1
|
Jannusch K, Umutlu L, Kirchner J, Bruckmann NM, Morawitz J, Herrmann K, Fendler WP, Bittner AK, Hoffmann O, Mohrmann S, Ruckhäberle E, Stuschke M, Schmid W, Giesel F, Häberle L, Esposito I, Budach W, Grueneisen J, Matuschek C, Kowall B, Stang A, Antoch G, Buchbender C. Impact of 18F-FDG PET/MRI on Therapeutic Management of Women with Newly Diagnosed Breast Cancer: Results from a Prospective Double-Center Trial. J Nucl Med 2024; 65:1855-1861. [PMID: 39389629 DOI: 10.2967/jnumed.124.268065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 10/12/2024] Open
Abstract
Our rationale was to investigate whether 18F-FDG PET/MRI in addition to (guideline-recommended) conventional staging leads to changes in therapeutic management in patients with newly diagnosed breast cancer and compare the diagnostic accuracy of 18F-FDG PET/MRI with that of conventional staging for determining the Union for International Cancer Control (UICC) stage. Methods: In this prospective, double-center study, 208 women with newly diagnosed, therapy-naïve invasive breast cancer were enrolled in accordance with the inclusion criteria. All patients underwent guideline-recommended conventional staging and whole-body 18F-FDG PET/MRI with a dedicated breast examination. A multidisciplinary tumor board served to determine 2 different therapy recommendations for each patient, one based on conventional staging alone and another based on combined assessment of conventional staging and 18F-FDG PET/MRI examinations. Major changes in therapy recommendations and differences between the conventional staging algorithm and 18F-FDG PET/MRI for determining the correct UICC stage were reported and evaluated. Results: Major changes in therapeutic management based on combined assessment of conventional staging and 18F-FDG PET/MRI were detected in 5 of 208 patients, amounting to changes in therapeutic management in 2.4% (95% CI, 0.78%-5.2%) of the study population. In determining the UICC stage, the guideline-based staging algorithm and 18F-FDG PET/MRI were concordant in 135 of 208 (64.9%; 95% CI, 58%-71.4%) patients. The conventional guideline algorithm correctly determined the UICC stage in 130 of 208 (62.5%; 95% CI, 55.5%-69.1%) patients, and 18F-FDG PET/MRI correctly determined the UICC stage in 170 of 208 (81.9%; 95% CI, 75.8%-86.7%) patients. Conclusion: Despite the diagnostic superiority of 18F-FDG PET/MRI over conventional staging in determining the correct UICC stage, the current (guideline-recommended) conventional staging algorithm is sufficient for adequate therapeutic management of patients with newly diagnosed breast cancer, and 18F-FDG PET/MRI does not have an impact on patient management.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany;
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Obstetrics and Gynecology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Martin Stuschke
- Department of Radiation Oncology, West German Cancer Center, University of Duisburg-Essen Medical School, Essen, Germany
| | - Werner Schmid
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium, Essen, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wilfried Budach
- Department of Radiation Oncology, Heinrich Heine University, Dusseldorf, Germany; and
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christiane Matuschek
- Department of Radiation Oncology, Heinrich Heine University, Dusseldorf, Germany; and
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
2
|
Palaniswamy SS, Subramanyam P. Diagnostic performance of simultaneous PET-MR versus PET-CT in oncology with an overview on clinical utility and referral pattern of PET-MR: a single institutional study. Nucl Med Commun 2024; 45:1022-1032. [PMID: 39324997 DOI: 10.1097/mnm.0000000000001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND PET-Magnetic Resonance (PET-MR) imaging is an upcoming investigative modality with a few installations in Asia and only three in India. PET-Computed Tomography (PET-CT) is an established diagnostic cornerstone for oncological indications but with limited resolution for small lesions due to low soft-tissue contrast and additional radiation exposure. OBJECTIVE Our primary objective was to evaluate the diagnostic performance of simultaneous PET-MR and PET-CT in lesion detection in oncological practice. Secondly to assess the referral pattern and study the clinical utility of PET-MR in a university hospital practice. MATERIALS AND METHODS A total of 100 consecutive biopsy-proven cancer patients (breast or lung malignancy with suspected metastases) underwent 18 F Fluorodeoxyglucose (FDG) PET-MR and PET-CT for staging as a single injection, double examination protocol. Morphological lesion detection on correlative imaging/histopathology was used as the gold standard. Analysing the referral pattern, a total of 9366 patients underwent simultaneous PET-MR imaging for various indications in the past 5 years since installation. RESULTS 18 F FDG PET-MR detected 100% of primary tumours in breast/lung carcinoma patients while PET-CT was positive in 96%. Overall accuracy of nodal metastases detection for PET-MR and PET-CT was 96 and 88%, while for distant metastases the accuracy was 100 and 93%, respectively. FDG PET-MR proved more sensitive and specific than PET-CT for regional nodal ( P = 0.011 and P < 0.001) and distant metastases detection ( P = 0.017 and P < 0.001, respectively). Analysing the general referral pattern for PET-MR, the majority were oncology referrals when compared to nononcological indications (66.5, 33.5%). About 66.24% were FDG based, followed by 68 Ga Prostate-Specific Membrane Antigen (PSMA) and dodecane tetraacetic acid (DOTA). The general utility of PET-MR was found incremental in better delineation of small lesions especially in head, neck, liver, brain and gynaecological malignancies. CONCLUSION In our past 5 years of PET-MR practice, we found that simultaneous PET-MR is a highly recommended ideal imaging technique for oncological and nononcological indications. It has excellent diagnostic performance with high sensitivity, specificity and accuracy when compared to PET-CT in primary tumour, nodal and distant metastases (TNM) staging in specific subgroup of breast and lung malignancy patients.
Collapse
Affiliation(s)
- Shanmuga Sundaram Palaniswamy
- Department of Nuclear Medicine & Molecular Imaging, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham University, Cochin, Kerala, India
| | | |
Collapse
|
3
|
Xu Z, Jiang G, Dai J. Tumor therapeutics in the era of "RECIST": past, current insights, and future prospects. Oncol Rev 2024; 18:1435922. [PMID: 39493769 PMCID: PMC11527623 DOI: 10.3389/or.2024.1435922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, advancements in medical treatment and imaging technologies have revolutionized the assessment of tumor response. However, the Response Evaluation Criteria in Solid Tumors (RECIST) has long been established as the gold standard for evaluating tumor treatment. As treatment modalities evolve, the need for continuous refinement and adaptation of RECIST becomes increasingly apparent. This review explores the historical evolution, current applications, limitations, and future directions of RECIST. It discusses the challenges of distinguishing true progression from pseudo-progression in ICIs (immune checkpoint inhibitors), the integration of advanced imaging tools, and the necessity for RECIST criteria tailored to specific therapies like neoadjuvant treatments. The review highlights the ongoing efforts to enhance RECIST's accuracy and reliability in clinical decision-making and the potential for developing new standards to better evaluate treatment efficacy in the rapidly evolving landscape of oncology.
Collapse
Affiliation(s)
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Dai
- *Correspondence: Gening Jiang, ; Jie Dai,
| |
Collapse
|
4
|
Katal S, McKay MJ, Taubman K. PET Molecular Imaging in Breast Cancer: Current Applications and Future Perspectives. J Clin Med 2024; 13:3459. [PMID: 38929989 PMCID: PMC11205053 DOI: 10.3390/jcm13123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Positron emission tomography (PET) plays a crucial role in breast cancer management. This review addresses the role of PET imaging in breast cancer care. We focus primarily on the utility of 18F-fluorodeoxyglucose (FDG) PET in staging, recurrence detection, and treatment response evaluation. Furthermore, we delve into the growing interest in precision therapy and the development of novel radiopharmaceuticals targeting tumor biology. This includes discussing the potential of PET/MRI and artificial intelligence in breast cancer imaging, offering insights into improved diagnostic accuracy and personalized treatment approaches.
Collapse
Affiliation(s)
- Sanaz Katal
- Medical Imaging Department, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
| | - Michael J. McKay
- Northwest Regional Hospital, University of Tasmania, Burnie, TAS 7320, Australia;
- Northern Cancer Service, Northwest Regional Hospital, Burnie, TAS 7320, Australia
| | - Kim Taubman
- Medical Imaging Department, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia;
| |
Collapse
|
5
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
6
|
Mainta IC, Sfakianaki I, Shiri I, Botsikas D, Garibotto V. The Clinical Added Value of Breast Cancer Imaging Using Hybrid PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:565-577. [PMID: 37741641 DOI: 10.1016/j.mric.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Dedicated MR imaging is highly performant for the evaluation of the primary lesion and should regularly be added to whole-body PET/MR imaging for the initial staging. PET/MR imaging is highly sensitive for the detection of nodal involvement and could be combined with the high specificity of axillary second look ultrasound for the confirmation of the N staging. For M staging, with the exception of lung lesions, PET/MR imaging is superior to PET/computed tomography, at half the radiation dose. The predictive value of multiparametric imaging with PET/MR imaging holds promise to improve through radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Ismini C Mainta
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland.
| | - Ilektra Sfakianaki
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Isaac Shiri
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Diomidis Botsikas
- Department of Radiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
| | - Valentina Garibotto
- Department of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva 1211, Switzerland
| |
Collapse
|
7
|
Jannusch K, Lindemann ME, Bruckmann NM, Morawitz J, Dietzel F, Pomykala KL, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Umutlu L, Antoch G, Quick HH, Kirchner J. Towards a fast PET/MRI protocol for breast cancer imaging: maintaining diagnostic confidence while reducing PET and MRI acquisition times. Eur Radiol 2023; 33:6179-6188. [PMID: 37045980 PMCID: PMC10415438 DOI: 10.1007/s00330-023-09580-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To investigate the diagnostic feasibility of a shortened breast PET/MRI protocol in breast cancer patients. METHODS Altogether 90 women with newly diagnosed T1tumor-staged (T1ts) and T2tumor-staged (T2ts) breast cancer were included in this retrospective study. All underwent a dedicated comprehensive breast [18F]FDG-PET/MRI. List-mode PET data were retrospectively reconstructed with 20, 15, 10, and 5 min for each patient to simulate the effect of reduced PET acquisition times. The SUVmax/mean of all malign breast lesions was measured. Furthermore, breast PET data reconstructions were analyzed regarding image quality, lesion detectability, signal-to-noise ratio (SNR), and image noise (IN). The simultaneously acquired comprehensive MRI protocol was then shortened by retrospectively removing sequences from the protocol. Differences in malignant breast lesion detectability between the original and the fast breast MRI protocol were evaluated lesion-based. The 20-min PET reconstructions and the original MRI protocol served as reference. RESULTS In all PET reconstructions, 127 congruent breast lesions could be detected. Group comparison and T1ts vs. T2ts subgroup comparison revealed no significant difference of subjective image quality between 20, 15, 10, and 5 min acquisition times. SNR of qualitative image evaluation revealed no significant difference between different PET acquisition times. A slight but significant increase of IN with decreasing PET acquisition times could be detected. Lesion SUVmax group comparison between all PET acquisition times revealed no significant differences. Lesion-based evaluation revealed no significant difference in breast lesion detectability between original and fast breast MRI protocols. CONCLUSIONS Breast [18F]FDG-PET/MRI protocols can be shortened from 20 to below 10 min without losing essential diagnostic information. KEY POINTS • A highly accurate breast cancer evaluation is possible by the shortened breast [18F]FDG-PET/MRI examination protocol. • Significant time saving at breast [18F]FDG-PET/MRI protocol could increase patient satisfaction and patient throughput for breast cancer patients at PET/MRI.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, D-45147, Essen, Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Kelsey L Pomykala
- Department for Artificial Intelligence in Medicine, University Hospital Essen, University of Duisburg-Essen, D-45131, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, D-45147, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, D-45141, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| |
Collapse
|
8
|
Clauser P, Rasul S, Kapetas P, Fueger BJ, Milos RI, Balber T, Berroterán-Infante N, Hacker M, Helbich TH, Baltzer PAT. Prospective validation of 18F-Fluoroethylcholine as a tracer in PET/MRI for the evaluation of breast lesions and prediction of lymph node status. LA RADIOLOGIA MEDICA 2023; 128:689-698. [PMID: 37221356 PMCID: PMC10264497 DOI: 10.1007/s11547-023-01633-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE To assess 18F-Fluoroethylcholine (18F-FEC) as a PET/MRI tracer in the evaluation of breast lesions, breast cancer aggressiveness, and prediction of lymph node status. MATERIALS AND METHODS This prospective, monocentric study was approved by the ethics committee and patients gave written, informed consent. This clinical trial was registered in the EudraCT database (Number 2017-003089-29). Women who presented with suspicious breast lesions were included. Histopathology was used as reference standard. Simultaneous 18F-FEC PET/MRI of the breast was performed in a prone position with a dedicated breast coil. MRI was performed using a standard protocol before and after contrast agent administration. A simultaneous read by nuclear medicine physicians and radiologists collected the imaging data of MRI-detected lesions, including the maximum standardized 18F-FEC-uptake value of breast lesions (SUVmaxT) and axillary lymph nodes (SUVmaxLN). Differences in SUVmax were evaluated with the Mann-Whitney U test. To calculate diagnostic performance, the area under the receiver operating characteristics curve (ROC) was used. RESULTS There were 101 patients (mean age 52.3 years, standard deviation 12.0) with 117 breast lesions included (30 benign, 7 ductal carcinomas in situ, 80 invasive carcinomas). 18F-FEC was well tolerated by all patients. The ROC to distinguish benign from malignant breast lesions was 0.846. SUVmaxT was higher if lesions were malignant (p < 0.001), had a higher proliferation rate (p = 0.011), and were HER2-positive (p = 0.041). SUVmaxLN was higher in metastatic lymph nodes, with an ROC of 0.761 for SUVmaxT and of 0.793 for SUVmaxLN. CONCLUSION: Simultaneous 18F-FEC PET/MRI is safe and has the potential to be used for the evaluation of breast cancer aggressiveness, and prediction of lymph node status.
Collapse
Affiliation(s)
- Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Barbara J Fueger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Hans Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Pascal Andreas Thomas Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Jannusch K, Bittner AK, Bruckmann NM, Morawitz J, Stieglitz C, Dietzel F, Quick HH, Baba HA, Herrmann K, Umutlu L, Antoch G, Kirchner J, Kasimir-Bauer S, Hoffmann O. Correlation between Imaging Markers Derived from PET/MRI and Invasive Acquired Biomarkers in Newly Diagnosed Breast Cancer. Cancers (Basel) 2023; 15:cancers15061651. [PMID: 36980537 PMCID: PMC10046153 DOI: 10.3390/cancers15061651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Evaluate the diagnostic potential of [18F]FDG-PET/MRI data compared with invasive acquired biomarkers in newly diagnosed early breast cancer (BC). METHODS Altogether 169 women with newly diagnosed BC were included. All underwent a breast- and whole-body [18F]FDG-PET/MRI for initial staging. A tumor-adapted volume of interest was placed in the primaries and defined bone regions on each standard uptake value (SUV)/apparent diffusion coefficient (ADC) dataset. Immunohistochemical markers, molecular subtype, tumor grading, and disseminated tumor cells (DTCs) of each patient were assessed after ultrasound-guided biopsy of the primaries and bone marrow (BM) aspiration. Correlation analysis and group comparisons were assessed. RESULTS A significant inverse correlation of estrogen-receptor (ER) expression and progesterone-receptor (PR) expression towards SUVmax was found (ER: r = 0.27, p < 0.01; PR: r = 0.19, p < 0.05). HER2-receptor expression showed no significant correlation towards SUV and ADC values. A significant positive correlation between Ki67 and SUVmax and SUVmean (r = 0.42 p < 0.01; r = 0.19 p < 0.05) was shown. Tumor grading significantly correlated with SUVmax and SUVmean (ρ = 0.36 and ρ = 0.39, both p's < 0.01). There were no group differences between SUV/ADC values of DTC-positive/-negative patients. CONCLUSIONS [18F]FDG-PET/MRI may give a first impression of BC-receptor status and BC-tumor biology during initial staging by measuring glucose metabolism but cannot distinguish between DTC-positive/-negative patients and replace biopsy.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Cleo Stieglitz
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 40225 Dusseldorf, Germany
| | - Sabine Kasimir-Bauer
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
10
|
Morawitz J, Sigl B, Rubbert C, Bruckmann NM, Dietzel F, Häberle LJ, Ting S, Mohrmann S, Ruckhäberle E, Bittner AK, Hoffmann O, Baltzer P, Kapetas P, Helbich T, Clauser P, Fendler WP, Rischpler C, Herrmann K, Schaarschmidt BM, Stang A, Umutlu L, Antoch G, Caspers J, Kirchner J. Clinical Decision Support for Axillary Lymph Node Staging in Newly Diagnosed Breast Cancer Patients Based on 18F-FDG PET/MRI and Machine Learning. J Nucl Med 2023; 64:304-311. [PMID: 36137756 PMCID: PMC9902847 DOI: 10.2967/jnumed.122.264138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 02/04/2023] Open
Abstract
In addition to its high prognostic value, the involvement of axillary lymph nodes in breast cancer patients also plays an important role in therapy planning. Therefore, an imaging modality that can determine nodal status with high accuracy in patients with primary breast cancer is desirable. Our purpose was to investigate whether, in newly diagnosed breast cancer patients, machine-learning prediction models based on simple assessable imaging features on MRI or PET/MRI are able to determine nodal status with performance comparable to that of experienced radiologists; whether such models can be adjusted to achieve low rates of false-negatives such that invasive procedures might potentially be omitted; and whether a clinical framework for decision support based on simple imaging features can be derived from these models. Methods: Between August 2017 and September 2020, 303 participants from 3 centers prospectively underwent dedicated whole-body 18F-FDG PET/MRI. Imaging datasets were evaluated for axillary lymph node metastases based on morphologic and metabolic features. Predictive models were developed for MRI and PET/MRI separately using random forest classifiers on data from 2 centers and were tested on data from the third center. Results: The diagnostic accuracy for MRI features was 87.5% both for radiologists and for the machine-learning algorithm. For PET/MRI, the diagnostic accuracy was 89.3% for the radiologists and 91.2% for the machine-learning algorithm, with no significant differences in diagnostic performance between radiologists and the machine-learning algorithm for MRI (P = 0.671) or PET/MRI (P = 0.683). The most important lymph node feature was tracer uptake, followed by lymph node size. With an adjusted threshold, a sensitivity of 96.2% was achieved by the random forest classifier, whereas specificity, positive predictive value, negative predictive value, and accuracy were 68.2%, 78.1%, 93.8%, and 83.3%, respectively. A decision tree based on 3 simple imaging features could be established for MRI and PET/MRI. Conclusion: Applying a high-sensitivity threshold to the random forest results might potentially avoid invasive procedures such as sentinel lymph node biopsy in 68.2% of the patients.
Collapse
Affiliation(s)
- Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany;
| | - Benjamin Sigl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna, Austria
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Lena J. Häberle
- Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University of Duisburg–Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Gynecology, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg–Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg–Essen, Essen, Germany
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General Radiology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang P. Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg–Essen, Essen, Germany; and
| | - Andreas Stang
- Institute of Medical Informatics, Biometry, and Epidemiology, Essen University Medical Center, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg–Essen, Essen, Germany; and
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
de Mooij CM, Ploumen RAW, Nelemans PJ, Mottaghy FM, Smidt ML, van Nijnatten TJA. The influence of receptor expression and clinical subtypes on baseline [18F]FDG uptake in breast cancer: systematic review and meta-analysis. EJNMMI Res 2023; 13:5. [PMID: 36689007 PMCID: PMC9871105 DOI: 10.1186/s13550-023-00953-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To quantify the relationship between [18F]FDG uptake of the primary tumour measured by PET-imaging with immunohistochemical (IHC) expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers in breast cancer patients. METHODS PubMed and Embase were searched for studies that compared SUVmax between breast cancer patients negative and positive for IHC expression of ER, PR, HER2, Ki-67, and clinical subtypes based on these markers. Two reviewers independently screened the studies and extracted the data. Standardized mean differences (SMD) and 95% confidence intervals (CIs) were estimated by using DerSimonian-Laird random-effects models. P values less than or equal to 5% indicated statistically significant results. RESULTS Fifty studies were included in the final analysis. SUVmax is significantly higher in ER-negative (31 studies, SMD 0.66, 0.56-0.77, P < 0.0001), PR-negative (30 studies, SMD 0.56; 0.40-0.71, P < 0.0001), HER2-positive (32 studies, SMD - 0.29, - 0.49 to - 0.10, P = 0.0043) or Ki-67-positive (19 studies, SMD - 0.77; - 0.93 to - 0.61, P < 0.0001) primary tumours compared to their counterparts. The majority of clinical subtypes were either luminal A (LA), luminal B (LB), HER2-positive or triple negative breast cancer (TNBC). LA is associated with significantly lower SUVmax compared to LB (11 studies, SMD - 0.49, - 0.68 to - 0.31, P = 0.0001), HER2-positive (15 studies, SMD - 0.91, - 1.21 to - 0.61, P < 0.0001) and TNBC (17 studies, SMD - 1.21, - 1.57 to - 0.85, P < 0.0001); and LB showed significantly lower uptake compared to TNBC (10 studies, SMD - 0.77, - 1.05 to - 0.49, P = 0.0002). Differences in SUVmax between LB and HER2-positive (9 studies, SMD - 0.32, - 0.88 to 0.24, P = 0.2244), and HER2-positive and TNBC (17 studies, SMD - 0.29, - 0.61 to 0.02, P = 0.0667) are not significant. CONCLUSION Primary tumour SUVmax is significantly higher in ER-negative, PR-negative, HER2-positive and Ki-67-positive breast cancer patients. Luminal tumours have the lowest and TNBC tumours the highest SUVmax. HER2 overexpression has an intermediate effect.
Collapse
Affiliation(s)
- Cornelis M de Mooij
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands.
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Roxanne A W Ploumen
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Patty J Nelemans
- Department of Epidemiology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Marjolein L Smidt
- Department of Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Wu J, Zhang X, Jia Z, Zhou X, Qi R, Ji H, Sun J, Sun C, Teng Z, Lu G, Chen X. Combined 18F-FDG and 18F-Alfatide II PET May Predict Luminal B (HER2 Negative) Subtype and Nonluminal Subtype of Invasive Breast Cancer. Mol Pharm 2022; 19:3405-3411. [PMID: 35972444 DOI: 10.1021/acs.molpharmaceut.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noninvasive PET molecular imaging using radiopharmaceuticals is important to classify breast cancer in the clinic. The aim of this study was to investigate the combination of 18F-FDG and 18F-Alfatide II for predicting molecular subtypes of invasive breast cancer. Forty-four female patients with clinically suspected breast cancer were recruited and underwent 18F-FDG and 18F-Alfatide II PET/CT within a week. Tracer uptake in breast lesions was assessed using the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and SUVmax ratio of 18F-FDG to 18F-Alfatide II (FAR). Invasive breast cancer lesions were further classified as luminal A subtype, luminal B subtype, human epidermal growth factor receptor-2 (HER2) overexpressing subtype, and triple negative subtype according to the expression of the estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki-67. Among 44 patients, 35 patients were pathologically diagnosed with invasive breast cancer. The SUVmax and SUVmean of 18F-FDG were significantly higher in the ER-negative group than those in the ER-positive group, as well as in the PR-negative group than those in the PR-positive group. However, the SUVmax and SUVmean of 18F-Alfatide II were higher in the ER-positive group and the PR-positive group. By combining 18F-FDG and 18F-Alfatide II, the FAR was lower in the ER-positive group and the PR-positive group. The HER2 overexpressing subtype showed the highest SUVmax and SUVmean for 18F-FDG while the luminal B (HER2 negative) subtype revealed the lowest values. The luminal B (HER2 negative) subtype showed the highest 18F-Alfatide II SUVmax, while the triple negative subtype showed the lowest 18F-Alfatide II SUVmax. The FAR was the lowest in the luminal B (HER2 negative) subtype and much higher in the HER2 overexpressing and triple negative subtypes. FAR less than 1 predicted the luminal B (HER2 negative) subtype with high specificity (93.1%) and NPV (90%). FAR greater than 3 predicted the HER2 overexpressing subtype and triple negative subtype (namely, the nonluminal subtype) with very high specificity (100%) and PPV (100%). In summary, FAR, the combined PET parameter of 18F-FDG and 18F-Alfatide II, can be used to predict molecular subtypes of invasive breast cancer, especially for the luminal B (HER2 negative) subtype and the nonluminal subtype.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Nuclear Medicine, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Changshu No.2 People's Hospital, Changshu 215500, China
| | - Zhijun Jia
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaodie Zhou
- Department of Pathology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Rongxin Qi
- Department of Nuclear Medicine, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Hengshan Ji
- Department of Nuclear Medicine, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Jingjing Sun
- Department of Nuclear Medicine, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Chuanjin Sun
- Department of Nuclear Medicine, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, National University of Singapore, Singapore 117599, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
14
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
15
|
Bruckmann NM, Morawitz J, Fendler WP, Ruckhäberle E, Bittner AK, Giesel FL, Herrmann K, Antoch G, Umutlu L, Kirchner J. A Role of PET/MR in Breast Cancer? Semin Nucl Med 2022; 52:611-618. [DOI: 10.1053/j.semnuclmed.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
|
16
|
Bu L, Tu N, Wang K, Zhou Y, Xie X, Han X, Lin H, Feng H. Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas. Korean J Radiol 2022; 23:112-123. [PMID: 34983098 PMCID: PMC8743143 DOI: 10.3348/kjr.2021.0455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/30/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0–84.0 years) who had undergone surgical removal of stage IA–IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann–Whitney U test or the Kruskal–Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman’s correlation. Statistical significance was set at p < 0.05. Results SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.
Collapse
Affiliation(s)
- Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Tu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Wang
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Zhou
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinli Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingmin Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiqin Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Feng
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
18
|
Morawitz J, Bruckmann NM, Dietzel F, Ullrich T, Bittner AK, Hoffmann O, Ruckhäberle E, Mohrmann S, Häberle L, Ingenwerth M, Abrar DB, Sawicki LM, Breuckmann K, Fendler WP, Herrmann K, Buchbender C, Antoch G, Umutlu L, Kirchner J. Comparison of nodal staging between CT, MRI, and [ 18F]-FDG PET/MRI in patients with newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging 2021; 49:992-1001. [PMID: 34476552 PMCID: PMC8803812 DOI: 10.1007/s00259-021-05502-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To compare CT, MRI, and [18F]-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET/MRI) for nodal status, regarding quantity and location of metastatic locoregional lymph nodes in patients with newly diagnosed breast cancer. MATERIALS AND METHODS One hundred eighty-two patients (mean age 52.7 ± 11.9 years) were included in this prospective double-center study. Patients underwent dedicated contrast-enhanced chest/abdomen/pelvis computed tomography (CT) and whole-body ([18F]-FDG PET/) magnet resonance imaging (MRI). Thoracal datasets were evaluated separately regarding quantity, lymph node station (axillary levels I-III, supraclavicular, internal mammary chain), and lesion character (benign vs. malign). Histopathology served as reference standard for patient-based analysis. Patient-based and lesion-based analyses were compared by a McNemar test. Sensitivity, specificity, positive and negative predictive values, and accuracy were assessed for all three imaging modalities. RESULTS On a patient-based analysis, PET/MRI correctly detected significantly more nodal positive patients than MRI (p < 0.0001) and CT (p < 0.0001). No statistically significant difference was seen between CT and MRI. PET/MRI detected 193 lesions in 75 patients (41.2%), while MRI detected 123 lesions in 56 patients (30.8%) and CT detected 104 lesions in 50 patients, respectively. Differences were statistically significant on a lesion-based analysis (PET/MRI vs. MRI, p < 0.0001; PET/MRI vs. CT, p < 0.0001; MRI vs. CT, p = 0.015). Subgroup analysis for different lymph node stations showed that PET/MRI detected significantly more lymph node metastases than MRI and CT in each location (axillary levels I-III, supraclavicular, mammary internal chain). MRI was superior to CT only in axillary level I (p = 0.0291). CONCLUSION [18F]-FDG PET/MRI outperforms CT or MRI in detecting nodal involvement on a patient-based analysis and on a lesion-based analysis. Furthermore, PET/MRI was superior to CT or MRI in detecting lymph node metastases in all lymph node stations. Of all the tested imaging modalities, PET/MRI showed the highest sensitivity, whereas CT showed the lowest sensitivity, but was most specific.
Collapse
Affiliation(s)
- Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany.
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Tim Ullrich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Eugen Ruckhäberle
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lino Morris Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Katharina Breuckmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Dusseldorf, Germany
| |
Collapse
|
19
|
PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers (Basel) 2021; 13:cancers13143571. [PMID: 34298781 PMCID: PMC8303241 DOI: 10.3390/cancers13143571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary PET/MRI is a relatively new, hybrid imaging tool that allows practitioners to obtain both a local and systemic staging in breast cancer patients in a single exam. To date, the available evidence is not sufficient to determine the role of PET/MRI in breast cancer management. The aims of this paper are to provide an overview of the current literature on PET/MRI in breast cancer, and to illustrate two ongoing trials aimed at defining the eventual role of PET/MRI in axillary staging in two different settings: patients with early breast cancer and patients with positive axillary nodes that are candidates for primary systemic therapy. In both cases, findings from PET/MRI will be compared with the final pathology and could be helpful to better tailor axillary surgery in the future. Abstract Axillary surgery in breast cancer (BC) is no longer a therapeutic procedure but has become a purely staging procedure. The progressive improvement in imaging techniques has paved the way to the hypothesis that prognostic information on nodal status deriving from surgery could be obtained with an accurate diagnostic exam. Positron emission tomography/magnetic resonance imaging (PET/MRI) is a relatively new imaging tool and its role in breast cancer patients is still under investigation. We reviewed the available literature on PET/MRI in BC patients. This overview showed that PET/MRI yields a high diagnostic performance for the primary tumor and distant lesions of liver, brain and bone. In particular, the results of PET/MRI in staging the axilla are promising. This provided the rationale for two prospective comparative trials between axillary surgery and PET/MRI that could lead to a further de-escalation of surgical treatment of BC. • SNB vs. PET/MRI 1 trial compares PET/MRI and axillary surgery in staging the axilla of BC patients undergoing primary systemic therapy (PST). • SNB vs. PET/MRI 2 trial compares PET/MRI and sentinel node biopsy (SNB) in staging the axilla of early BC patients who are candidates for upfront surgery. Finally, these ongoing studies will help clarify the role of PET/MRI in BC and establish whether it represents a useful diagnostic tool that could guide, or ideally replace, axillary surgery in the future.
Collapse
|