1
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
3
|
Histological and Biological Response to Different Types of Biomaterials: A Narrative Single Research Center Experience over Three Decades. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137942. [PMID: 35805602 PMCID: PMC9265446 DOI: 10.3390/ijerph19137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022]
Abstract
Background: In more than three decades of work of the Retrieval Bank of the Laboratory for Undemineralized Hard Tissue Histology of the University of Chieti-Pescara in Italy, many types of biomaterials were received and evaluated. The present retrospective review aimed to evaluate the histological and biological aspects of the evaluated bone substitute biomaterials. Methods: In the present study, the authors prepared a retrospective analysis after the screening of some databases (PubMed, Scopus, and EMBASE) to find papers published from the Retrieval Bank of the Laboratory for Undermineralized Hard Tissue Histology of the University of Chieti-Pescara analyzing only the papers dealing with bone substitute biomaterials and scaffolds, in the form of granules and block grafts, for bone regeneration procedures. Results: Fifty-two articles were found, including in vitro, in vivo, and clinical studies of different biomaterials. These articles were evaluated and organized in tables for a better understanding. Conclusions: Over three decades of studies have made it possible to assess the quality of many bone substitute biomaterials, helping to improve the physicochemical and biological properties of the biomaterials used in daily clinical practice.
Collapse
|
4
|
Staniowski T, Zawadzka-Knefel A, Skośkiewicz-Malinowska K. Therapeutic Potential of Dental Pulp Stem Cells According to Different Transplant Types. Molecules 2021; 26:7423. [PMID: 34946506 PMCID: PMC8707085 DOI: 10.3390/molecules26247423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cells are unspecialised cells capable of perpetual self-renewal, proliferation and differentiation into more specialised daughter cells. They are present in many tissues and organs, including the stomatognathic system. Recently, the great interest of scientists in obtaining stem cells from human teeth is due to their easy availability and a non-invasive procedure of collecting the material. Three key components are required for tissue regeneration: stem cells, appropriate scaffold material and growth factors. Depending on the source of the new tissue or organ, there are several types of transplants. In this review, the following division into four transplant types is applied due to genetic differences between the donor and the recipient: xenotransplantation, allotransplantation, autotransplantation and isotransplantation (however, due to the lack of research, type was not included). In vivo studies have shown that Dental Pulp Stem Cells (DPSCs)can form a dentin-pulp complex, nerves, adipose, bone, cartilage, skin, blood vessels and myocardium, which gives hope for their use in various biomedical areas, such as immunotherapy and regenerative therapy. This review presents the current in vivo research and advances to provide new biological insights and therapeutic possibilities of using DPSCs.
Collapse
Affiliation(s)
| | - Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, 50-425 Wrocław, Poland; (T.S.); (K.S.-M.)
| | | |
Collapse
|
5
|
Lertsuwan K, Nammultriputtar K, Nanthawuttiphan S, Tannop N, Teerapornpuntakit J, Thongbunchoo J, Charoenphandhu N. Differential effects of Fe2+ and Fe3+ on osteoblasts and the effects of 1,25(OH)2D3, deferiprone and extracellular calcium on osteoblast viability under iron-overloaded conditions. PLoS One 2020; 15:e0234009. [PMID: 32470038 PMCID: PMC7259719 DOI: 10.1371/journal.pone.0234009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the potential contributing factors for iron overload-induced osteoporosis is the iron toxicity on bone forming cells, osteoblasts. In this study, the comparative effects of Fe3+ and Fe2+ on osteoblast differentiation and mineralization were studied in UMR-106 osteoblast cells by using ferric ammonium citrate and ferrous ammonium sulfate as Fe3+ and Fe2+ donors, respectively. Effects of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] and iron chelator deferiprone on iron uptake ability of osteoblasts were examined, and the potential protective ability of 1,25(OH)2D3, deferiprone and extracellular calcium treatment in osteoblast cell survival under iron overload was also elucidated. The differential effects of Fe3+ and Fe2+ on reactive oxygen species (ROS) production in osteoblasts were also compared. Our results showed that both iron species suppressed alkaline phosphatase gene expression and mineralization with the stronger effects from Fe3+ than Fe2+. 1,25(OH)2D3 significantly increased the intracellular iron but minimally affected osteoblast cell survival under iron overload. Deferiprone markedly decreased intracellular iron in osteoblasts, but it could not recover iron-induced osteoblast cell death. Interestingly, extracellular calcium was able to rescue osteoblasts from iron-induced osteoblast cell death. Additionally, both iron species could induce ROS production and G0/G1 cell cycle arrest in osteoblasts with the stronger effects from Fe3+. In conclusions, Fe3+ and Fe2+ differentially compromised the osteoblast functions and viability, which can be alleviated by an increase in extracellular ionized calcium, but not 1,25(OH)2D3 or iron chelator deferiprone. This study has provided the invaluable information for therapeutic design targeting specific iron specie(s) in iron overload-induced osteoporosis. Moreover, an increase in extracellular calcium could be beneficial for this group of patients.
Collapse
Affiliation(s)
- Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Natnicha Tannop
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
6
|
Aljohani H, Senbanjo LT, Chellaiah MA. Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells. PLoS One 2019; 14:e0225598. [PMID: 31805069 PMCID: PMC6894810 DOI: 10.1371/journal.pone.0225598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Methylsulfonylmethane (MSM) is a naturally occurring, sulfate-containing, organic compound. It has been shown to stimulate the differentiation of mesenchymal stem cells into osteoblast-like cells and bone formation. In this study, we investigated whether MSM influences the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into osteoblast-like cells and their osteogenic potential. Here, we report that MSM induced osteogenic differentiation through the expression of osteogenic markers such as osterix, osteopontin, and RUNX2, at both mRNA and protein levels in SHED cells. An increase in the activity of alkaline phosphatase and mineralization confirmed the osteogenic potential of MSM. These MSM-induced effects were observed in cells grown in basal medium but not osteogenic medium. MSM induced transglutaminase-2 (TG2), which may be responsible for the cross-linking of extracellular matrix proteins (collagen or osteopontin), and the mineralization process. Inhibition of TG2 ensued a significant decrease in the differentiation of SHED cells and cross-linking of matrix proteins. A comparison of mineralization with the use of mineralized and demineralized bone particles in the presence of MSM revealed that mineralization is higher with mineralized bone particles than with demineralized bone particles. In conclusion, these results indicated that MSM could promote differentiation and osteogenic potential of SHED cells. This osteogenic property is more in the presence of mineralized bone particles. TG2 is a likely cue in the regulation of differentiation and mineral deposition of SHED cells in response to MSM.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
- Department of Oral Medicine and Diagnostics Sciences, King Saud University School of Dentistry, Riyadh, KSA
| | - Linda T. Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Winning L, El Karim IA, Lundy FT. A Comparative Analysis of the Osteogenic Potential of Dental Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:1050-1058. [DOI: 10.1089/scd.2019.0023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lewis Winning
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Ikhlas A. El Karim
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Fionnuala T. Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
8
|
Aydin S, Şahin F. Stem Cells Derived from Dental Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:123-132. [DOI: 10.1007/5584_2018_333] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Abstract
Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.
Collapse
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
10
|
Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med 2018; 13:152-159. [PMID: 29971640 DOI: 10.1007/s11684-018-0628-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022]
Abstract
The teeth are highly differentiated chewing organs formed by the development of tooth germ tissue located in the jaw and consist of the enamel, dentin, cementum, pulp, and periodontal tissue. Moreover, the teeth have a complicated regulatory mechanism, special histologic origin, diverse structure, and important function in mastication, articulation, and aesthetics. These characteristics, to a certain extent, greatly complicate the research in tooth regeneration. Recently, new ideas for tooth and tissue regeneration have begun to appear with rapid developments in the theories and technologies in tissue engineering. Numerous types of stem cells have been isolated from dental tissue, such as dental pulp stem cells (DPSCs), stem cells isolated from human pulp of exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAPs), and dental follicle cells (DFCs). All these cells can regenerate the tissue of tooth. This review outlines the cell types and strategies of stem cell therapy applied in tooth regeneration, in order to provide theoretical basis for clinical treatments.
Collapse
Affiliation(s)
- Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery, General Hospital of Shenyang Military Area Command, Shenyang, 110840, China
| | - Wei Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China.
| |
Collapse
|
11
|
Abstract
INTRODUCTION Human dental stem cells can be obtained from postnatal teeth, extracted wisdom teeth or exfoliated deciduous teeth. Due to their differentiation potential, these mesenchymal stem cells are promising for tooth repair. Therefore, the development of dental tissue regeneration represents a suitable but challenging, target for dental stem cell therapies. Areas covered: Expert opinion: AREAS COVERED In this review, the authors provide an overview of human dental stem cells and their properties for regeneration medicine. Numerous preclinical studies have shown that dental stem cells improve bone augmentation and healing of periodontal diseases. Clinical trials are ongoing to validate the clinical feasibility of these approaches. Dental stem cells are also important for basic research. EXPERT OPINION Dental stem cells offer numerous advantages for tooth repair and regeneration. Data obtained from different studies are encouraging. In the next few years, investigations on dental stem cells in basic research, pre-clinical research and clinical studies will pave the way to optimizing patient-tailored treatments for repair and regeneration of dental tissues.
Collapse
Affiliation(s)
- Christian Morsczeck
- a Department of Cranio-Maxillofacial Surgery , Hospital of the University of Regensburg , Regensburg , Germany
| | - Torsten E Reichert
- a Department of Cranio-Maxillofacial Surgery , Hospital of the University of Regensburg , Regensburg , Germany
| |
Collapse
|
12
|
Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 2017. [PMID: 28649865 DOI: 10.1080/07853890.2017.1347705] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the disclosure of adult mesenchymal stem cells (MSCs), there have been an intense investigation on the characteristics of these cells and their potentialities. Dental stem cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs) and dental follicle precursor cells (DFPCs). These cells are extremely accessible, prevail during all life and own an amazing multipotency. In the past decade, DPSCs and SHED have been thoroughly studied in regenerative medicine and tissue engineering as autologous stem cells therapies and have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and auto-immune conditions, in both animal and human models, and most recently some of them in human clinical trials. In this review, we focus the characteristics, the multiple roles of DSCs and its potential translation to clinical settings. These new insights of the apparently regenerative aptitude of these DSCs seems quite promising to investigate these cells abilities in a wide variety of pathologies. Key messages Dental stem cells (DSCs) have a remarkable self-renewal capacity and multidifferentiation potential; DSCs are extremely accessible and prevail during all life; DSCs, as stem cells therapies, have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and autoimmune conditions; DSCs are becoming extremely relevant in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- João Botelho
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | | | - Vanessa Machado
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | - José João Mendes
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| |
Collapse
|
13
|
Alsulaimani RS, Ajlan SA, Aldahmash AM, Alnabaheen MS, Ashri NY. Isolation of dental pulp stem cells from a single donor and characterization of their ability to differentiate after 2 years of cryopreservation. Saudi Med J 2017; 37:551-60. [PMID: 27146619 PMCID: PMC4880656 DOI: 10.15537/smj.2016.5.13615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives: To investigate the viability and differentiation capacity of dental pulp stem cells (DPSCs) isolated from single donors after two years of cryopreservation. Methods: This prospective study was conducted between October 2010 and February 2014 in the Stem Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia. Seventeen teeth extracted from 11 participants were processed separately to assess the minimum tissue weight needed to yield cells for culturing in vitro. Cell stemness was evaluated before passage 4 using the colony forming unit assay, immunofluorescence staining, and bi-lineage differentiation. Dental pulp stem cells were cryopreserved for 2 years. Post-thaw DPSCs were cultured until senescence and differentiated toward osteogenic, odontogenic, adipogenic, and chondrogenic lineages. Results: Viable cells were isolated successfully from 6 of the 11 participants. Three of these 6 cultured cell lines were identified as DPSCs. A minimum of 0.2 g of dental pulp tissue was required for successful isolation of viable cells from a single donor. Post-thaw DPSCs successfully differentiated towards osteogenic, odontogenic, chondrogenic, and adipogenic lineages. The post-thaw DPSCs were viable in vitro up to 70 days before senescence. There was no significant difference between the cells. Conclusion: Within the limitations of this investigation, viable cells from dental pulp tissue were isolated successfully from the same donor using a minimum of 2 extracted teeth. Not all isolated cells from harvested dental pulp tissue had the characteristics of DPSCs. Post-thaw DPSCs maintained their multi-lineage differentiation capacity.
Collapse
Affiliation(s)
- Reem S Alsulaimani
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | |
Collapse
|
14
|
Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials. Stem Cells Int 2017; 2017:8920356. [PMID: 28751918 PMCID: PMC5511667 DOI: 10.1155/2017/8920356] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed.
Collapse
|
15
|
Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med 2017; 12:19-29. [PMID: 27688068 DOI: 10.1002/term.2333] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs) can be a potential stem cell resource for clinical cell therapy and tissue engineering. However, obtaining a sufficient number of DPSCs for repairing defects is still an issue in clinical applications. Static magnetic fields (SMFs) enhance the proliferation of several cell types. Whether or not SMFs have a positive effect on DPSC proliferation is unknown. Therefore, the aim of this study was to investigate the effect of SMFs on DPSC proliferation and its possible intracellular mechanism of action. For methodology, isolated DPSCs were cultured with a 0.4-T SMF. Anisotropy of the lipid bilayer was examined using a fluorescence polarization-depolarization assay. The intracellular calcium ions of the SMF-treated cells were analysed using Fura-2 acetoxymethyl ester labelling. The cytoskeletons of exposed and unexposed control cells were labelled with actin fluorescence dyes. Cell viability was checked when the tested cells were cultured with inhibitors of ERK, JNK and p38 to discern the possible signalling cascade involved in the proliferative effect of the SMF on the DPSCs. Our results showed that SMF-treated cells demonstrated a higher proliferation rate and anisotropy value. The intracellular calcium ions were activated by SMFs. In addition, fluorescence microscopy images demonstrated that SMF-treated cells exhibit higher fluorescence intensity of the actin cytoskeletal structure. Cell viability and real-time polymerase chain reaction suggested that the p38 signalling cascade was activated when the DPSCs were exposed to a 0.4-T SMF. F-actin intensity tests showed that SB203580-treated cells decreased even with SMF exposure. Additionally, the F-/G-actin ratio increased due to slowing of the cytoskeleton reorganization by p38 mitogen-activated protein kinase inhibition. According to these results, we suggest that a 0.4-T SMF affected the cellular membranes of the DPSCs and activated intracellular calcium ions. This effect may activate p38 mitogen-activated protein kinase signalling, and thus reorganize the cytoskeleton, which contributes to the increased cell proliferation of the DPSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Zhen Lew
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Yu Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Che-Tong Lin
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tzu Tsai
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Lv T, Wu Y, Mu C, Liu G, Yan M, Xu X, Wu H, Du J, Yu J, Mu J. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch Oral Biol 2016; 72:116-123. [DOI: 10.1016/j.archoralbio.2016.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
|
17
|
Khojasteh A, Nazeman P, Rad MR. Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-28947-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Sunil PM, Manikandan R, Muthumurugan, Yoithapprabhunath TR, Sivakumar M. Harvesting dental stem cells - Overview. J Pharm Bioallied Sci 2015; 7:S384-6. [PMID: 26538883 PMCID: PMC4606625 DOI: 10.4103/0975-7406.163461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion.
Collapse
Affiliation(s)
- P M Sunil
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerela, India
| | | | - Muthumurugan
- Department of Oral and Maxillofacial Surgery, Meenakshiammal Dental College, Tamil Nadu, India
| | | | - Muniapillai Sivakumar
- Department of Oral and Maxillofacial Pathology, Madha Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
19
|
Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F, Ibarretxe G. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 2015; 6:289. [PMID: 26528190 PMCID: PMC4607862 DOI: 10.3389/fphys.2015.00289] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Patricia Garcia-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Jon Luzuriaga
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Verónica Uribe-Etxebarria
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| |
Collapse
|
20
|
Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering. Periodontol 2000 2014; 67:251-67. [DOI: 10.1111/prd.12070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/26/2022]
|
21
|
Li Y, Shu LH, Yan M, Dai WY, Li JJ, Zhang GD, Yu JH. Adult stem cell-based apexogenesis. World J Methodol 2014; 4:99-108. [PMID: 25332909 PMCID: PMC4202485 DOI: 10.5662/wjm.v4.i2.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/04/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here.
Collapse
|
22
|
Neural crest-derived dental stem cells--where we are and where we are going. J Dent 2014; 42:1043-51. [PMID: 24769107 DOI: 10.1016/j.jdent.2014.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES There are five types of post-natal human dental stem cells that have been identified, isolated and characterized. Here, we review the information available on dental stem cells as well as their potential applications in dentistry, regenerative medicine and the development of other therapeutic approaches. DATA Data pertinent to dental stem cells and their applications, published in peer-reviewed journals from 1982 to 2013 in English were reviewed. SOURCES Sources were retrieved from PubMed databases as well as related references that the electronic search yielded. STUDY SELECTION Manuscripts describing the origin, retrieval, characterization and application of dental stem cells were obtained and reviewed. CONCLUSIONS Dental stem cell populations present properties similar to those of mesenchymal stem cells, such as the ability to self-renew and the potential for multilineage differentiation. While they have greater capacity to give rise to odontogenic cells and regenerate dental pulp and periodontal tissue, they have the capacity to differentiate into all three germ line cells, proving that a population of pluripotent stem cells exists in the dental tissues. CLINICAL SIGNIFICANCE Dental stem cells have the capacity to differentiate into endoderm, mesoderm and ectoderm tissues. Consequently they do not only have applications in dentistry, but also neurodegenerative and ischemic diseases, diabetes research, bone repair, and other applications in the field of tissue regeneration.
Collapse
|
23
|
Vasandan AB, Shankar SR, Prasad P, Sowmya Jahnavi V, Bhonde RR, Jyothi Prasanna S. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 2014; 18:344-54. [PMID: 24393246 PMCID: PMC3930420 DOI: 10.1111/jcmm.12192] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022] Open
Abstract
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune-modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue-specific subsets, and lack of clear-cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in-depth evaluation of cellular characteristics of MSCs from proximal oro-facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche-specific influences on multipotency and immune-modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno-stimulatory/immune-adhesive ligands like HLA-DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro-inflammatory cytokines. Both DPSCs and PDLSCs were hypo-immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen-induced lympho-proliferative responses and priming with either IFNγ or TNFα enhanced immuno-modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro-inflammatory cytokines before translational usage.
Collapse
Affiliation(s)
- Anoop Babu Vasandan
- School of Regenerative Medicine (SORM), Manipal University, Bangalore, India
| | | | | | | | | | | |
Collapse
|
24
|
Kanafi MM, Ramesh A, Gupta PK, Bhonde RR. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J 2013; 47:687-97. [PMID: 24127887 DOI: 10.1111/iej.12205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/12/2013] [Indexed: 01/09/2023]
Abstract
AIM To immobilize dental pulp stem cells (DPSC) in alginate microspheres and to determine cell viability, proliferation, stem cell characteristics and osteogenic potential of the immobilized DPSCs. METHODOLOGY Human DPSCs isolated from the dental pulp were immobilized in 1% w/v alginate microspheres. Viability and proliferation of immobilized DPSCs were determined by trypan blue and MTT assay, respectively. Stem cell characteristics of DPSCs post immobilization were verified by labelling the cells with CD73 and CD90. Osteogenic potential of immobilized DPSCs was assessed by the presence of osteocalcin. Alizarin red staining and O-cresolphthalein complexone method confirmed and quantified calcium deposition. A final reverse transcriptase PCR evaluated the expression of osteogenic markers - ALP, Runx-2 and OCN. RESULTS More than 80% of immobilized DPSCs were viable throughout the 3-week study. Proliferation appeared controlled and consistent unlike DPSCs in the control group. Presence of CD73 and CD90 markers confirmed the stem cell nature of immobilized DPSCs. The presence of osteocalcin, an osteoblastic marker, was confirmed in the microspheres on day 21. Mineralization assays showed high calcium deposition indicating elevated osteogenic potential of immobilized DPSCs. Osteogenic genes- ALP, Runx-2 and OCN were also upregulated in immobilized DPSCs. Surprisingly, immobilized DPSCs in the control group cultured in conventional stem cell media showed upregulation of osteogenic genes and expressed osteocalcin. CONCLUSION Dental pulp stem cells immobilized in alginate hydrogels exhibit enhanced osteogenic potential while maintaining high cell viability both of which are fundamental for bone tissue regeneration.
Collapse
Affiliation(s)
- M M Kanafi
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | | | | | | |
Collapse
|
25
|
Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Arch Oral Biol 2012; 57:1439-58. [PMID: 22981360 DOI: 10.1016/j.archoralbio.2012.08.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 01/03/2023]
|
26
|
Catón J, Bostanci N, Remboutsika E, De Bari C, Mitsiadis TA. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J Cell Mol Med 2011; 15:1054-65. [PMID: 21199329 PMCID: PMC3822618 DOI: 10.1111/j.1582-4934.2010.01251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell-based tissue repair of the tooth and – tooth-supporting – periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue.
Collapse
Affiliation(s)
- Javier Catón
- Clinical and Diagnostic Sciences, Dental Institute, King's College London, London, UK
| | | | | | | | | |
Collapse
|
27
|
Rodríguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramírez MC, Blanquer M, Marín N, Martínez S, Moraleda JM. Mesenchymal stem cells derived from dental tissues. Int Endod J 2011; 44:800-6. [PMID: 21477154 DOI: 10.1111/j.1365-2591.2011.01877.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of tissues occurs naturally due to the existence of stem cells with the capacity to self-regenerate and differentiate; however, regenerative capacity decreases with age, and in many cases, regeneration is not sufficient to repair the damage produced by degenerative, ischaemic, inflammatory, or tumour-based diseases. In the last decade, advances have been made in the understanding of stem cells, the genes that control the alternative fates of quiescence and differentiation, and the niches that provide specific signals that modulate cell fate decisions. Embryonic stem-cell research is shedding light on the secrets of development. Adult stem cells (AS cells) are available from several sources. Bone marrow and connective tissue have been used in preliminary clinical trials for regenerative therapy. Recently, several types of AS cells have been isolated from teeth, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor stem cells and stem cells from apical papilla. Preliminary data suggest that these cells have the capacity to differentiate into osteoblasts, adipocytes, chondrocytes and neural cells. If confirmed, these data would support the use of these cells, which are easily obtained from extracted teeth, in dental therapies, including in regenerative endodontics, providing a new therapeutic modality.
Collapse
Affiliation(s)
- F J Rodríguez-Lozano
- Cell Therapy Unit. Hospital Universitary Virgen de la Arrixaca, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Galli D, Benedetti L, Bongio M, Maliardi V, Silvani G, Ceccarelli G, Ronzoni F, Conte S, Benazzo F, Graziano A, Papaccio G, Sampaolesi M, De Angelis MGC. In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-L-lysine-treated titanium-6-aluminium-4-vanadium. J Biomed Mater Res A 2011; 97:118-26. [PMID: 21370441 DOI: 10.1002/jbm.a.32996] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/24/2010] [Accepted: 10/14/2010] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) titanium-6-aluminium-4-vanadium (Ti6Al4V) is a widely used biomaterial for orthopedic prosthesis and dental implants; thanks to its very high-mechanical strength and resistance to corrosion. Human mesenchymal stem cells (hMSCs) and dental pulp stem cells (hDPSCs) are responsible for bone regeneration following colonization of prosthesis or dental implants. Both hMSCs and hDPSCs have lower ability to colonize this biomaterial in comparison with tissue culture-treated plastic. Both hMSCs and hDPSCs show lack of focal adhesion kinase (FAK) activation when grown on Ti6Al4V. This signal is restored in the presence of poly-L-lysine (poly-L-lys). Poly-L-lys has been used as part of organoapatite or together with zinc and calcium ions. Our results suggest that poly-L-lys alone induces FAK activation through β1-INTEGRIN, because the presence of β1-INTEGRIN blocking antibody avoided FAK autophosphorylation. Presence of poly-L-lys also increases expression of osteoblastic differentiation marker genes in hMSCs and hDPSCs grown on Ti6Al4V.
Collapse
Affiliation(s)
- Daniela Galli
- Interdepartmental Center of Tissue Engineering, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 2011; 56:709-21. [PMID: 21227403 DOI: 10.1016/j.archoralbio.2010.12.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro osteo/odontogenic differentiation potential of mesenchymal stem cells (MSCs) derived from the dental pulp (dental pulp stem cells - DPSCs) or the apical papilla (stem cells from the apical papilla - SCAP) of permanent developing teeth. DESIGN DPSCs and SCAP cultures were established from impacted third molars of young healthy donors at the stage of root development. Cultures were analysed for stem cell markers, including STRO-1, CD146, CD34 and CD45 using flow cytometry. Cells were then induced for osteo/odontogenic differentiation by media containing dexamethasone, KH(2)PO(4) and β-glycerophosphate. Cultures were analysed for morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers (dentine sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN, alkaline phosphatase-ALP), using immunocytochemistry and reverse transcriptase-polymerase chain reaction. RESULTS All DPSCs and SCAP cultures were positive for STRO-1, CD146 and CD34, in percentages varying according to cell type and donor, but negative for CD45. Both types of MSCs displayed an active potential for cellular migration, organization and mineralization, producing 3D mineralized structures. These structures progressively expressed differentiation markers, including DSPP, BSP, OCN, ALP, having the characteristics of osteodentin. SCAP, however, showed a significantly higher proliferation rate and mineralization potential, which might be of significance for their use in bone/dental tissue engineering. CONCLUSIONS This study provides evidence that different types of dental MSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source for osteo/odontogenic differentiation and biomineralization that could be further applied for stem cell-based clinical therapies.
Collapse
Affiliation(s)
- A Bakopoulou
- Department of Fixed Prosthesis & Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
30
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kraft DCE, Bindslev DA, Melsen B, Klein-Nulend J. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy 2010; 13:214-26. [PMID: 20491534 DOI: 10.3109/14653249.2010.487897] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. METHODS Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. RESULTS We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. CONCLUSIONS These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.
Collapse
|
32
|
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88:792-806. [PMID: 19767575 DOI: 10.1177/0022034509340867] [Citation(s) in RCA: 1312] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed.
Collapse
Affiliation(s)
- G T-J Huang
- University of Maryland, College of Dental Surgery, Dental School, Department of Endodontics, Prosthodontics and Operative Dentistry, 650 West Baltimore St., Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
33
|
Uchiyama M, Nakamichi Y, Nakamura M, Kinugawa S, Yamada H, Udagawa N, Miyazawa H. Dental Pulp and Periodontal Ligament Cells Support Osteoclastic Differentiation. J Dent Res 2009; 88:609-14. [DOI: 10.1177/0022034509340008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Odontoclasts and cementoclasts are considered to play major roles in the internal resorption of dentin and the external resorption of tooth roots. In this study, we evaluated the osteoclast-inducing ability of human dental pulp and periodontal ligament cells, which are mesenchymal cells in dental tissues. These cells expressed RANKL and OPG mRNA constitutively. As osteoclast precursors, CD14+ monocytes derived from human peripheral blood were isolated, and incubated together with human dental pulp or periodontal ligament cells. Both cell types spontaneously induced the differentiation of CD14+ monocytes into osteoclasts without osteotropic factors. These results suggest that dental pulp and periodontal ligament cells are involved in regulating the differentiation and function of osteoclasts.
Collapse
Affiliation(s)
- M. Uchiyama
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - Y. Nakamichi
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - M. Nakamura
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - S. Kinugawa
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - H. Yamada
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - N. Udagawa
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| | - H. Miyazawa
- Graduate School of Oral Medicine,
- Division of Hard Tissue Research, Institute for Oral Science,
- Department of Biochemistry,
- Department of Endodontics and Operative Dentistry, and
- Department of Pediatric Dentistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|