image quality, noise, contrast, sharpness, artifacts, CRSL, and diagnostic confidence using a Likert scale ranging from 1 to 4, with 4 being the best. Comparative analyses were conducted to assess the differences between HASTEDL (acquisition time, 21 seconds; single breath-hold) and the routinely used T2-weighted BLADE sequence (acquisition time, 4 minutes; respiratory triggering). RESULTS From the volunteer study, the FA evolution characterized by the control points 130-90-110-130 degrees (HASTEDL) was identified as optimal among the 5 evolutions evaluated and was implemented in our clinical protocol. In all 51 patients, HASTEDL was successfully acquired at 3 T and showed excellent image quality (median, 4; interquartile range, 3-4). Although BLADE was rated significantly higher for overall image quality, noise, contrast, sharpness, artifacts, CRSL, and diagnostic confidence than HASTEDL, no differences were found concerning the number (n = 102) and measured diameter of the detected hepatic lesions between the 2 sequences BLADE and HASTEDL. CONCLUSIONS The proposed single-breath-hold abdominal HASTEDL with variable refocusing FAs is feasible at 3 T within SAR limits and yields high image quality and diagnostic confidence as compared with a standard T2-weighted acquisition technique, at a 10th of the acquisition time.
Collapse
Affiliation(s)
- Judith Herrmann
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA
| | - Simon Arberet
- Digital Technology & Innovation, Siemens Healthineers, Princeton, NJ
| | - Sebastian Gassenmaier
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Saif Afat
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Konstantin Nikolaou
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | | |
Collapse
|
9
|
Almansour H, Gassenmaier S, Nickel D, Kannengiesser S, Afat S, Weiss J, Hoffmann R, Othman AE. Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging: An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity. Invest Radiol 2021; 56:509-516. [PMID: 33625063 DOI: 10.1097/rli.0000000000000769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the impact of a deep learning-based superresolution reconstruction technique for T1-weighted volume-interpolated breath-hold examination (VIBESR) on image quality in comparison with standard VIBE images (VIBESD). METHODS Between May and August 2020, a total of 46 patients with various abdominal pathologies underwent contrast-enhanced upper abdominal VIBE magnetic resonance imaging (MRI) at 1.5 T. After data acquisition, the precontrast and postcontrast T1-weighted VIBE raw data were processed by a deep learning-based prototype algorithm for deblurring and denoising the images as well as for enhancing their sharpness (VIBESR). In a randomized and blinded manner, 2 radiologists independently analyzed the image data sets using the unprocessed images VIBESD as a standard reference. Outcome measures were as follows: overall image quality, anatomic clarity of organ borders, sharpness of vessels, artifacts, noise, and diagnostic confidence. All ratings were performed on an ordinal 4-point Likert scale. If the MRI examination encompassed a hepatic lesion, the maximum diameter of the largest hepatic lesion was quantified, and lesion sharpness and conspicuity were evaluated on an ordinal 4-point Likert scale. In addition, a post hoc regression analysis for lesion evaluation was computed. Finally, interrater/intrarater agreement was analyzed. RESULTS The overall image quality, anatomic clarity of organ borders, and sharpness of vessels in both precontrast and postcontrast images were rated significantly higher in VIBESR than in VIBESD (P < 0.001). Similarly, diagnostic confidence was higher in VIBESR than in VIBESD (P < 0.001). Furthermore, VIBESR images were rated to have significantly less noise and fewer artifacts in comparison with VIBESD (P < 0.001). The interreader agreement was substantial with a Cohen κ of 0.72 for the precontrast analysis and a κ of 0.74 for the postcontrast analysis. A total of 28 hepatic lesions were analyzed. For both readers, lesion sharpness and conspicuity were rated significantly better in VIBESR than in VIBESD in both the precontrast and postcontrast data sets (P < 0.01), which was consistent with the post hoc regression analysis (for every 1-point increase in sharpness/conspicuity, the odds ratio revealed a positive relation with VIBESR of 13-fold to 17-fold in comparison with VIBESD; P < 0.001). In terms of lesion size, there was no significant difference between the precontrast VIBESD and VIBESR or between the postcontrast VIBESD and VIBESR for both readers. Similarly, there was an excellent interreader agreement regarding lesion size (intraclass correlation coefficient, >0.9). CONCLUSIONS The data-driven superresolution reconstruction (VIBESR) is clinically feasible for precontrast and postcontrast upper abdominal VIBE MRI, providing improved image quality, diagnostic confidence, and lesion conspicuity compared with standard VIBESD images.
Collapse
Affiliation(s)
- Haidara Almansour
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen
| | - Sebastian Gassenmaier
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen
| | | | - Saif Afat
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, Freiburg
| | - Rüdiger Hoffmann
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tuebingen University Hospital, Tuebingen
| | | |
Collapse
|
10
|
Harder FN, Budjan J, Nickel MD, Grimm R, Pietsch H, Schoenberg SO, Jost G, Attenberger UI. Intraindividual Comparison of Compressed Sensing-Accelerated Cartesian and Radial Arterial Phase Imaging of the Liver in an Experimental Tumor Model. Invest Radiol 2021; 56:433-441. [PMID: 33813577 DOI: 10.1097/rli.0000000000000767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to intraindividually compare the performance of 2 compressed sensing (CS)-accelerated magnetic resonance imaging (MRI) sequences, 1 featuring Cartesian (compressed sensing volumetric interpolated breath-hold examination [CS-VIBE]) and the other radial (golden-angle radial sparse parallel [GRASP]) k-space sampling in continuous dynamic imaging during hepatic vascular phases, using extracellular and hepatocyte-specific contrast agents. MATERIALS AND METHODS Seven New Zealand white rabbits, with induced VX2 liver tumors (median number of lesions, 2 ± 0.83; range, 1-3), received 2 continuously acquired T1-weighted prototype CS-accelerated MRI sequences (CS-VIBE and GRASP) with high spatial (0.8 × 0.8 × 1.5 mm) and temporal resolution (3.5 seconds) in randomized order on 2 separate days using a 1.5-T scanner. In all animals, imaging was performed using first gadobutrol at a dose of 0.1 mmol/kg and, then 45 minutes later, gadoxetic acid at a dose of 0.025 mmol/kg.The following qualitative parameters were assessed using 3- and 5-point Likert scales (3 and 5 being the highest scores respectively): image quality (IQ), arterial and venous vessel delineation, tumor enhancement, motion artifacts, and sequence-specific artifacts. Furthermore, the following quantitative parameters were obtained: relative peak signal enhancement, time to peak, mean transit time, and plasma flow ratios. Paired sampled t tests and Wilcoxon signed rank tests were used for intraindividual comparison. Image analysis was performed by 2 radiologists. RESULTS Six of 7 animals underwent the full imaging protocol and obtained data were analyzed statistically. Overall IQ was rated moderate to excellent, not differing significantly between the 2 sequences.Gadobutrol-enhanced CS-VIBE examinations revealed the highest mean Likert scale values in terms of vessel delineation and tumor enhancement (arterial 4.4 [4-5], venous 4.3 [3-5], and tumor 2.9 [2-3]). Significantly, more sequence-specific artifacts were seen in GRASP examinations (P = 0.008-0.031). However, these artifacts did not impair IQ. Excellent Likert scale ratings were found for motion artifacts in both sequences. In both sequences, a maximum of 4 hepatic arterial dominant phases were obtained. Regarding the relative peak signal enhancement, CS-VIBE and GRASP showed similar results. The relative peak signal enhancement values did not differ significantly between the 2 sequences in the aorta, the hepatic artery, or the inferior vena cava (P = 0.063-0.536). However, significantly higher values were noted for CS-VIBE in gadoxetic acid-enhanced examinations in the portal vein (P = 0.031) and regarding the tumor enhancement (P = 0.005). Time to peak and mean transit time or plasma flow ratios did not differ significantly between the sequences. CONCLUSIONS Both CS-VIBE and GRASP provide excellent results in dynamic liver MRI using extracellular and hepatocyte-specific contrast agents, in terms of IQ, peak signal intensity, and presence of artifacts.
Collapse
Affiliation(s)
- Felix N Harder
- From the Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich
| | | | | | | | | | - Stefan O Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim-Heidelberg University, Mannheim
| | - Gregor Jost
- MR and CT Contrast Media Research, Bayer AG, Berlin
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Hindel S, Heuchel L, Lüdemann L. Fractional calculus tracer kinetic compartment model for quantification of microvascular perfusion. Physiol Meas 2021; 42. [PMID: 34049294 DOI: 10.1088/1361-6579/ac067c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/26/2021] [Indexed: 11/11/2022]
Abstract
Objective. We evaluate a tracer kinetic model for quantification of physiological perfusion and microvascular residue time kurtosis (RTK) in skeletal muscle vasculature with first pass bolus experiments in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Approach. A decreasing stretched Mittag-Leffler function (f1C model) was obtained as the impulse response solution of a rate equation of real-valued ('fractional') derivation order. The method was validated in skeletal muscle in the lower limb of seven female pigs examined by DCE-MRI. Dynamic imaging during blood pool contrast agent elimination was performed using a 3D gradient echo sequence with k-space sharing. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery increasing blood flow up to four times. Blood flow measured by a Doppler flow probe placed at the femoral artery served as ground truth.Main results. Goodness of fit and correlation with the Doppler measurements,r= 0.80 (P< 0.001), of the 4-parameter f1C model was comparable with the results obtained with a previously tested 6-parameter two-compartment (2C) model. The derivation orderαof the f1C model can be interpreted as a measure of microvascular RTK. With increasing blood flow,αdropped significantly, leading to an increase in RTK.Significance. The f1C model is a practical approach based on hemodynamic principles to quantify physiological microvascular perfusion but it is impaired due to its compartmental nature.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy, Medical Physics section, University Hospital Essen, Essen, North Rhine-Westphalia, Germany.,Faculty of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Rhineland-Palatinate, Germany
| | - Lena Heuchel
- Faculty of Physics, Technische Universität Dortmund, Dortmund, North Rhine-Westphalia, Germany
| | - Lutz Lüdemann
- Department of Radiotherapy, Medical Physics section, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Herrmann J, Gassenmaier S, Nickel D, Arberet S, Afat S, Lingg A, Kündel M, Othman AE. Diagnostic Confidence and Feasibility of a Deep Learning Accelerated HASTE Sequence of the Abdomen in a Single Breath-Hold. Invest Radiol 2021; 56:313-319. [PMID: 33208596 DOI: 10.1097/rli.0000000000000743] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility of a single breath-hold fast half-Fourier single-shot turbo spin echo (HASTE) sequence using a deep learning reconstruction (HASTEDL) for T2-weighted magnetic resonance imaging of the abdomen as compared with 2 standard T2-weighted imaging sequences (HASTE and BLADE). MATERIALS AND METHODS Sixty-six patients who underwent 1.5-T liver magnetic resonance imaging were included in this monocentric, retrospective study. The following T2-weighted sequences in axial orientation and using spectral fat suppression were compared: a conventional respiratory-triggered BLADE sequence (time of acquisition [TA] = 4:00 minutes), a conventional multiple breath-hold HASTE sequence (HASTES) (TA = 1:30 minutes), as well as a single breath-hold HASTE with deep learning reconstruction (HASTEDL) (TA = 0:16 minutes). Two radiologists assessed the 3 sequences regarding overall image quality, noise, sharpness, diagnostic confidence, and lesion detectability as well as lesion characterization using a Likert scale ranging from 1 to 4 with 4 being the best. Comparative analyses were conducted to assess the differences between the 3 sequences. RESULTS HASTEDL was successfully acquired in all patients. Overall image quality for HASTEDL was rated as good (median, 3; interquartile range, 3-4) and was significantly superior to HASTEs (P < 0.001) and inferior to BLADE (P = 0.001). Noise, sharpness, and artifacts for HASTEDL reached similar levels to BLADE (P ≤ 0.176) and were significantly superior to HASTEs (P < 0.001). Diagnostic confidence for HASTEDL was rated excellent by both readers and significantly superior to HASTEs (P < 0.001) and inferior to BLADE (P = 0.044). Lesion detectability and lesion characterization for HASTEDL reached similar levels to those of BLADE (P ≤ 0.523) and were significantly superior to HASTEs (P < 0.001). Concerning the number of detected lesions and the measured diameter of the largest lesion, no significant differences were found comparing BLADE, HASTES, and HASTEDL (P ≤ 0.912). CONCLUSIONS The single breath-hold HASTEDL is feasible and yields comparable image quality and diagnostic confidence to standard T2-weighted TSE BLADE and may therefore allow for a remarkable time saving in abdominal imaging.
Collapse
Affiliation(s)
- Judith Herrmann
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Sebastian Gassenmaier
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Simon Arberet
- Digital Technology & Innovation, Siemens Medical Solutions USA, Inc, Princeton, NJ
| | - Saif Afat
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Andreas Lingg
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Matthias Kündel
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| | - Ahmed E Othman
- From the Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, Tuebingen
| |
Collapse
|
13
|
Bai Z, Shi J, Yang Z, Zeng W, Hu H, Zhong J, Duan X, Wang X, Shen J. Quantitative kinetic parameters of primary tumor can be used to predict pelvic lymph node metastasis in early-stage cervical cancer. Abdom Radiol (NY) 2021; 46:1129-1136. [PMID: 32930831 DOI: 10.1007/s00261-020-02762-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the role of kinetic parameters of primary tumor derived from dynamic contrast-enhanced MRI (DCE-MRI) in predicting pelvic lymph node metastasis (PLNM) in patients with cervical cancer. METHODS 66 women with newly diagnosed cervical cancer were included between July 2017 and August 2019. All patients had a FIGO stage IB-IIA cancer and treated with hysterectomy and bilateral lymphadenectomy. Kinetic parameters of the primary tumor were derived from DCE-MRI data. The tumor diameter, ADC value, kinetic parameters, and nodal short-axis diameter were compared between patients with or without PLNM. Logistic regression analysis was used to determine the independent predictors for PLNM and receiver operator characteristic curve was used to evaluate the predictive performance. RESULTS There were 20 patients with PLNM and 46 patients without PLNM. Tumor diameter, the efflux rate constant (Kep), and nodal short-axis diameter were significantly higher in patients with PLNM (P < 0.01). Multivariate logistic regression analysis showed that Kep and short-axis diameter were independent predictors for PLNM. Combining Kep and nodal short-axis diameter yielded the highest area under the curve (AUC) of 0.839. Combined with Kep, the sensitivity, specificity, negative predictive value, and positive predictive value of nodal short-axis diameter increased from 0.500, 0.957, 0.815, and 0.833 to 0.600, 0.978, 0.923, and 0.849, respectively. With 1.113 min-1 as threshold, the sensitivity and specificity values of Kep in predicting PLNM in patients with normal-sized lymph nodes were 0.909 and 0.667, respectively. CONCLUSIONS Kep of primary tumor can be used as a surrogate marker to predict PLNM in cervical cancer.
Collapse
Affiliation(s)
- Zhiqiang Bai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Jie Shi
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Jinglian Zhong
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xinmin Wang
- Department of MRI, Maoming People Hospital, No. 101 Weimin Road, Maoming, 525000, Guangdong, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
14
|
Gentle Touch: Noninvasive Approaches to Improve Patient Comfort and Cooperation for Pediatric Imaging. Top Magn Reson Imaging 2021; 29:187-195. [PMID: 32541256 DOI: 10.1097/rmr.0000000000000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pediatric imaging presents unique challenges related to patient anxiety, cooperation, and safety. Techniques to reduce anxiety and patient motion in adults must often be augmented in pediatrics, because it is always mentioned in the field of pediatrics, children are not miniature adults. This article will review methods that can be considered to improve patient experience and cooperation in imaging studies. Such techniques can range from modifications to the scanner suite, different ways of preparing and interacting with children, collaborating with parents for improved patient care, and technical advances such as accelerated acquisition and motion correction to reduce artifact. Special considerations for specific populations including transgender patients, neonates, and pregnant women undergoing fetal imaging will be described. The unique risks of sedation in children will also be briefly reviewed.
Collapse
|
15
|
Tanabe M, Higashi M, Iida E, Onoda H, Ihara K, Ariyoshi S, Kameda F, Miyoshi K, Furukawa M, Okada M, Ito K. Transient respiratory motion artifacts in multiple arterial phases on abdominal dynamic magnetic resonance imaging: a comparison using gadoxetate disodium and gadobutrol. Jpn J Radiol 2020; 39:178-185. [PMID: 32959222 DOI: 10.1007/s11604-020-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To compare the occurrence of transient respiratory motion artifacts (TRMAs) in multiple arterial phases on abdominal magnetic resonance (MR) images between those obtained using gadobutrol and gadoxetate disodium. MATERIALS AND METHODS Two hundred and fourteen abdominal MR examinations (101 with gadoxetate disodium, 113 with gadobutrol) were evaluated. Dynamic three-dimensional contrast-enhanced T1-weighted imaging (CAIPIRINHA-Dixon-TWIST-VIBE) including single-breath-hold six arterial phase acquisitions was performed on a 3.0-T MRI scanner. The TRMAs frequency and the mean TRMA scores were compared between patients assessed with gadoxetate disodium and those assessed with gadobutrol. In addition, the timing of TRMAs appearing for the first time was also recorded and compared between the two groups. RESULTS The mean TRMA scores in all arterial phases using gadoxetate disodium were significantly worse than in those using gadobutrol (1.49 ± 0.78 vs. 1.18 ± 0.53, P < .001). Regarding the timing of the occurrence of TRMAs, the severe TRMAs frequency after the third arterial phase was significantly higher in patients using gadoxetate disodium (10/101, 10%) than in those using gadobutrol (0/113, 0%) (P < .001). CONCLUSION In multiple-arterial-phase dynamic MRI, the TRMAs frequency when using gadoxetate disodium increased compared with gadobutrol, due to intolerable respiratory suspension after the third arterial phase.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Etsushi Iida
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hideko Onoda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoko Ariyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumi Kameda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Munemasa Okada
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
16
|
Hao W, Peng W, Wang C, Zhao B, Wang G. Image quality of the CAIPIRINHA-Dixon-TWIST-VIBE technique for ultra-fast breast DCE-MRI: Comparison with the conventional GRE technique. Eur J Radiol 2020; 129:109108. [PMID: 32563961 DOI: 10.1016/j.ejrad.2020.109108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to evaluate image quality of the CAIPIRINHA-Dixon-TWIST-Volume-Interpolated Breath-hold Examination (CDT-VIBE) technique for ultra-fast breast dynamic contrast enhanced (DCE) MRI with respect to conventional Gradient-Recalled Echo (GRE) technique. METHODS A total of 58 patients underwent a DCE-MRI based on CDT-VIBE sequence (temporal resolution: 11.9 s), immediately followed by 1 phase of a conventional T1 weighted GRE sequence (acquisition time: 68 s). The Signal-to-Noise Ratio (SNR) on phantom images, lesion/parenchyma signal ratio (LPSR), image quality, and morphological characterization were compared between the last phase of CDT-VIBE and conventional GRE images. The image quality was assessed by visual grading analysis (VGA). Reader agreement was assessed using Kappa analysis. RESULTS There was no significant difference in SNR (phantom) or LPSR (patient) between CDT-VIBE and conventional GRE images (P > 0.05). Significant parallel acquisition technique (PAT) noise and mild blurriness was observed on CDT-VIBE images. Visual grading analysis (VGA) confirmed significantly worse ratings for CDT-VIBE compared to the conventional GRE sequence in terms of PAT noise, lesion's internal feature clarity, and therefore overall image quality (area under contrast curve [AUC] values: 0.578 ‒ 0.764, P < 0.05), but edge sharpness and lesion conspicuity were equivalent (P > 0.05). Kappa analysis revealed good agreement on image quality scores (к = 0.725 ‒ 0.908) and on morphologic terms (к = 0.745-1.000). CONCLUSION The CDT-VIBE sequence provides excellent spatial resolution and adequate image quality in ultra-fast breast DCE-MRI. Further improvement in PAT noise and internal structure blurriness may be necessary.
Collapse
Affiliation(s)
- Wen Hao
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of MR Imaging, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China
| | - Weijun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cuiyan Wang
- Department of MR Imaging, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China
| | - Bin Zhao
- Department of MR Imaging, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China
| | - Guangbin Wang
- Department of MR Imaging, Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Hindel S, Geisel D, Alerić I, Theilig D, Denecke T, Lüdemann L. Liver function quantification of patients with portal vein embolization using dynamic contrast-enhanced MRI for assessment of hepatocyte uptake and elimination. Phys Med 2020; 76:207-220. [PMID: 32707485 DOI: 10.1016/j.ejmp.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE We evaluated pharmacokinetic models which quantify liver function including biliary elimination based on a dynamic Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) technique with sparse data collection feasible in clinical routine. METHODS Twelve patients with embolized liver segments following interventional treatment of primary liver cancer or hepatic metastasis underwent MRI. During Gd-EOB-DTPA bolus administration, a 3D dynamic gradient-echo (GRE) MRI examination was performed over approx. 28 min. Interrupted data sampling was started approx. 5 min after contrast agent administration. Different implementations of dual-inlet models were tested, namely the Euler method (DE) and convolution with residue functions (C). A simple uptake model (U) and an uptake- elimination model (UE) extended by incorporating the biliary contrast agent elimination rate (Ke) were evaluated. RESULTS The uptake-elimination model, calculated via the simple Euler method (UE- DE) and by convolution (UE-C), yielded similar overall estimates in terms of fitting quality and agreement with published values. The Euler method was approx. 50 times faster and yielded a mean elimination rate of Ke=1.8±1.2mL/(min·100 mL) in nonembolized liver tissue, which was significantly higher (p=8.8·10-4) than in embolized tissue Ke=0.4±0.4 mL/(min·100 mL). Fractional hepatocyte volume vh was not significantly higher in nonembolized tissue (52.4 ± 13.4 mL/100 mL) compared to embolized tissue (44.4 ± 26.1 mL/100 mL). CONCLUSIONS Interrupted late enhancement MRI data sampling in conjunction with the uptake-elimination model, deconvolved by integration of the differential rate equation and combined with the simple uptake model implemented with the Euler method (U-DE), turned out to be a stable and practical method for reliable noninvasive assessment of liver function.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Dominik Geisel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ivana Alerić
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany; Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
| | - Dorothea Theilig
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Timm Denecke
- Clinic and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Lutz Lüdemann
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
18
|
Borde T, Laage Gaupp F, Geschwind JF, Savic LJ, Miszczuk M, Rexha I, Adam L, Walsh JJ, Huber S, Duncan JS, Peters DC, Sinusas A, Schlachter T, Gebauer B, Hyder F, Coman D, van Breugel JMM, Chapiro J. Idarubicin-Loaded ONCOZENE Drug-Eluting Bead Chemoembolization in a Rabbit Liver Tumor Model: Investigating Safety, Therapeutic Efficacy, and Effects on Tumor Microenvironment. J Vasc Interv Radiol 2020; 31:1706-1716.e1. [PMID: 32684417 DOI: 10.1016/j.jvir.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate toxicity, efficacy, and microenvironmental effects of idarubicin-loaded 40-μm and 100-μm drug-eluting embolic (DEE) transarterial chemoembolization in a rabbit liver tumor model. MATERIALS AND METHODS Twelve male New Zealand White rabbits with orthotopically implanted VX2 liver tumors were assigned to DEE chemoembolization with 40-μm (n = 5) or 100-μm (n = 4) ONCOZENE microspheres or no treatment (control; n = 3). At 24-72 hours postprocedurally, multiparametric magnetic resonance (MR) imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and biosensor imaging of redundant deviation in shifts (BIRDS) was performed to assess extracellular pH (pHe), followed by immediate euthanasia. Laboratory parameters and histopathologic ex vivo analysis included fluorescence confocal microscopy and immunohistochemistry. RESULTS DCE MR imaging demonstrated a similar degree of devascularization of embolized tumors for both microsphere sizes (mean arterial enhancement, 8% ± 12 vs 36% ± 51 in controls; P = .07). Similarly, DWI showed postprocedural increases in diffusion across the entire lesion (apparent diffusion coefficient, 1.89 × 10-3 mm2/s ± 0.18 vs 2.34 × 10-3 mm2/s ± 0.18 in liver; P = .002). BIRDS demonstrated profound tumor acidosis at baseline (mean pHe, 6.79 ± 0.08 in tumor vs 7.13 ± 0.08 in liver; P = .02) and after chemoembolization (6.8 ± 0.06 in tumor vs 7.1 ± 0.04 in liver; P = .007). Laboratory and ex vivo analyses showed central tumor core penetration and greater increase in liver enzymes for 40-μm vs 100-μm microspheres. Inhibition of cell proliferation, intratumoral hypoxia, and limited idarubicin elution were equally observed with both sphere sizes. CONCLUSIONS Noninvasive multiparametric MR imaging visualized chemoembolic effects in tumor and tumor microenvironment following DEE chemoembolization. Devascularization, increased hypoxia, coagulative necrosis, tumor acidosis, and limited idarubicin elution suggest ischemia as the predominant therapeutic mechanism. Substantial size-dependent differences indicate greater toxicity with the smaller microsphere diameter.
Collapse
Affiliation(s)
- Tabea Borde
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | | | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Milena Miszczuk
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irvin Rexha
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lucas Adam
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John J Walsh
- Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Albert Sinusas
- Department of Cardiology, Yale Translational Research Imaging Center, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Bernhard Gebauer
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Johanna M M van Breugel
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510.
| |
Collapse
|
19
|
Guo LF, Gao G, Yuan Z. Detection of Dysplastic Liver Nodules in Patients with Cirrhosis Using the Multi-Arterial CAIPIRINHA-Dixon-TWIST-Volume-Interpolated Breath-Hold Examination (MA-CDT-VIBE) Technique in Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Med Sci Monit 2020; 26:e922618. [PMID: 32562415 PMCID: PMC7331482 DOI: 10.12659/msm.922618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The multi-arterial CAIPIRINHA-Dixon-TWIST-volume-interpolated breath-hold examination (MA-CDT-VIBE) sequence has the advantage of detecting hypervascular lesions during the arterial phase of magnetic resonance imaging (MRI) of the liver. Liver cirrhosis may be associated with dysplastic nodules. This study aimed to compare the use of routine liver MRI sequences with the MA-CDT-VIBE sequence to identify dysplastic liver nodules in patients with liver cirrhosis. Material/Methods Between February 2016 and March 2017, there were 21 patients with liver cirrhosis who had 33 dysplastic liver nodules, which were detected by comprehensive multisequence MRI as the reference standard for nodule imaging. Liver MRI using edge sharpness assessment by parametric (ESAP) modeling was compared with five dynamic arterial subphases that were included in the MA-CDT-VIBE sequence with a temporal resolution of 2.8 s and an acquisition time of 20 s during one breath-hold. Results In the 21 patients included in the study, the MA-CDT-VIBE technique (30/33 for the first reading and 33/33 for the second reading) showed an improved lesion detection rate compared with the ESAP technique (27/33 for the first reading and 29/33 for the second reading), and for 73% of the patients, MA-CDT-VIBE imaging showed improved arterial parenchyma contrast. There was a high degree of interobserver agreement between the two reads (κ: 0.68–0.91; P<0.001). Conclusions The MA-CDT-VIBE sequence of MRI liver imaging improved the detection of dysplastic nodules in cirrhosis of the liver compared with routine liver MRI sequences.
Collapse
Affiliation(s)
- Ling Fei Guo
- Department of Magnetic Resonance Imaging (MRI), Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Guihua Gao
- Department of Radiology, Dongping Peoples' Hospital, Taian, Shandong, China (mainland)
| | - Zhenguo Yuan
- Department of Magnetic Resonance Imaging (MRI), Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
20
|
Recognition of sacroiliac joint structural lesions: Comparison of volumetric interpolated breath-hold examination (VIBE) sequences with different slice thicknesses to T1-weighted turbo-echo. Eur J Radiol 2020; 124:108849. [DOI: 10.1016/j.ejrad.2020.108849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
|
21
|
Renal and renal sinus fat volumes as quantified by magnetic resonance imaging in subjects with prediabetes, diabetes, and normal glucose tolerance. PLoS One 2020; 15:e0216635. [PMID: 32074103 PMCID: PMC7029849 DOI: 10.1371/journal.pone.0216635] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose We hypothesize that MRI-based renal compartment volumes, particularly renal sinus fat as locally and potentially independently acting perivascular fat tissue, increase with glucose intolerance. We therefore analyze the distribution of renal volumes in individuals with normal glucose levels and prediabetic and diabetic individuals and investigate potential associations with other typical cardiometabolic biomarkers. Material and methods The sample comprised N = 366 participants who were either normoglycemic (N = 230), had prediabetes (N = 87) or diabetes (N = 49), as determined by Oral Glucose Tolerance Test. Other covariates were obtained by standardized measurements and interviews. Whole-body MR measurements were performed on a 3 Tesla scanner. For assessment of the kidneys, a coronal T1w dual-echo Dixon and a coronal T2w single shot fast spin echo sequence were employed. Stepwise semi-automated segmentation of the kidneys on the Dixon-sequences was based on thresholding and geometric assumptions generating volumes for the kidneys and sinus fat. Inter- and intra-reader variability were determined on a subset of 40 subjects. Associations between glycemic status and renal volumes were evaluated by linear regression models, adjusted for other potential confounding variables. Furthermore, the association of renal volumes with visceral adipose tissue was assessed by linear regression models and Pearson’s correlation coefficient. Results Renal volume, renal sinus volume and renal sinus fat increased gradually from normoglycemic controls to individuals with prediabetes to individuals with diabetes (renal volume: 280.3±64.7 ml vs 303.7±67.4 ml vs 320.6±77.7ml, respectively, p < 0.001). After adjustment for age and sex, prediabetes and diabetes were significantly associated to increased renal volume, sinus volume (e.g. βPrediabetes = 10.1, 95% CI: [6.5, 13.7]; p<0.01, βDiabetes = 11.86, 95% CI: [7.2, 16.5]; p<0.01) and sinus fat (e.g. βPrediabetes = 7.13, 95% CI: [4.5, 9.8]; p<0.001, βDiabetes = 7.34, 95% CI: [4.0, 10.7]; p<0.001). Associations attenuated after adjustment for additional confounders were only significant for prediabetes and sinus volume (ß = 4.0 95% CI [0.4, 7.6]; p<0.05). Hypertension was significantly associated with increased sinus volume (β = 3.7, 95% CI: [0.4, 7.0; p<0.05]) and absolute sinus fat volume (β = 3.0, 95% CI: [0.7, 5.3]; p<0.05). GFR and all renal volumes were significantly associated as well as urine creatinine levels and renal sinus volume (β = 1.6, 95% CI: [0.1, 2.9]; p<0.05). Conclusion Renal volume and particularly renal sinus fat volume already increases significantly in prediabetic subjects and is significantly associated with VAT. This shows, that renal sinus fat is a perivascular adipose tissue, which early undergoes changes in the development of metabolic disease. Our findings underpin that renal sinus fat is a link between metabolic disease and associated chronic kidney disease, making it a potential imaging biomarker when assessing perivascular adipose tissue.
Collapse
|
22
|
Koç U, Ocakoğlu G, Alğin O. The efficacy of the 3-dimensional vibe-caipirinha-dixon technique in the evaluation of pancreatic steatosis. Turk J Med Sci 2020; 50:184-194. [PMID: 31865664 PMCID: PMC7080364 DOI: 10.3906/sag-1909-83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background/aim CAIPIRINHA is a new technique in abdominal imaging. Pancreatic steatosis (PS) is a subject of increasing scientific interest. The aim of this study was to investigate the efficacy of the isotropic 3D-VIBE- CAIPIRINHA -DIXON technique on a new generation 3-tesla MR unit in the evaluation of PS. Materials and methods In this retrospective study, the imaging findings of 49 patients with PS and 41 control subjects were examined. The pancreas-to-spleen ratio (PSR), pancreas-to-muscle ratio (PMR), and pancreatic signal intensity index (PSII) were defined as 3 new parameters and these indexes were calculated from the in-phase/out of phase 3D-VIBE- CAIPIRINHA-DIXON images. Results The PSR, PMR, and PSII values were significantly different between the patient and control groups (P = 0.001, P = 0.009, P < 0.001, respectively). Statistically significant differences were observed between patient and control groups for ROI measurements of fatty areas on these sequences/images: subtraction (in-out) (P < 0.001), T2W HASTE (P < 0.001), DIXON-fat (P < 0.001), fat-suppressed T1W (P = 0.002), and subtraction (out-in) (P = 0.010). Conclusion Evaluation of PS with the 3D-VIBE-CAIPIRINHA-DIXON technique can be made rapidly and effectively.
Collapse
Affiliation(s)
- Ural Koç
- Section of Radiology, Ankara Sehit Ahmet Ozsoy State Hospital, Ankara, Turkey
| | - Gökhan Ocakoğlu
- Department of Biostatistics, School of Medicine, Uludag University, Bursa, Turkey
| | - Oktay Alğin
- Department of Radiology, School of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
23
|
Free-Breathing Dynamic Contrast-Enhanced Imaging of the Upper Abdomen Using a Cartesian Compressed-Sensing Sequence With Hard-Gated and Motion-State-Resolved Reconstruction. Invest Radiol 2019; 54:728-736. [DOI: 10.1097/rli.0000000000000607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Savic LJ, Schobert IT, Peters D, Walsh JJ, Laage-Gaupp FM, Hamm CA, Tritz N, Doemel LA, Lin M, Sinusas A, Schlachter T, Duncan JS, Hyder F, Coman D, Chapiro J. Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment. Clin Cancer Res 2019; 26:428-438. [PMID: 31582517 DOI: 10.1158/1078-0432.ccr-19-1702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer. EXPERIMENTAL DESIGN Thirty-two VX2 tumor-bearing New Zealand white rabbits underwent longitudinal imaging on clinical 3T-MRI and CT scanners before and up to 2 weeks after complete conventional transarterial chemoembolization (cTACE) using ethiodized oil (lipiodol) and doxorubicin. MR-spectroscopic imaging (MRSI) was employed for pHe mapping. Multiparametric MRI and CT were performed to quantify tumor enhancement, diffusion, and lipiodol coverage of the tumor posttherapy. In addition, incomplete cTACE with reduced chemoembolic doses was applied to mimic undertreatment and exploit pHe mapping to detect viable tumor residuals. Imaging findings were correlated with histopathologic markers indicative of metabolic state (HIF-1α, GLUT-1, and LAMP-2) and viability (proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase dUTP nick-end labeling). RESULTS Untreated VX2 tumors demonstrated a significantly lower pHe (6.80 ± 0.09) than liver parenchyma (7.19 ± 0.03, P < 0.001). Upregulation of HIF-1α, GLUT-1, and LAMP-2 confirmed a hyperglycolytic tumor phenotype and acidosis. A gradual tumor pHe increase toward normalization similar to parenchyma was revealed within 2 weeks after complete cTACE, which correlated with decreasing detectability of metabolic markers. In contrast, pHe mapping after incomplete cTACE indicated both acidic viable residuals and increased tumor pHe of treated regions. Multimodal imaging revealed durable tumor devascularization immediately after complete cTACE, gradually increasing necrosis, and sustained lipiodol coverage of the tumor. CONCLUSIONS MRSI-based pHe mapping can serve as a longitudinal monitoring tool for viable tumors. As most liver tumors are hyperglycolytic creating microenvironmental acidosis, therapy-induced normalization of tumor pHe may be used as a functional biomarker for positive therapeutic outcome.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Dana Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - John J Walsh
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Max Laage-Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Nina Tritz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Albert Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
25
|
Compressed Sensing and Parallel Imaging for Double Hepatic Arterial Phase Acquisition in Gadoxetate-Enhanced Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2019; 54:374-382. [DOI: 10.1097/rli.0000000000000548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Hong SB, Lee NK, Kim S, Seo HI, Kim HS, Kim DU, Kim TU, Ryu HS. Modified CAIPIRINHA-VIBE without view-sharing on gadoxetic acid-enhanced multi-arterial phase MR imaging for diagnosing hepatocellular carcinoma: comparison with the CAIPIRINHA-Dixon-TWIST-VIBE. Eur Radiol 2019; 29:3574-3583. [PMID: 30993435 DOI: 10.1007/s00330-019-06095-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE We evaluated the detection rate and degree of motion artifact of the modified CAIPIRINHA-VIBE (mC-VIBE) without view-sharing and compare them with the CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE) with view-sharing on multi-arterial gadoxetic acid-enhanced liver MRI in the assessment of hepatocellular carcinoma (HCC). MATERIAL AND METHODS We retrospectively identified 114 pathological-proven hepatic tumors in 114 patients with risk of HCC who underwent multi-arterial gadoxetic acid-enhanced MRI between June 2016 and June 2018. All patients underwent triple arterial phase imaging using the mC-VIBE without view-sharing (54 patients; 49 HCCs and 5 non-HCCs) or the CDT-VIBE with view-sharing (60 patients; 55 HCCs and 5 non-HCCs). We compared the detection rate of two sequences for HCC, with reference to LI-RADS.V.2017. We also compared the mean motion scores and proportions of transient severe motion (TSM) in two sequences. RESULT For the examination using the mC-VIBE, the HCC-detection rate was significantly higher, compared with that using CDT-VIBE (93.9% [46/49] vs 80.0% [44/55], respectively; p = 0.047). For the examination with the mC-VIBE, mean motion scores were significantly lower compared with those of CDT-VIBE for all multi-arterial phases (1.21, 1.19, and 1.15 vs. 1.82, 1.85, and 1.84, respectively; p < 0.001 for all three comparisons). The proportion of TSM in the CDT-VIBE was significantly higher than that in the mC-VIBE (15.0% [9/60] vs 0.0% [0/54], respectively; p = 0.003). CONCLUSION In multi-arterial phase gadoxetic acid-enhanced MRI, the mC-VIBE sequence without view-sharing has slightly higher HCC-detection rate and fewer motion artifacts compared with CDT-VIBE with view-sharing. KEY POINTS • Multi-arterial phase using the mC-VIBE without view-sharing can overcome motion artifacts, resulting in providing optimal arterial phase imaging. • The HCC-detection rate is slightly higher with the mC-VIBE vs. CAIPIRINHA-Dixon-TWIST-VIBE with view-sharing (CDT-VIBE). • View-sharing of CDT-VIBE in the multi-arterial phase is associated with increased frequency of TSM.
Collapse
Affiliation(s)
- Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Hyeong Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Hyun Sung Kim
- Department of Surgery, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Dong Uk Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Tae Un Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Hwa Seong Ryu
- Department of Radiology, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| |
Collapse
|
27
|
Crombé A, Saut O, Guigui J, Italiano A, Buy X, Kind M. Influence of temporal parameters of DCE‐MRI on the quantification of heterogeneity in tumor vascularization. J Magn Reson Imaging 2019; 50:1773-1788. [DOI: 10.1002/jmri.26753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Amandine Crombé
- Department of RadiologyInstitut Bergonié, Comprehensive Cancer Center Bordeaux France
- University of BordeauxIMB, UMR CNRS 5251, INRIA Project Team Monc Talence France
| | - Olivier Saut
- University of BordeauxIMB, UMR CNRS 5251, INRIA Project Team Monc Talence France
| | - Jerome Guigui
- Department of RadiologyInstitut Bergonié, Comprehensive Cancer Center Bordeaux France
| | - Antoine Italiano
- Department of Medical OncologyInstitut Bergonié, Comprehensive Cancer Center Bordeaux France
| | - Xavier Buy
- Department of RadiologyInstitut Bergonié, Comprehensive Cancer Center Bordeaux France
| | - Michèle Kind
- Department of RadiologyInstitut Bergonié, Comprehensive Cancer Center Bordeaux France
| |
Collapse
|
28
|
Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence. J Comput Assist Tomogr 2019; 43:46-50. [PMID: 29901511 DOI: 10.1097/rct.0000000000000766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. METHODS Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. RESULTS CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). CONCLUSIONS Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Collapse
|
29
|
Chen Y, Wu B, Liu H, Wang D, Gu Y. Feasibility study of dual parametric 2D histogram analysis of breast lesions with dynamic contrast-enhanced and diffusion-weighted MRI. J Transl Med 2018; 16:325. [PMID: 30470241 PMCID: PMC6260880 DOI: 10.1186/s12967-018-1698-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to investigate the diagnostic value of a dual-parametric 2D histogram classification method for breast lesions. Methods This study included 116 patients with 72 malignant and 44 benign breast lesions who underwent CAIPIRINHA-Dixon-TWIST-VIBE dynamic contrast-enhanced (CDT-VIBE DCE) and readout-segmented diffusion-weighted magnetic resonance examination. The volume of interest (VOI), which encompassed the entire lesion, was segmented from the last phase of DCE images. For each VOI, a 1D histogram analysis (mean, median, 10th percentile, 90th percentile, kurtosis and skewness) was performed on apparent diffusion coefficient (ADC) and volume transfer constant (Ktrans) maps; a 2D histogram image (Ktrans-ADC) was generated from the pixelwise aligned maps, and its kurtosis and skewness were calculated. Each parameter was correlated with pathological results using the Mann–Whitney test and receiver operating characteristic curve analysis. Results For the Ktrans histogram, the area under the curve (AUC) of the mean, median, 90th percentile and kurtosis had statistically diagnostic values (mean: 0.760; median: 0.661; 90th percentile: 0.781; and kurtosis: 0.620). For the ADC histogram, the AUC of the mean, median, 10th percentile, skewness and kurtosis had statistically diagnostic values (mean: 0.661; median: 0.677; 10th percentile: 0.656; skewness: 0.664; and kurtosis: 0.620). For the 2D Ktrans-ADC histogram, the skewness and kurtosis had statistically higher diagnostic values (skewness: 0.831, kurtosis: 0.828) than those of the 1D histogram (all P < 0.05). Conclusions The dual-parametric 2D histogram analysis revealed better diagnostic accuracy for breast lesions than single parametric histogram analysis of either Ktrans or ADC maps.
Collapse
Affiliation(s)
- Yanqiong Chen
- Fudan University Shanghai Cancer Center, No. 270, Dong'an Rd, Shanghai, 200032, China
| | - Bin Wu
- Fudan University Shanghai Cancer Center, No. 270, Dong'an Rd, Shanghai, 200032, China
| | - Hui Liu
- Imaging Technology (Shanghai), Shanghai, China
| | - Dan Wang
- Fudan University Shanghai Cancer Center, No. 270, Dong'an Rd, Shanghai, 200032, China
| | - Yajia Gu
- Fudan University Shanghai Cancer Center, No. 270, Dong'an Rd, Shanghai, 200032, China.
| |
Collapse
|
30
|
Shaikh J, Stoddard PB, Levine EG, Roh AT, Saranathan M, Chang ST, Muelly MC, Hargreaves BA, Vasanawala SS, Loening AM. View-Sharing Artifact Reduction With Retrospective Compressed Sensing Reconstruction in the Context of Contrast-Enhanced Liver MRI for Hepatocellular Carcinoma (HCC) Screening. J Magn Reson Imaging 2018; 49:984-993. [PMID: 30390358 DOI: 10.1002/jmri.26276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND View-sharing (VS) increases spatiotemporal resolution in dynamic contrast-enhanced (DCE) MRI by sharing high-frequency k-space data across temporal phases. This temporal sharing results in respiratory motion within any phase to propagate artifacts across all shared phases. Compressed sensing (CS) eliminates the need for VS by recovering missing k-space data from pseudorandom undersampling, reducing temporal blurring while maintaining spatial resolution. PURPOSE To evaluate a CS reconstruction algorithm on undersampled DCE-MRI data for image quality and hepatocellular carcinoma (HCC) detection. STUDY TYPE Retrospective. SUBJECTS Fifty consecutive patients undergoing MRI for HCC screening (29 males, 21 females, 52-72 years). FIELD STRENGTH/SEQUENCE 3.0T MRI. Multiphase 3D-SPGR T1 -weighted sequence undersampled in arterial phases with a complementary Poisson disc sampling pattern reconstructed with VS and CS algorithms. ASSESSMENT VS and CS reconstructions evaluated by blinded assessments of image quality and anatomic delineation on Likert scales (1-4 and 1-5, respectively), and HCC detection by OPTN/UNOS criteria including a diagnostic confidence score (1-5). Blinded side-by-side reconstruction comparisons for lesion depiction and overall series preference (-3-3). STATISTICAL ANALYSIS Two-tailed Wilcoxon signed rank tests for paired nonparametric analyses with Bonferroni-Holm multiple-comparison corrections. McNemar's test for differences in lesion detection frequency and transplantation eligibility. RESULTS CS compared with VS demonstrated significantly improved contrast (mean 3.6 vs. 2.9, P < 0.0001) and less motion artifact (mean 3.6 vs. 3.2, P = 0.006). CS compared with VS demonstrated significantly improved delineations of liver margin (mean 4.5 vs. 3.8, P = 0.0002), portal veins (mean 4.5 vs. 3.7, P < 0.0001), and hepatic veins (mean 4.6 vs. 3.5, P < 0.0001), but significantly decreased delineation of hepatic arteries (mean 3.2 vs. 3.7, P = 0.004). No significant differences were seen in the other assessments. DATA CONCLUSION Applying a CS reconstruction to data acquired for a VS reconstruction significantly reduces motion artifacts in a clinical DCE protocol for HCC screening. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:984-993.
Collapse
Affiliation(s)
- Jamil Shaikh
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| | - Paul B Stoddard
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| | - Evan G Levine
- Stanford University, School of Medicine, Departments of Electrical Engineering and Radiology, Stanford, California, USA
| | - Albert T Roh
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| | | | - Stephanie T Chang
- VA Palo Alto Healthcare System, Department of Radiology, Palo Alto, California, USA
| | - Michael C Muelly
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| | - Brian A Hargreaves
- Stanford University, School of Medicine, Departments of Electrical Engineering and Radiology, Stanford, California, USA
| | - Shreyas S Vasanawala
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| | - Andreas M Loening
- Stanford University, School of Medicine, Department of Radiology, Stanford, California, USA
| |
Collapse
|
31
|
Fast Abdominal Contrast-Enhanced Imaging With High Parallel-Imaging Factors Using a 60-Channel Receiver Coil Setup. Invest Radiol 2018; 53:602-608. [DOI: 10.1097/rli.0000000000000481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Stinson EG, Trzasko JD, Campeau NG, Glockner JF, Huston J, Young PM, Riederer SJ. Time-resolved contrast-enhanced MR angiography with single-echo Dixon fat suppression. Magn Reson Med 2018; 80:1556-1567. [PMID: 29488251 PMCID: PMC6097950 DOI: 10.1002/mrm.27152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE Dixon-based fat suppression has recently gained interest for dynamic contrast-enhanced MRI, but multi-echo techniques require longer scan times and reduce temporal resolution compared to single-echo alternatives without fat suppression. The purpose of this work is to demonstrate accelerated single-echo Dixon imaging with high spatial and temporal resolution. THEORY AND METHODS Real-valued water and fat images can be obtained from a single measurement if the shared initial phase and that due to ΔB0 are assumed known a priori. An expression for simultaneous sensitivity encoding (SENSE) unfolding and fat-water separation is derived for the general undersampling case, and simplified under the special case of uniform Cartesian undersampling. In vivo experiments were performed in extremities and brain with SENSE acceleration factors of up to R = 8. RESULTS Single-echo Dixon reconstruction of highly undersampled data was successfully demonstrated. Dynamic contrast-enhanced water and fat images provided high spatial and temporal resolution dynamic images with image update times shorter than previous single-echo Dixon work. CONCLUSION Time-resolved contrast-enhanced MRI with single-echo Dixon fat suppression shows high image quality, improved vessel delineation, and reduced sensitivity to motion when compared to time-subtraction methods.
Collapse
Affiliation(s)
| | | | | | | | - John Huston
- Mayo Clinic, Department of Radiology, Rochester, MN, USA
| | | | | |
Collapse
|
33
|
Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid–Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering. Invest Radiol 2018; 53:191-199. [DOI: 10.1097/rli.0000000000000428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Min JH, Kim YK, Kang TW, Jeong WK, Lee WJ, Ahn S, Hwang NY. Artifacts during the arterial phase of gadoxetate disodium-enhanced MRI: Multiple arterial phases using view-sharing from two different vendors versus single arterial phase imaging. Eur Radiol 2018; 28:3335-3346. [DOI: 10.1007/s00330-018-5307-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/27/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022]
|
35
|
Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther Onkol 2018; 194:414-424. [PMID: 29404626 DOI: 10.1007/s00066-018-1271-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE For assessing healthy liver reactions after robotic SBRT (stereotactic body radiotherapy), we investigated early morphologic alterations on MRI (magnetic resonance imaging) with respect to patient and treatment plan parameters. PATIENTS AND METHODS MRI data at 6-17 weeks post-treatment from 22 patients with 42 liver metastases were analyzed retrospectively. Median prescription dose was 40 Gy delivered in 3-5 fractions. T2- and T1-weighted MRI were registered to the treatment plan. Absolute doses were converted to EQD2 (Equivalent dose in 2Gy fractions) with α/β-ratios of 2 and 3 Gy for healthy, and 8 Gy for modelling pre-damaged liver tissue. RESULTS Sharply defined, centroid-shaped morphologic alterations were observed outside the high-dose volume surrounding the GTV. On T2-w MRI, hyperintensity at EQD2 isodoses of 113.3 ± 66.1 Gy2, 97.5 ± 54.7 Gy3, and 66.5 ± 32.0 Gy8 significantly depended on PTV dimension (p = 0.02) and healthy liver EQD2 (p = 0.05). On T1-w non-contrast MRI, hypointensity at EQD2 isodoses of 113.3 ± 49.3 Gy2, 97.4 ± 41.0 Gy3, and 65.7 ± 24.2 Gy8 significantly depended on prior chemotherapy (p = 0.01) and total liver volume (p = 0.05). On T1-w gadolinium-contrast delayed MRI, hypointensity at EQD2 isodoses of 90.6 ± 42.5 Gy2, 79.3 ± 35.3 Gy3, and 56.6 ± 20.9 Gy8 significantly depended on total (p = 0.04) and healthy (p = 0.01) liver EQD2. CONCLUSIONS Early post-treatment changes in healthy liver tissue after robotic SBRT could spatially be correlated to respective isodoses. Median nominal doses of 10.1-11.3 Gy per fraction (EQD2 79-97 Gy3) induce characteristic morphologic alterations surrounding the lesions, potentially allowing for dosimetric in-vivo accuracy assessments. Comparison to other techniques and investigations of the short- and long-term clinical impact require further research.
Collapse
|
36
|
Gurney-Champion OJ, McQuaid D, Dunlop A, Wong KH, Welsh LC, Riddell AM, Koh DM, Oelfke U, Leach MO, Nutting CM, Bhide SA, Harrington KJ, Panek R, Newbold KL. MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:306-316. [PMID: 29229323 PMCID: PMC5777665 DOI: 10.1016/j.ijrobp.2017.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE To determine the 3-dimensional (3D) intrafractional motion of head and neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS Dynamic contrast-enhanced magnetic resonance images from 56 patients with HNSCC in the treatment position were analyzed. Dynamic contrast-enhanced magnetic resonance imaging consisted of 3D images acquired every 2.9 seconds for 4 minutes 50 seconds. Intrafractional tumor motion was studied in the 3 minutes 43 seconds of images obtained after initial contrast enhancement. To assess tumor motion, rigid registration (translations only) was performed using a region of interest (ROI) mask around the tumor. The results were compared with bulk body motion from registration to all voxels. Motion was split into systematic motion and random motion. Correlations between the tumor site and random motion were tested. The within-subject coefficient of variation was determined from 8 patients with repeated baseline measures. Random motion was also assessed at the end of the first week (38 patients) and second week (25 patients) of radiation therapy to investigate trends of motion. RESULTS Tumors showed irregular occasional rapid motion (eg, swallowing or coughing), periodic intermediate motion (respiration), and slower systematic drifts throughout treatment. For 95% of the patients, displacements due to systematic and random motion were <1.4 mm and <2.1 mm, respectively, 95% of the time. The motion without an ROI mask was significantly (P<.0001, Wilcoxon signed rank test) less than the motion with an ROI mask, indicating that tumors can move independently from the bony anatomy. Tumor motion was significantly (P=.005, Mann-Whitney U test) larger in the hypopharynx and larynx than in the oropharynx. The within-subject coefficient of variation for random motion was 0.33. The average random tumor motion did not increase notably during the first 2 weeks of treatment. CONCLUSIONS The 3D intrafractional tumor motion of HNSCC is small, with systematic motion <1.4 mm and random motion <2.1 mm 95% of the time.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Dualta McQuaid
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alex Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kee H Wong
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Liam C Welsh
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela M Riddell
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Martin O Leach
- CR UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Christopher M Nutting
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Shreerang A Bhide
- Joint Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Kevin J Harrington
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Rafal Panek
- Department of Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Kate L Newbold
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Xiao YD, Ma C, Liu J, Li HB, Zhou SK, Zhang ZS. Transient severe motion during arterial phase in patients with Gadoxetic acid administration: Can a five hepatic arterial subphases technique mitigate the artifact? Exp Ther Med 2018; 15:3133-3139. [PMID: 29456716 DOI: 10.3892/etm.2018.5760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Gadoxetic acid (Gd-EOB-DTPA) is a hepatocyte-specific magnetic resonance (MR) contrast agent, which has been increasingly used in recent years. However, it has been reported that Gd-EOB-DTPA related transient severe motion (TSM) is sometimes observed during the hepatic arterial phase of MR imaging, which may influence image quality. Since the hepatic arterial phase of contrast enhancement is used for the diagnosis of hepatocellular carcinoma, it is crucial to obtain a decent arterial phase imaging. The present study analyzed motion in patients receiving Gd-EOB-DTPA, comparing a single arterial phase acquisition to a five arterial phase acquisition to determine whether the multiphase acquisition was able to alleviate the TSM-related hepatic arterial MR imaging artifact. It was demonstrated that the single-phase acquisition failed to provide adequate diagnostic image quality in patients with TSM, whereas the multiphase arterial acquisition provided acceptable image quality in 20/22 (90.9%) patients with TSM. In conclusion, the results of the present study demonstrated that multiphase arterial acquisition is superior to single-phase arterial acquisition, mitigating arterial MR imaging artifacts caused by TSM after the administration of Gd-EOB-DTPA.
Collapse
Affiliation(s)
- Yu-Dong Xiao
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Cong Ma
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jun Liu
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hua-Bing Li
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shun-Ke Zhou
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zi-Shu Zhang
- Department of Radiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
38
|
Salas-Ramirez M, Tran-Gia J, Kesenheimer C, Weng AM, Kosmala A, Heidemeier A, Köstler H, Lassmann M. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy. ACTA ACUST UNITED AC 2018; 63:025029. [DOI: 10.1088/1361-6560/aa9a28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Gruber L, Rainer V, Plaikner M, Kremser C, Jaschke W, Henninger B. CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts? Eur Radiol 2017; 28:2013-2021. [DOI: 10.1007/s00330-017-5210-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023]
|
40
|
Chen F, Zhang T, Cheng JY, Shi X, Pauly JM, Vasanawala SS. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI. Magn Reson Med 2017; 78:1757-1766. [PMID: 27943402 PMCID: PMC5466545 DOI: 10.1002/mrm.26567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. METHODS A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. RESULTS For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). CONCLUSION The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feiyu Chen
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Tao Zhang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Joseph Y. Cheng
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xinwei Shi
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John M. Pauly
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | |
Collapse
|
41
|
Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid–Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Invest Radiol 2017; 52:596-604. [DOI: 10.1097/rli.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Application of High-Speed T1 Sequences for High-Quality Hepatic Arterial Phase Magnetic Resonance Imaging. Invest Radiol 2017; 52:605-611. [DOI: 10.1097/rli.0000000000000378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Freitag MT, Fenchel M, Bäumer P, Heußer T, Rank CM, Kachelrieß M, Paech D, Kopka K, Bickelhaupt S, Dimitrakopoulou-Strauss A, Maier-Hein K, Floca R, Ladd ME, Schlemmer HP, Maier F. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol 2017; 96:12-20. [PMID: 29103469 DOI: 10.1016/j.ejrad.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To explore the value and reproducibility of a novel magnetic resonance based attenuation correction (MRAC) using a CAIPIRINHA-accelerated T1-weighted Dixon 3D-VIBE sequence for whole-body PET/MRI compared to the clinical standard. METHODS The PET raw data of 19 patients from clinical routine were reconstructed with standard MRAC (MRACstd) and the novel MRAC (MRACcaipi), a prototype CAIPIRINHA accelerated Dixon 3D-VIBE sequence, both acquired in 19 s/bed position. Volume of interests (VOIs) for liver, lung and all voxels of the total image stack were created to calculate standardized uptake values (SUVmean) followed by inter-method agreement (Passing-Bablok regression, Bland-Altman analysis). A voxel-wise SUV comparison per patient was performed for intra-individual correlation between MRACstd and MRACcaipi. Difference images (MRACstd-MRACcaipi) of attenuation maps and SUV images were calculated. The image quality of in/opposed-phase water and fat images obtained from MRACcaipi was assessed by two readers on a 5-point Likert-scale including intra-class coefficients for inter-reader agreement. RESULTS SUVmean correlations of VOIs demonstrated high linearity (0.95<Spearman's rho<1, p<0.0001, respectively), substantiated by voxel-wise SUV scatter-plots (1.79×108 pixels). Outliers could be explained by different physiological conditions between the scans such as different segmentation of air-containing tissue, lungs, kidneys, metal implants, diaphragm edge or small air bubbles in the gastrointestinal tracts that moved between MRAC acquisitions. Nasal sinuses and the trachea were better segmented in MRACcaipi. High-resolution T1w Dixon 3D VIBE images were acquired in all cases and could be used for PET/MRI fusion. MRACcaipi images were of high diagnostic quality (4.2±0.8) with 0.92-0.96 intra-class correlation. CONCLUSIONS The novel prototype MRACcaipi extends the value for attenuation correction by providing a high spatial resolution DIXON-based dataset suited for diagnostic assessment towards time-efficient whole-body PET/MRI.
Collapse
Affiliation(s)
- Martin T Freitag
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | - Philipp Bäumer
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Heußer
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher M Rank
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Klaus Maier-Hein
- Junior Group Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Floca
- Junior Group Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Florian Maier
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
|
45
|
Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:71-95. [PMID: 28844222 PMCID: PMC5927614 DOI: 10.1016/j.pnmrs.2017.04.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/09/2017] [Accepted: 04/17/2017] [Indexed: 05/22/2023]
Abstract
Magnetic Resonance Imaging (MRI) is an essential technology in modern medicine. However, one of its main drawbacks is the long scan time needed to localize the MR signal in space to generate an image. This review article summarizes some basic principles and recent developments in parallel imaging, a class of image reconstruction techniques for shortening scan time. First, the fundamentals of MRI data acquisition are covered, including the concepts of k-space, undersampling, and aliasing. It is demonstrated that scan time can be reduced by sampling a smaller number of phase encoding lines in k-space; however, without further processing, the resulting images will be degraded by aliasing artifacts. Nearly all modern clinical scanners acquire data from multiple independent receiver coil arrays. Parallel imaging methods exploit properties of these coil arrays to separate aliased pixels in the image domain or to estimate missing k-space data using knowledge of nearby acquired k-space points. Three parallel imaging methods-SENSE, GRAPPA, and SPIRiT-are described in detail, since they are employed clinically and form the foundation for more advanced methods. These techniques can be extended to non-Cartesian sampling patterns, where the collected k-space points do not fall on a rectangular grid. Non-Cartesian acquisitions have several beneficial properties, the most important being the appearance of incoherent aliasing artifacts. Recent advances in simultaneous multi-slice imaging are presented next, which use parallel imaging to disentangle images of several slices that have been acquired at once. Parallel imaging can also be employed to accelerate 3D MRI, in which a contiguous volume is scanned rather than sequential slices. Another class of phase-constrained parallel imaging methods takes advantage of both image magnitude and phase to achieve better reconstruction performance. Finally, some applications are presented of parallel imaging being used to accelerate MR Spectroscopic Imaging.
Collapse
Affiliation(s)
- Jesse Hamilton
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Dominique Franson
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
46
|
Yoruk U, Hargreaves BA, Vasanawala SS. Automatic renal segmentation for MR urography using 3D-GrabCut and random forests. Magn Reson Med 2017; 79:1696-1707. [PMID: 28656614 DOI: 10.1002/mrm.26806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/07/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. METHODS An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. RESULTS Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. CONCLUSION The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Umit Yoruk
- Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
47
|
Li Z, Ai T, Hu Y, Yan X, Nickel MD, Xu X, Xia L. Application of whole-lesion histogram analysis of pharmacokinetic parameters in dynamic contrast-enhanced MRI of breast lesions with the CAIPIRINHA-Dixon-TWIST-VIBE technique. J Magn Reson Imaging 2017; 47:91-96. [PMID: 28577335 DOI: 10.1002/jmri.25762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To investigate the application of whole-lesion histogram analysis of pharmacokinetic parameters for differentiating malignant from benign breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS In all, 92 women with 97 breast lesions (26 benign and 71 malignant lesions) were enrolled in this study. Patients underwent dynamic breast MRI at 3T using a prototypical CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE) sequence and a subsequent surgery or biopsy. Inflow rate of the agent between plasma and interstitium (Ktrans ), outflow rate of agent between interstitium and plasma (Kep ), extravascular space volume per unit volume of tissue (ve ) including mean value, 25th/50th/75th/90th percentiles, skewness, and kurtosis were then calculated based on the whole lesion. A single-sample Kolmogorov-Smirnov test, paired t-test, and receiver operating characteristic curve (ROC) analysis were used for statistical analysis. RESULTS Malignant breast lesions had significantly higher Ktrans , Kep , and lower ve in mean values, 25th/50th/75th/90th percentiles, and significantly higher skewness of ve than benign breast lesions (all P < 0.05). There was no significant difference in kurtosis values between malignant and benign breast lesions (all P > 0.05). The 90th percentile of Ktrans , the 90th percentile of Kep , and the 50th percentile of ve showed the greatest areas under the ROC curve (AUC) for each pharmacokinetic parameter derived from DCE-MRI. The 90th percentile of Kep achieved the highest AUC value (0.927) among all histogram-derived values. CONCLUSION The whole-lesion histogram analysis of pharmacokinetic parameters can improve the diagnostic accuracy of breast DCE-MRI with the CDT-VIBE technique. The 90th percentile of Kep may be the best indicator in differentiation between malignant and benign breast lesions. LEVEL OF EVIDENCE 4 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2018;47:91-96.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yiqi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, P.R. China
| | | | - Xiao Xu
- GE Healthcare Life Science, Shanghai, P.R. China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
48
|
TWIST-VIBE five-arterial-phase technology decreases transient severe motion after bolus injection of Gd-EOB-DTPA. Clin Radiol 2017; 72:800.e1-800.e6. [PMID: 28476245 DOI: 10.1016/j.crad.2017.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 12/22/2022]
Abstract
AIM To investigate whether time-resolved imaging with interleaved stochastic trajectories (TWIST)-volumetric interpolated breath-hold examination (VIBE) hepatic arterial phase imaging technique improves image quality in patients experiencing transient severe motion (TSM) during abdominal magnetic resonance imaging (MRI) with gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA). MATERIALS AND METHODS This retrospective study compares TSM in MRI images from 28 patients with focal liver lesions imaged with gadopentetic acid (Gd-DTPA) and 28 patients with focal liver lesions imaged with Gd-EOB-DTPA. Images were taken during the precontrast phase, five hepatic arterial phases acquired with a single breath-hold, portal venous phase, and late dynamic phase. RESULTS There was a significant difference in the mean motion scores for the arterial phase in Gd-EOB-DTPA cohort before, and after, enhancement (p<0.001); however, there was no significant difference in the Gd-DTPA cohort for the same (p<0.05). The mean motion scores in the five hepatic arterial phases in the Gd-EOB-DTPA cohort after enhancement were significantly higher than that in the Gd-DTPA cohort (p<0.001). TSM occurred significantly more frequently in the Gd-EOB-DTPA cohort (64.2%) than in the Gd-DTPA cohort (3.5%, p<0.001). The highest motion score in Gd-EOB-DTPA cohort occurred during the fourth arterial phase, which was significantly higher than the other four arterial phases after enhancement (p<0.001). Moderate and severe TSM (motion score ≥3) occurred mainly in the mid and mid-late arterial phase. All patients with arterial phase images affected by TSM (motion scores ≥3) had at least one arterial phase image with TSM score <3, which was of adequate image quality for diagnostic purposes. CONCLUSION The TWIST-VIBE hepatic arterial phase imaging technique can be used to acquire arterial images at abdominal MRI with Gd-EOB-DTPA, and these images have adequate quality for diagnosis in patients who are affected by TSM.
Collapse
|
49
|
|
50
|
|