1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
He Y, Zheng C, Zeng J, Fu Y, Ou H. Risk factors of acute kidney injury, septic shock and acute respiratory distress syndrome in patients with blood culture‑positive sepsis. Exp Ther Med 2025; 29:42. [PMID: 39781194 PMCID: PMC11707985 DOI: 10.3892/etm.2024.12792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Sepsis, a condition characterized by a dysregulated host response to infection, can progress to septic shock and lead to various complications. The present study aimed to identify risk factors for the early clinical identification of sepsis patients at heightened risk of complications. In the present study, a total of 383 hospitalized patients with sepsis and positive blood cultures were enrolled. Demographic characteristics, laboratory findings at admission and treatment outcomes were collected and analyzed. Among the 383 sepsis patients, 165 were diagnosed with acute kidney injury (AKI). Patients with AKI exhibited significantly lower platelet counts, elevated procalcitonin levels and higher Sequential Organ Failure Assessment (SOFA) scores. Logistic regression analysis identified the SOFA score [odds ratio (OR)=1.269, 95% confidence interval (CI): 1.067-1.510, P=0.007) as an independent predictor of AKI. Furthermore, patients with septic shock had lower platelet counts and higher white blood cell counts at admission. Multivariable analysis revealed that age (OR=1.024, 95% CI: 1.001-1.047, P=0.039), procalcitonin (OR=1.018, 95% CI: 1.003-1.032, P=0.015), SOFA score (OR=1.465, 95% CI: 1.248-1.719, P<0.001) and Pitt bacteremia score (OR=1.437, 95% CI: 1.204-1.716, P<0.001) were independently associated with septic shock. In addition, sepsis patients with acute respiratory distress syndrome (ARDS) were observed to have lower platelet counts, higher body weight and elevated alanine aminotransferase levels. Multivariable analysis identified the SOFA score (OR=1.177, 95% CI: 1.095-1.265, P<0.001) and body weight (OR=1.030, 95% CI: 1.007-1.054, P=0.010) as independent predictors of ARDS. The present study highlights the risk factors associated with AKI, ARDS and septic shock in sepsis patients with positive blood cultures. Early identification and close monitoring of these factors are crucial for improving outcomes in sepsis management.
Collapse
Affiliation(s)
- Yujing He
- Intensive Care Unit, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Caixia Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Jianyong Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Yaojie Fu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Hongjie Ou
- Department of Infectious Diseases, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
3
|
Huang G, Yang S, Long T, Gao Y, Lin G. Proteomic analysis of brain tissue from ducks with meningitis caused by Riemerella anatipestifer infection. Poult Sci 2024; 103:104059. [PMID: 39068696 PMCID: PMC11338091 DOI: 10.1016/j.psj.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Riemerella anatipestifer is a Gram-negative, rod-shaped bacterium that is flagellated, non-budded, and encapsulated, measuring approximately 0.4 μm × 0.7 μm. After infecting ducklings with R. anatipestifer, the hosts exhibited pathological changes, such as bacterial meningitis, fibrinous pericarditis, and fibrinous peripheral hepatitis. The pathogenesis of meningitis caused by R. anatipestifer has not yet been elucidated. To investigate the key molecules or proteins involved in R. anatipestifer's penetration of the blood-brain barrier (BBB) and the subsequent development of duck meningitis, a duck meningitis model was established and characterized. Duckling brain tissues were collected and analyzed using 4D label-free proteomic technology. Differentially expressed proteins were analyzed using a series of bioinformatics methods and verified using RT-qPCR and Western-Blot. The results showed that the differentially expressed proteins were primarily related to intracellular transport, transport protein activity, and transmembrane transport protein activity, and were mainly enriched in pathways associated with reducing intercellular connections and adhesion and increasing cell migration and apoptosis. Thus, it is suggested that R. anatipestifer may penetrate the BBB via transcellular and paracellular pathways, causing neurological diseases such as meningitis. This study is the first to analyze R. anatipestifer-infected duckling brain tissue using proteomics, thus providing a direction for further research into the mechanisms of R. anatipestifer's penetration of the BBB.
Collapse
Affiliation(s)
- Guoliang Huang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Shengmei Yang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ting Long
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Yuhan Gao
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Guozhen Lin
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
4
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
5
|
Wu X, Tang Y, Lu X, Liu Y, Liu X, Sun Q, Wang L, Huang W, Liu A, Liu L, Chao J, Zhang X, Qiu H. Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS. Cell Commun Signal 2024; 22:293. [PMID: 38802896 PMCID: PMC11129421 DOI: 10.1186/s12964-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.
Collapse
Affiliation(s)
- Xiao Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xinxing Lu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yigao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiwen Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
6
|
Li C, Yang C, Zhang J, Zhang L. Formation of Amadori compounds in LIGAO (concentrated pear juice) processing and the effects of Fru-Asp on cough relief and lung moisturization in mice. Food Funct 2022; 13:12787-12798. [PMID: 36421027 DOI: 10.1039/d2fo02903k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
LIGAO (concentrated pear juice) has been used for more than 1000 years to treat respiratory complaints such as cough and expectoration in China, but the study of the mechanism of its antitussive effects and ability to moisten the lungs is limited. This study found that the content of Amadori compounds (ACs) and other nutrients changed during LIGAO processing. Furthermore, N-(1-deoxy-D-fructos-1-yl)-aspartic acid (Fru-Asp), the most abundant and characteristic AC in LIGAO, was prepared and studied. The antitussive test revealed that Fru-Asp could significantly reduce the frequency of cough and prolong the cough latent period in mice. A high dose of Fru-Asp (250 mg kg-1) in mice provided better therapeutic activities than that of dextromethorphan hydrobromide tablets (30 mg kg-1). In the Fru-Asp pretreated group, Fru-Asp significantly alleviated inflammation in LPS-induced acute lung injury mice. Fru-Asp can significantly decrease the levels of TNF-α and IL-β in mice by 11%. Additionally, Fru-Asp exhibited angiotensin-converting enzyme (ACE) inhibitor activity (IC50 = 0.242 mM). The contribution and health benefits of Fru-Asp on cough relief were first reported in this study, which also substantiated it as a functional component of LIGAO. The results provided the basis for future research on the health effects of ACs and a method to improve the added value of LIGAO and other pear products.
Collapse
Affiliation(s)
- Chenyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Jian Zhang
- College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. .,College of Food, Shihezi University, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| |
Collapse
|
7
|
Muhammad W, Zhu J, Zhai Z, Xie J, Zhou J, Feng X, Feng B, Pan Q, Li S, Venkatesan R, Li P, Cao H, Gao C. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater 2022; 148:258-270. [PMID: 35724918 PMCID: PMC9212862 DOI: 10.1016/j.actbio.2022.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared dexamethasone-loaded ROS-responsive polymer nanoparticles (PFTU@DEX NPs) by a modified emulsion approach, which achieved high loading content of DEX (11.61 %). DEX was released faster from the PFTU@DEX NPs in a ROS environment, which could scavenge excessive ROS efficiently both in vitro and in vivo. The PFTU NPs and PFTU@DEX NPs showed no hemolysis and cytotoxicity. Free DEX, PFTU NPs and PFTU@DEX NPs shifted M1 macrophages to M2 macrophages in RAW264.7 cells, and showed anti-inflammatory modulation to A549 cells in vitro. The PFTU@DEX NPs treatment significantly reduced the increased total protein concentration in BALF of ALI mice. The delivery of PFTU@DEX NPs decreased the proportion of neutrophils significantly, mitigated the cell apoptosis remarkably compared to the other groups, reduced M1 macrophages and increased M2 macrophages in vivo. Moreover, the PFTU@DEX NPs had the strongest ability to suppress the expression of NLRP3, Caspase1, and IL-1β. Therefore, the PFTU@DEX NPs could efficiently suppress inflammatory cells, ROS signaling pathways, and cell apoptosis to ameliorate LPS-induced ALI. STATEMENT OF SIGNIFICANCE: The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients. There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to modulate the inflammatory disorder and suppress the expression of ROS and inflammatory cytokines. The inhaled PFTU@DEX NPs prepared through a modified nanoemulsification method suppressed the activation of NLRP3, induced the polarization of macrophage phenotype from M1 to M2, and thereby reduced the neutrophil infiltration, inhibited the release of proteins and inflammatory mediators, and thus decreased the acute lung injury in vivo.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rajiu Venkatesan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Ming X, Yang F, Zhu H. Blood CDC42 overexpression is associated with an increased risk of acute exacerbation, inflammation and disease severity in patients with chronic obstructive pulmonary disease. Exp Ther Med 2022; 24:544. [PMID: 35978930 PMCID: PMC9366288 DOI: 10.3892/etm.2022.11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Abstract
It has been previously reported that cell division control 42 (CDC42) protein can regulate macrophage recruitment, T cell-associated inflammation and lung injury. However, its role in chronic obstructive pulmonary disease (COPD) remain poorly understood. Therefore, the present study aimed to investigate the possible association among CDC42 expression, the risk of acute exacerbation and disease features in patients with COPD. Peripheral blood mononuclear cells (PBMCs) and serum samples were collected from 60 patients with acute exacerbation COPD (AE-COPD), 60 patients with stable COPD (S-COPD) and 60 healthy control (HCs) individuals. The mRNA expression levels of CDC42 in PBMCs were then measured using reverse transcription-quantitative PCR. The serum levels of TNF-α, IL-1β, IL-6 and IL-17 were measured using ELISA. The results showed that the expression of CDC42 was dysregulated among patients with AE-COPD and S-COPD compared with that in HCs. Specifically, the expression level of CDC42 was the highest in patients with AE-COPD, followed by those with S-COPD and the lowest in HCs (P<0.001). Furthermore, receiver operating characteristic curve analysis demonstrated that CDC42 expression was associated with an increased risk of acute exacerbation in COPD with an area under curve of 0.690 (95% confidence interval=0.595-0.785). CDC42 was found to be positively associated with Global Initiative for Chronic Obstructive Lung Disease staging in patients with AE-COPD (P<0.01) and S-COPD (P<0.05). Additionally, CDC42 expression associated positively with the serum levels of TNF-α, IL-1β, IL-6 and IL-17 in patients with AE-COPD (all P<0.05). However, this association was weaker in patients with S-COPD and became negligible in HCs. In conclusion, data from the present study suggest that CDC42 is associated with an increased risk of acute exacerbation, inflammation and disease severity in patients with COPD, implicating its application as a potential biomarker for COPD.
Collapse
Affiliation(s)
- Xiaoyan Ming
- Department of General Practice, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Fan Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hong Zhu
- Department of General Practice, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
9
|
Fujimoto S, Fujita Y, Kadota T, Araya J, Kuwano K. Intercellular Communication by Vascular Endothelial Cell-Derived Extracellular Vesicles and Their MicroRNAs in Respiratory Diseases. Front Mol Biosci 2021; 7:619697. [PMID: 33614707 PMCID: PMC7890564 DOI: 10.3389/fmolb.2020.619697] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory diseases and their comorbidities, such as cardiovascular disease and muscle atrophy, have been increasing in the world. Extracellular vesicles (EVs), which include exosomes and microvesicles, are released from almost all cell types and play crucial roles in intercellular communication, both in the regulation of homeostasis and the pathogenesis of various diseases. Exosomes are of endosomal origin and range in size from 50 to 150 nm in diameter, while microvesicles are generated by the direct outward budding of the plasma membrane in size ranges of 100-2,000 nm in diameter. EVs can contain various proteins, metabolites, and nucleic acids, such as mRNA, non-coding RNA species, and DNA fragments. In addition, these nucleic acids in EVs can be functional in recipient cells through EV cargo. The endothelium is a distributed organ of considerable biological importance, and disrupted endothelial function is involved in the pathogenesis of respiratory diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Endothelial cell-derived EVs (EC-EVs) play crucial roles in both physiological and pathological conditions by traveling to distant sites through systemic circulation. This review summarizes the pathological roles of vascular microRNAs contained in EC-EVs in respiratory diseases, mainly focusing on chronic obstructive pulmonary disease, pulmonary hypertension, and acute respiratory distress syndrome. Furthermore, this review discusses the potential clinical usefulness of EC-EVs as therapeutic agents in respiratory diseases.
Collapse
Affiliation(s)
- Shota Fujimoto
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yu Fujita
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Translational Research for Exosomes, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsukasa Kadota
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Disease, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Anti-inflammatory Effects of Statins in Lung Vascular Pathology: From Basic Science to Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:33-56. [PMID: 33788186 DOI: 10.1007/978-3-030-63046-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HMG-CoA reductase inhibitors (or statins) are cholesterol-lowering drugs and are among the most widely prescribed medications in the United States. Statins exhibit pleiotropic effects that extend beyond cholesterol reduction including anti-atherosclerotic, antiproliferative, anti-inflammatory, and antithrombotic effects. Over the last 20 years, statins have been studied and examined in pulmonary vascular disorders, including both chronic pulmonary vascular disease such as pulmonary hypertension, and acute pulmonary vascular endothelial injury such as acute lung injury. In both research and clinical settings, statins have demonstrated promising vascular protection through modulation of the endothelium, attenuation of vascular leak, and promotion of endothelial repair following lung inflammation. This chapter provides a summary of the rapidly changing literature, summarizes the anti-inflammatory mechanism of statins on pulmonary vascular disorders, and explores clinical evidence for statins as a potential therapeutic approach to modulation of the endothelium as well as a means to broaden our understanding of pulmonary vasculopathy pathophysiology.
Collapse
|
11
|
Mahida RY, Matsumoto S, Matthay MA. Extracellular Vesicles: A New Frontier for Research in Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2020; 63:15-24. [PMID: 32109144 DOI: 10.1165/rcmb.2019-0447tr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent research on extracellular vesicles (EVs) has provided new insights into pathogenesis and potential therapeutic options for acute respiratory distress syndrome (ARDS). EVs are membrane-bound anuclear structures that carry important intercellular communication mechanisms, allowing targeted transfer of diverse biologic cargo, including protein, mRNA, and microRNA, among several different cell types. In this review, we discuss the important role EVs play in both inducing and attenuating inflammatory lung injury in ARDS as well as in sepsis, the most important clinical cause of ARDS. We discuss the translational challenges that need to be overcome before EVs can also be used as prognostic biomarkers in patients with ARDS and sepsis. We also consider how EVs may provide a platform for novel therapeutics in ARDS.
Collapse
Affiliation(s)
- Rahul Y Mahida
- Cardiovascular Research Institute.,Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom; and
| | - Shotaro Matsumoto
- Cardiovascular Research Institute.,Department of Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael A Matthay
- Cardiovascular Research Institute.,Department of Medicine, and.,Department of Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
12
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
13
|
Zhang S, Yin Y, Li C, Zhao Y, Wang Q, Zhang X. PAK4 suppresses TNF-induced release of endothelial microparticles in HUVECs cells. Aging (Albany NY) 2020; 12:12740-12749. [PMID: 32657762 PMCID: PMC7377857 DOI: 10.18632/aging.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/07/2020] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor-α (TNF) is a pro-inflammatory cytokine upregulated in many inflammatory diseases, and a potent inducer of endothelial cell-derived microparticle (EMP) formation. In this study, we identified the protein kinase PAK4 as a key regulator of the TNF-induced EMP release from human umbilical vein endothelial cells (HUVECs). TNF induces dose- and time-dependent EMP release and downregulation of PAK4 and upstream cdc42 in HUVECs. PAK4 suppression or inhibition of its kinase activity increases TNF-induced EMP release and apoptosis in HUVECs, while PAK4 overexpression reduces EMP release and apoptosis in TNF-stimulated cells. Collectively, these data indicate that PAK4 suppresses TNF-induced EMP generation occurring during apoptosis, and suggest that modulation of PAK4 activity may represent a novel approach to suppress the TNF-induced EMP levels in pro-inflammatory disorders and other pathological conditions.
Collapse
Affiliation(s)
- Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Yingjie Yin
- Department of Critical Care Medicine, The Affiliated Hospital of Medical School of Ningbo, Jiangbei District, Ningbo, Zhejiang Province, China
| | - Congye Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Yi Zhao
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Qixing Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| | - Xiangyu Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Jing'an, Shanghai, China
| |
Collapse
|
14
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
15
|
Extracellular Vesicles in ARDS: New Insights into Pathogenesis with Novel Clinical Applications. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2020. [PMCID: PMC7135906 DOI: 10.1007/978-3-030-37323-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of acute respiratory failure that develops following several clinical disorders, including pneumonia, sepsis, aspiration and major trauma. Despite numerous clinical trials, there is still no effective pharmacotherapy available for ARDS patients. However, recent research on extracellular vesicles provides new insights into pathogenesis, prognosis, and potential therapeutic options for ARDS. Extracellular vesicles are membrane-bound anuclear structures which constitute a recently recognized and important intercellular communication mechanism, allowing targeted transfer of diverse biologic cargo between different cell types. There is new evidence that extracellular vesicles play an important role in the pathogenesis of ARDS and also potentially a protective role. In this chapter, we highlight recent translational and clinical studies that have advanced our understanding of the critical role extracellular vesicles play in both inducing and attenuating inflammatory lung injury in ARDS. This review also considers the wide range of potential clinical applications for extracellular vesicles, ranging from use as biomarkers of lung injury to therapeutic agents for ARDS. Extracellular vesicles represent a new frontier for research in ARDS.
Collapse
|
16
|
Shah TG, Predescu D, Predescu S. Mesenchymal stem cells-derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clin Transl Med 2019; 8:25. [PMID: 31512000 PMCID: PMC6739436 DOI: 10.1186/s40169-019-0242-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening inflammatory lung condition associated with significant morbidity and mortality. Unfortunately, the current treatment for this disease is mainly supportive. Mesenchymal stem cells (MSCs) due to their immunomodulatory properties are increasingly being studied for the treatment of ARDS and have shown promise in multiple animal studies. The therapeutic effects of MSCs are exerted in part in a paracrine manner by releasing extracellular vesicles (EVs), rather than local engraftment. MSC-derived EVs are emerging as potential alternatives to MSC therapy in ARDS. In this review, we will introduce EVs and briefly discuss current data on EVs and MSCs in ARDS. We will discuss current literature on the role of MSC-derived EVs in pathogenesis and treatment of ARDS and their potential as a treatment strategy in the future.
Collapse
Affiliation(s)
- Trushil G Shah
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA.,Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Dan Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750 W Harrison St. 1535 JS, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Letsiou E, Bauer N. Endothelial Extracellular Vesicles in Pulmonary Function and Disease. CURRENT TOPICS IN MEMBRANES 2018; 82:197-256. [PMID: 30360780 DOI: 10.1016/bs.ctm.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pulmonary vascular endothelium is involved in the pathogenesis of acute and chronic lung diseases. Endothelial cell (EC)-derived products such as extracellular vesicles (EVs) serve as EC messengers that mediate inflammatory as well as cytoprotective effects. EC-EVs are a broad term, which encompasses exosomes and microvesicles of endothelial origin. EVs are comprised of lipids, nucleic acids, and proteins that reflect not only the cellular origin but also the stimulus that triggered their biogenesis and secretion. This chapter presents an overview of the biology of EC-EVs and summarizes key findings regarding their characteristics, components, and functions. The role of EC-EVs is specifically delineated in pulmonary diseases characterized by endothelial dysfunction, including pulmonary hypertension, acute respiratory distress syndrome and associated conditions, chronic obstructive pulmonary disease, and obstructive sleep apnea.
Collapse
Affiliation(s)
- Eleftheria Letsiou
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Natalie Bauer
- Department of Pharmacology & Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States.
| |
Collapse
|
18
|
Li M, Wen Y, Zhang R, Xie F, Zhang G, Qin X. Adenoviral vector-induced silencing of RGMa attenuates blood-brain barrier dysfunction in a rat model of MCAO/reperfusion. Brain Res Bull 2018; 142:54-62. [PMID: 29935233 DOI: 10.1016/j.brainresbull.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Repulsive guidance molecule A (RGMa) is implicated in focal cerebral ischemia-reperfusion (I/R) injury, but its mechanisms are still largely unknown. This work focused on the effects of RGMa on the blood-brain barrier (BBB) after focal cerebral I/R injury. METHODS Sprague-Dawley (SD) rats were randomly divided into four groups: sham, middle cerebral artery occlusion (MCAO)/reperfusion (I/R), MCAO/reperfusion administered recombinant adenovirus expressing sh-con (I/R + sh-con) and MCAO/reperfusion administered recombinant adenovirus expressing sh-RGMa (I/R + sh-RGMa) groups. Infarct volume, brain edema and neurological scores were evaluated at 3 day after reperfusion. Evens blue leakage and transmission electron microscopy was performed. And the expression level of claudin-5 and ZO-1, CDC-42 and PAK-1, RGMa were detected by western blot. RESULTS Compared with I/R or I/R + sh-con groups, I/R + sh-RGMa group showed smaller infarction volume, attenuated brain edema, improved neurological scores and better BBB integrity, such as reduced Evans blue leakage and ultra-structural change. We also observed improved BBB function followed by down-regulation of MMP-9 and up-regulation of claudin-5 and ZO-1 in the I/R + sh-RGMa group. In addition, up-regulation of the CDC-42 and PAK-1 in the I/R + sh-RGMa group was obtained. CONCLUSIONS RGMa may be involved in I/R injury associated with BBB dysfunction via the CDC-42/PAK-1 signal pathway and may be a promising therapeutic target for I/R injury.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Yuetao Wen
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Sun GY, Yang HH, Guan XX, Zhong WJ, Liu YP, Du MY, Luo XQ, Zhou Y, Guan CX. Vasoactive intestinal peptide overexpression mediated by lentivirus attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation. Mol Immunol 2018; 97:8-15. [PMID: 29544087 DOI: 10.1016/j.molimm.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
Vasoactive intestinal peptide (VIP) is one of the most abundant neuropeptides in the lungs with various biological characters. We have reported that VIP inhibited the expressions of TREM-1 and IL-17A, which are involved in the initiation and amplification of inflammation in acute lung injury (ALI). However, the overall effect of VIP on ALI remains unknown. The aim of this study is to investigate the therapeutic effect of VIP mediated by lentivirus (Lenti-VIP) on lipopolysaccharide (LPS)-induced murine ALI. We found that the expression of intrapulmonary VIP peaked at day7 after the intratracheal injection of Lenti-VIP. Lenti-VIP increased the respiratory rate, lung compliance, and tidal volume, while decreased airway resistance in ALI mice, detected by Buxco system. Lenti-VIP significantly reduced inflammatory cell infiltration and maintained the integrity of the alveolar septa. Lenti-VIP also remarkably decreased the total protein level, the number of neutrophil and lactate dehydrogenase activity in the bronchoalveolar lavage fluid of LPS-induced ALI mice. In addition, Lenti-VIP down-regulated pro-inflammatory tumor necrosis factor (TNF)-α mRNA and protein expression, while up-regulated anti-inflammatory interleukin-10 mRNA and protein expression in lungs of ALI mice. Furthermore, we observed that VIP reduced the TNF-α expression in murine macrophages under LPS stimulation through protein kinase C and protein kinase A pathways. Together, our findings show that in vivo administration of lentivirus expressing VIP exerts a potent therapeutic effect on LPS-induced ALI in mice via inhibiting inflammation.
Collapse
Affiliation(s)
- Guo-Ying Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yong-Ping Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ming-Yuan Du
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
20
|
Simvastatin Ameliorates PAK4 Inhibitor-Induced Gut and Lung Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2017:8314276. [PMID: 29445744 PMCID: PMC5763212 DOI: 10.1155/2017/8314276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
P21 activated kinase 4 (PAK4), a key regulator of cytoskeletal rearrangement and endothelial microparticles (EMPs), is released after lipopolysaccharide (LPS) stimulation. In addition, it participates in LPS-induced lung injury. In this study, forty-eight Sprague Dawley (SD) rats were divided into two groups, including PAK4 inhibitor (P) and PAK4 inhibitor + simvastatin (P + S) treatment groups. All rats were given PAK4 inhibitor (15 mg/kg/d) orally. Immediately after PAK4 inhibitor administration, simvastatin was injected intraperitoneally to P + S group animals at 20 mg/kg/day. Then, treatment effects on the intestinal mucosal barrier and lung injury caused by PAK4 inhibitor and simvastatin were assessed. The results showed that gut Zonula Occludens- (ZO-) 1, PAK4, mitogen-activated protein kinase 4 (MPAK4), and CD11c protein levels were reduced, while plasma endotoxin levels were increased after administration of PAK4 inhibitor. Furthermore, compared with normal rats, wet-to-dry (W/D) values of lung tissues and circulating EMP levels were increased in the treatment group, while PAK4 and CD11c protein amounts were reduced. Therefore, in this lung injury process induced by PAK4 inhibitor, the protective effects of simvastatin were reflected by intestinal mucosal barrier protection, inflammatory response regulation via CD11c+ cells, and cytoskeleton stabilization. In summary, PAK4 is a key regulator in the pathophysiological process of acute lung injury (ALI) and can be a useful target for ALI treatment.
Collapse
|
21
|
What's New in Shock, March 2017? Shock 2017; 47:261-263. [PMID: 28195968 DOI: 10.1097/shk.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|