1
|
Turgunov Y, Ogizbayeva A, Assamidanova S, Matyushko D, Mugazov M, Amanova D, Nuraly S, Sharapatov Y. The Role of I-FABP, REG3α, sCD14-ST, and LBP as Indicators of GI Tract Injury in MODS Patients. Diagnostics (Basel) 2025; 15:515. [PMID: 40075763 PMCID: PMC11898716 DOI: 10.3390/diagnostics15050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: The aim of this study was to evaluate potential biomarkers of bacterial translocation (lipopolysaccharide-binding protein (LBP) and soluble CD14 subtype (sCD14-ST)) and intestinal wall damage (intestinal fatty acid binding protein (I-FABP), Zonulin, and regenerating islet-derived protein-3α (REG3α)) in patients with multiple organ dysfunction syndrome (MODS). Methods: The study involved 327 patients divided into two groups: Group 1 comprised 227 patients with MODS (main group), while Group 2 comprised 100 patients with identical pathologies but without MODS (control group). To examine these biomarkers in the blood, venous blood was taken in the control group on the day of admission to the hospital, in patients with MODS on the first day of MODS staging, and later on Days 3 and 7 of its development. Levels of these markers in blood serum were determined by enzyme-linked immunosorbent assays according to the manufacturers' instructions. Results: In the control group, values of all the investigated markers were lower than in the group of MODS patients (p < 0.0001). In the main group, the mortality rate was 44.9% (n = 102). The values of sCD14-ST on Day 1 and of I-FABP and REG3α on Days 1 and 3 were higher in deceased MODS patients (p < 0.05), while LBP levels on Day 7 were conversely lower in the deceased patients (p = 0.006). SOFA and APACHE II scores were higher in the deceased patients (p < 0.0001). Conclusions: In MODS patients, the increased I-FABP, REG3α, and sCD14-ST but decreased LBP levels may indicate increased intestinal wall permeability and bacterial translocation, which may exacerbate the course of multiple organ dysfunction and increase the risk of mortality. Despite the limitations of this study, the studied potential biomarkers can be considered noteworthy candidates for identifying MODS patients at high risk of mortality.
Collapse
Affiliation(s)
- Yermek Turgunov
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Alina Ogizbayeva
- Department of Emergency Medical Care, Anaesthesiology and Resuscitation, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan;
| | - Sofiko Assamidanova
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Dmitriy Matyushko
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Miras Mugazov
- Department of Emergency Medical Care, Anaesthesiology and Resuscitation, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan;
| | - Dana Amanova
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Shynggys Nuraly
- Department of Surgical Diseases, NJSC “Karaganda Medical University”, Karaganda 100008, Kazakhstan; (Y.T.); (S.A.); (D.M.); (D.A.); (S.N.)
| | - Yerzhan Sharapatov
- Department of Urology and Andrology, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| |
Collapse
|
2
|
Galusko V, Wenzl FA, Vandenbriele C, Panoulas V, Lüscher TF, Gorog DA. Current and novel biomarkers in cardiogenic shock. Eur J Heart Fail 2025. [PMID: 39822053 DOI: 10.1002/ejhf.3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 01/19/2025] Open
Abstract
Cardiogenic shock (CS) carries a 30-50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the 'point of no return' has often passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion, organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions may have varying efficacy depending on the type and stage of shock in which they are applied. Biomarkers that aid prediction and early detection of CS, provide early signs of organ dysfunction and define prognosis could help optimize management. Temporal change in such biomarkers, particularly in response to pharmacological interventions and/or mechanical circulatory support, can guide management and predict outcome. Several novel biomarkers enhance the prediction of mortality in CS, compared to conventional parameters such as lactate, with some, such as adrenomedullin and circulating dipeptidyl peptidase 3, also able to predict the development of CS. Some biomarkers reflect systemic inflammation (e.g. interleukin-6, angiopoietin 2, fibroblast growth factor 23 and suppressor of tumorigenicity 2) and are not specific to CS, yet inform on the activation of important pathways involved in the downward shock spiral. Other biomarkers signal end-organ hypoperfusion and could guide targeted interventions, while some may serve as novel therapeutic targets. We critically review current and novel biomarkers that guide prediction, detection, and prognostication in CS. Future use of biomarkers may help improve management in these high-risk patients.
Collapse
Affiliation(s)
- Victor Galusko
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Florian A Wenzl
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- National Disease Registration and Analysis Service, NHS, London, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Christophe Vandenbriele
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Heart Center, OLV Hospital, Aalst, Belgium
| | - Vasileios Panoulas
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Centre for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
| | - Diana A Gorog
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- School of Cardiovascular Medicine and Sciences, Kings College London, London, UK
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK
| |
Collapse
|
3
|
Beaini H, Chunawala Z, Cheeran D, Araj F, Wrobel C, Truby L, Saha A, Thibodeau JT, Farr M. Cardiogenic Shock: Focus on Non-Cardiac Biomarkers. Curr Heart Fail Rep 2024; 21:604-614. [PMID: 39078556 DOI: 10.1007/s11897-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW To examine the evolving multifaceted nature of cardiogenic shock (CS) in the context of non-cardiac biomarkers that may improve CS management and risk stratification. RECENT FINDINGS There are increasing data highlighting the role of lactate, glucose, and other markers of inflammation and end-organ dysfunction in CS. These biomarkers provide a more comprehensive understanding of the concurrent hemo-metabolic and cellular disturbances observed in CS and offer insights beyond standard structural and functional cardiac assessments. Non-cardiac biomarkers both refine the diagnostic accuracy and improve the prognostic assessments in CS. Further studies revolving around novel biomarkers are warranted to support more targeted and effective therapeutic and management interventions in these high-risk patients.
Collapse
Affiliation(s)
- Hadi Beaini
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Zainali Chunawala
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Daniel Cheeran
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Dallas Veteran's Administration Hospital, Dallas, TX, USA
| | - Faris Araj
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Christopher Wrobel
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Lauren Truby
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Amit Saha
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Jennifer T Thibodeau
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA
- Parkland Memorial Hospital, Dallas, TX, USA
| | - Maryjane Farr
- Department of Medicine, The University of Texas Southwestern Medical Center, 5959 Harry Hines Blvd, Dallas, TX, 75235, USA.
- Parkland Memorial Hospital, Dallas, TX, USA.
| |
Collapse
|
4
|
Nendl A, Raju SC, Broch K, Mayerhofer CCK, Holm K, Halvorsen B, Lappegård KT, Moscavitch S, Hov JR, Seljeflot I, Trøseid M, Awoyemi A. Intestinal fatty acid binding protein is associated with cardiac function and gut dysbiosis in chronic heart failure. Front Cardiovasc Med 2023; 10:1160030. [PMID: 37332580 PMCID: PMC10272617 DOI: 10.3389/fcvm.2023.1160030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background The gut microbiota in patients with chronic heart failure (HF) is characterized by low bacterial diversity and reduced ability to synthesize beneficial metabolites. These changes may facilitate leakage of whole bacteria or bacterial products from the gut into the bloodstream, which may activate the innate immune system and contribute to the low-grade inflammation seen in HF. In this exploratory cross-sectional study, we aimed to investigate relationships between gut microbiota diversity, markers of gut barrier dysfunction, inflammatory markers, and cardiac function in chronic HF patients. Methods In total, 151 adult patients with stable HF and left ventricular ejection fraction (LVEF) < 40% were enrolled. We measured lipopolysaccharide (LPS), LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and soluble cluster of differentiation 14 (sCD14) as markers of gut barrier dysfunction. N-terminal pro-B-type natriuretic peptide (NT-proBNP) level above median was used as a marker of severe HF. LVEF was measured by 2D-echocardiography. Stool samples were sequenced using 16S ribosomal RNA gene amplification. Shannon diversity index was used as a measure of microbiota diversity. Results Patients with severe HF (NT-proBNP > 895 pg/ml) had increased I-FABP (p < 0.001) and LBP (p = 0.03) levels. ROC analysis for I-FABP yielded an AUC of 0.70 (95% CI 0.61-0.79, p < 0.001) for predicting severe HF. A multivariate logistic regression model showed increasing I-FABP levels across quartiles of NT-proBNP (OR 2.09, 95% CI 1.28-3.41, p = 0.003). I-FABP was negatively correlated with Shannon diversity index (rho = -0.30, p = <0.001), and the bacterial genera Ruminococcus gauvreauii group, Bifidobacterium, Clostridium sensu stricto, and Parasutterella, which were depleted in patients with severe HF. Conclusions In patients with HF, I-FABP, a marker of enterocyte damage, is associated with HF severity and low microbial diversity as part of an altered gut microbiota composition. I-FABP may reflect dysbiosis and may be a marker of gut involvement in patients with HF.
Collapse
Affiliation(s)
- Andraž Nendl
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sajan C. Raju
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Kristian Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Samuel Moscavitch
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Johannes Roksund Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ayodeji Awoyemi
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
5
|
Merdji H, Levy B, Jung C, Ince C, Siegemund M, Meziani F. Microcirculatory dysfunction in cardiogenic shock. Ann Intensive Care 2023; 13:38. [PMID: 37148451 PMCID: PMC10164225 DOI: 10.1186/s13613-023-01130-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023] Open
Abstract
Cardiogenic shock is usually defined as primary cardiac dysfunction with low cardiac output leading to critical organ hypoperfusion, and tissue hypoxia, resulting in high mortality rate between 40% and 50% despite recent advances. Many studies have now evidenced that cardiogenic shock not only involves systemic macrocirculation, such as blood pressure, left ventricular ejection fraction, or cardiac output, but also involves significant systemic microcirculatory abnormalities which seem strongly associated with the outcome. Although microcirculation has been widely studied in the context of septic shock showing heterogeneous alterations with clear evidence of macro and microcirculation uncoupling, there is now a growing body of literature focusing on cardiogenic shock states. Even if there is currently no consensus regarding the treatment of microcirculatory disturbances in cardiogenic shock, some treatments seem to show a benefit. Furthermore, a better understanding of the underlying pathophysiology may provide hypotheses for future studies aiming to improve cardiogenic shock prognosis.
Collapse
Affiliation(s)
- Hamid Merdji
- Intensive Care Unit, Department of Acute Medicine, University Hospital, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Bruno Levy
- Institut Lorrain du Cœur et des Vaisseaux, Medical Intensive Care Unit Brabois, Université de Lorraine, CHRU de Nancy, INSERM U1116, Nancy, France
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Siegemund
- Intensive Care Unit, Department of Acute Medicine, University Hospital, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Ferhat Meziani
- Faculté de Médecine, Université de Strasbourg (UNISTRA), Strasbourg, France.
- Service de Médecine Intensive-Réanimation, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de L'Hôpital, 67091, Strasbourg Cedex, France.
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France.
| |
Collapse
|
6
|
Nguyen M, Gautier T, Masson D, Bouhemad B, Guinot PG. Endotoxemia in Acute Heart Failure and Cardiogenic Shock: Evidence, Mechanisms and Therapeutic Options. J Clin Med 2023; 12:jcm12072579. [PMID: 37048662 PMCID: PMC10094881 DOI: 10.3390/jcm12072579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Acute heart failure and cardiogenic shock are frequently occurring and deadly conditions. In patients with those conditions, endotoxemia related to gut injury and gut barrier dysfunction is usually described as a driver of organ dysfunction. Because endotoxemia might reciprocally alter cardiac function, this phenomenon has been suggested as a potent vicious cycle that worsens organ perfusion and leading to adverse outcomes. Yet, evidence beyond this phenomenon might be overlooked, and mechanisms are not fully understood. Subsequently, even though therapeutics available to reduce endotoxin load, there are no indications to treat endotoxemia during acute heart failure and cardiogenic shock. In this review, we first explore the evidence regarding endotoxemia in acute heart failure and cardiogenic shock. Then, we describe the main treatments for endotoxemia in the acute setting, and we present the challenges that remain before personalized treatments against endotoxemia can be used in patients with acute heart failure and cardiogenic shock.
Collapse
|
7
|
Hoftun Farbu B, Langeland H, Ueland T, Michelsen AE, Jørstad Krüger A, Klepstad P, Nordseth T. Intestinal injury in cardiac arrest is associated with multiple organ dysfunction: A prospective cohort study. Resuscitation 2023; 185:109748. [PMID: 36842675 DOI: 10.1016/j.resuscitation.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND The impact of intestinal injury in cardiac arrest is not established. The first aim of this study was to assess associations between clinical characteristics in out-of-hospital cardiac arrest (OHCA) and a biomarker for intestinal injury, Intestinal Fatty Acid Binding Protein (IFABP). The second aim was to assess associations between IFABP and multiple organ dysfunction and 30-day mortality. METHODS We measured plasma IFABP in 50 patients at admission to intensive care unit (ICU) after OHCA. Demographic and clinical variables were analysed by stratifying patients on median IFABP, and by linear regression. We compared Sequential Organ Failure Assessment (SOFA) score, haemodynamic variables, and clinical-chemistry tests at day two between the "high" and "low" IFABP groups. Logistic regression was applied to assess factors associated with 30-day mortality. RESULTS Several markers of whole body ischaemia correlated with intestinal injury. Duration of arrest and lactate serum concentrations contributed to elevated IFABP in a multivariable model (p < 0.01 and p = 0.04, respectively). At day two, all seven patients who had died were in the "high" IFABP group, and all six patients who had been transferred to ward were in the "low" group. Of patients still treated in the ICU, the "high" group had higher total, renal and respiratory SOFA score (p < 0.01) and included all patients receiving inotropic drugs. IFABP predicted mortality (OR 16.9 per standard deviation increase, p = 0.04). CONCLUSION Cardiac arrest duration and lactate serum concentrations were risk factors for intestinal injury. High levels of IFABP at admission were associated with multiple organ dysfunction and mortality. TRIAL REGISTRATION ClinicalTrials.gov: NCT02648061.
Collapse
Affiliation(s)
- Bjørn Hoftun Farbu
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway.
| | - Halvor Langeland
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Ueland
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Andreas Jørstad Krüger
- Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway; Department of Emergency Medicine and Pre-Hospital Services, St. Olav's University Hospital, Trondheim, Norway
| | - Pål Klepstad
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trond Nordseth
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway; Institute of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
8
|
Krychtiuk KA, Vrints C, Wojta J, Huber K, Speidl WS. Basic mechanisms in cardiogenic shock: part 1-definition and pathophysiology. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:356-365. [PMID: 35218350 DOI: 10.1093/ehjacc/zuac021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 05/23/2023]
Abstract
Cardiogenic shock mortality rates remain high despite significant advances in cardiovascular medicine and the widespread uptake of mechanical circulatory support systems. Except for early invasive angiography and percutaneous coronary intervention of the infarct-related artery, the most widely used therapeutic measures are based on low-quality evidence. The grim prognosis and lack of high-quality data warrant further action. Part 1 of this two-part educational review defines cardiogenic shock and discusses current treatment strategies. In addition, we summarize current knowledge on basic mechanisms in the pathophysiology of cardiogenic shock, focusing on inflammation and microvascular disturbances, which may ultimately be translated into diagnostic or therapeutic approaches to improve the outcome of our patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Duke Clinical Research Institute, Durham, NC, USA
| | - Christiaan Vrints
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- 3rd Department of Internal Medicine, Cardiology and Intensive Care Unit, Wilhelminenhospital, Vienna, Austria
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
9
|
Lassus J, Tarvasmäki T, Tolppanen H. Biomarkers in cardiogenic shock. Adv Clin Chem 2022; 109:31-73. [DOI: 10.1016/bs.acc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Yokoyama H, Sekino M, Funaoka H, Sato S, Araki H, Egashira T, Yano R, Matsumoto S, Ichinomiya T, Higashijima U, Hara T. Association between enterocyte injury and fluid balance in patients with septic shock: a post hoc exploratory analysis of a prospective observational study. BMC Anesthesiol 2021; 21:293. [PMID: 34814831 PMCID: PMC8609797 DOI: 10.1186/s12871-021-01515-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Background The required fluid volume differs among patients with septic shock. Enterocyte injury caused by shock may increase the need for fluid by triggering a systematic inflammatory response or an ischemia-reperfusion injury in the presence of intestinal ischemia/necrosis. This study aimed to evaluate the association between enterocyte injury and positive fluid balance in patients with septic shock. Methods This study was a post hoc exploratory analysis of a prospective observational study that assessed the association between serum intestinal fatty acid-binding protein, a biomarker of enterocyte injury, and mortality in patients with septic shock. Intestinal fatty acid-binding protein levels were recorded on intensive care unit admission, and fluid balance was monitored from intensive care unit admission to Day 7. The association between intestinal fatty acid-binding protein levels at admission and the infusion balance during the early period after intensive care unit admission was evaluated. Multiple linear regression analysis, with adjustments for severity score and renal function, was performed. Results Overall, data of 57 patients were analyzed. Logarithmically transformed intestinal fatty acid-binding protein levels were significantly associated with cumulative fluid balance per body weight at 24 and 72 h post-intensive care unit admission both before (Pearson’s r = 0.490 [95% confidence interval: 0.263–0.666]; P < 0.001 and r = 0.479 [95% confidence interval: 0.240–0.664]; P < 0.001, respectively) and after (estimate, 14.4 [95% confidence interval: 4.1–24.7]; P = 0.007 and estimate, 26.9 [95% confidence interval: 11.0–42.7]; P = 0.001, respectively) adjusting for severity score and renal function. Conclusions Enterocyte injury was significantly associated with cumulative fluid balance at 24 and 72 h post-intensive care unit admission. Enterocyte injury in patients with septic shock may be related to excessive fluid accumulation during the early period after intensive care unit admission.
Collapse
Affiliation(s)
- Haruka Yokoyama
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hiroyuki Funaoka
- Department of Research and Development, SB Bioscience Co. Ltd., 3-47 Higashi-Tsukaguchi-cho, 2-chome, Amagasaki, Hyogo, 661-0011, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Araki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Egashira
- Department of Intensive Care, Nagasaki Harbor Medical Center, 6-39 Shinchi-machi, Nagasaki, 850-8555, Japan
| | - Rintaro Yano
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Sojiro Matsumoto
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
11
|
Isaka M, Araki R, Ueno H, Okamoto M. Intestinal fatty acid-binding protein and osteoprotegerin in anthracycline-induced rabbit models of dilated cardiomyopathy. Res Vet Sci 2021; 140:185-189. [PMID: 34517162 DOI: 10.1016/j.rvsc.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Anthracyclines are used for chemotherapy in small animal cancer patients. However, cardiotoxic complications are very common with anthracycline use and induce multi-organ complications. The purpose of this study was to investigate the associations between multi-organ complications, focusing on the liver and intestine, and the serum concentrations of intestinal fatty acid-binding protein (I-FABP) and osteoprotegerin (OPG) in rabbits with daunorubicin-induced dilated cardiomyopathy (DCM). Sixteen New Zealand white male rabbits (16-20 weeks old), weighing 2.4-3.65 kg, were randomly divided into the control (n = 8) and daunorubicin-induced DCM (n = 8) groups. The concentration of serum I-FABP was significantly elevated in the DCM group (201.9 ± 16.6 pg/mL) compared to the control group (152.2 ± 19.9 g/mL). Additionally, the concentration of serum lactate was markedly increased in the DCM group (0.16 ± 0.01 mM) compared to that in the control group (0.02 ± 0.01 mmol/mL). In addition, the OPG concentration was significantly higher in the DCM group (2.44 ± 0.14 ng/mL) than in the control group (0.1 ± 0.08 ng/mL). Although the histopathology of the ileum did not significantly differ between groups, pathological changes were observed in the livers of the DCM group animals. In conclusion, multi-organ complications were recognized in DCM models and were accompanied by elevated serum I-FABP and OPG concentrations.
Collapse
Affiliation(s)
- Mitsuhiro Isaka
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan.
| | - Ryuji Araki
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Ueno
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Minoru Okamoto
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
12
|
Seilitz J, Edström M, Kasim A, Jansson K, Axelsson B, Nilsson KF. Intestinal fatty acid-binding protein and acute gastrointestinal injury grade in postoperative cardiac surgery patients. J Card Surg 2021; 36:1850-1857. [PMID: 33616277 DOI: 10.1111/jocs.15430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIM Gastrointestinal complications post cardiac surgery are infrequent but difficult to diagnose and carry a high mortality. Plasma intestinal fatty acid-binding protein (I-FABP) concentrations and the relationship between I-FABP, gastrointestinal dysfunction, and postoperative outcomes were investigated in patients who developed gastrointestinal dysfunction (acute gastrointestinal injury [AGI] grade ≥2) and those with normal gastrointestinal function. METHODS Patients with (AGI 2 group, n = 11) and without (matched controls, AGI 0 group, n = 22) early postoperative gastrointestinal dysfunction were extracted from a larger single-center prospective observational study, including adults undergoing elective cardiac surgery with extracorporeal circulation, and investigated in this nested case-control analysis. RESULTS Both groups displayed variations in I-FABP concentrations with higher I-FABP on postoperative Day 1 compared to baseline and postoperative Days 2 and 3 (p < .001 and p = .005, respectively). The AGI 2 group had higher I-FABP concentrations on Day 2 compared to the AGI 0 group (p = .024). I-FABP on Day 2 correlated positively with AGI grade over the first 3 days (p = .036, p = .021 and p = .018, respectively). High I-FABP (defined as fourth quartile concentrations) on Day 1 was associated with more prolonged surgical procedures (p < .05). Furthermore, fourth quartile I-FABP on Day 1 and early gastrointestinal dysfunction were associated with higher frequencies of postoperative organ dysfunction (p < .05) and gastrointestinal complications (p < .05), and higher 365-day mortality. CONCLUSION The present study indicates an association between intraoperative gastrointestinal injury, postoperative gastrointestinal dysfunction and gastrointestinal complications. A high-powered study is needed to further explore this relationship and the interpretation of I-FABP concentrations in individual cardiac surgery patients.
Collapse
Affiliation(s)
- Jenny Seilitz
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Måns Edström
- Department of Anesthesiology and Intensive Care, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alhamsa Kasim
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kjell Jansson
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Birger Axelsson
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kristofer F Nilsson
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Sekino M, Okada K, Funaoka H, Sato S, Ichinomiya T, Higashijima U, Matsumoto S, Yoshitomi O, Eishi K, Hara T. Association between Enterocyte Injury and Mortality in Patients on Hemodialysis Who Underwent Cardiac Surgery: An Exploratory Study. J Surg Res 2020; 255:420-427. [DOI: 10.1016/j.jss.2020.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
14
|
Peng Y, Wei H. Role of recombinant human brain natriuretic peptide combined with sodium nitroprusside in improving quality of life and cardiac function in patients with acute heart failure. Exp Ther Med 2020; 20:261-268. [PMID: 32509011 PMCID: PMC7271704 DOI: 10.3892/etm.2020.8667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/30/2020] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to investigate the role of recombinant human brain natriuretic peptide (RHBNP) combined with sodium nitroprusside (SN) in improving quality of life and cardiac function in patients with acute heart failure. A total of 96 patients with acute heart failure who were admitted to The First Affiliated Hospital of Yangtze University were included in the current study. A total of 48 patients were treated with RHBNP combined with SN (research group) and 48 patients were treated with SN alone (control group). To assess the efficacy and safety of the two treatments, the study groups were compared in terms of improvement in clinical symptoms and cardiac function indices, including pulmonary capillary wedge pressure and left ventricular ejection fraction, which was measured using a non-invasive cardiac hemodynamic detector; changes in fluid intake and 24 h urine volumes after drug use; cardiac function classification before treatment and three days after treatment; adverse drug reactions during treatment and mortality within 1 month of treatment. Following treatment, compared with the control group, the research group demonstrated significantly higher fluid intake and 24 h urine volume after drug use, improved cardiac function indices, cardiac function classification, biochemical indicators and total effective rate of treatment (all P<0.05); significantly lower total incidence of adverse reactions (P<0.05) and similar mortality within 1 month of treatment. With improvements in cardiac and other organ function, RHBNP combined with SN was found to be effective in the treatment of acute heart failure. RHBNP can effectively promote urination, reduce inflammatory responses and rapidly relieve clinical symptoms without significant adverse reactions, indicating its potential use in further clinical application.
Collapse
Affiliation(s)
- Yang Peng
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China.,Clinical Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Han Wei
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China.,Clinical Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
15
|
Krychtiuk KA, Richter B, Lenz M, Hohensinner PJ, Huber K, Hengstenberg C, Wojta J, Heinz G, Speidl WS. Epinephrine treatment but not time to ROSC is associated with intestinal injury in patients with cardiac arrest. Resuscitation 2020; 155:32-38. [PMID: 32522698 DOI: 10.1016/j.resuscitation.2020.05.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
AIM Current guidelines suggest the use of epinephrine in patients with cardiac arrest (CA). However, evidence for increased survival in good neurological condition is lacking. In experimental settings, epinephrine-induced impairment of microvascular flow was shown. The aim of our study was to analyze the association between epinephrine treatment and intestinal injury in patients after CA. METHODS We have included 52 patients with return of spontaneous circulation (ROSC) after CA admitted to our medical intensive care unit (ICU). Blood was taken on admission and levels of circulating intestinal fatty acid binding protein (iFABP) were analyzed. RESULTS Patients were 64 (49.8-73.8) years old and predominantly male (76.9%). After six months, 50% of patients died and 38.5% of patients had a cerebral performance category (CPC)-score of 1-2. iFABP levels were lower in survivors (234 IQR 90-399 pg/mL) as compared to non-survivors (283, IQR 86-11500 pg/mL; p < 0.05). Plasma levels of iFABP were not associated with time to ROSC but correlated with epinephrine-dose (R = 0.32; p < 0.05). 40% of patients receiving ≥3 mg of epinephrine as compared to 10.5% of patients treated with <3 mg (p < 0.05) developed iFABP plasma levels >1500 pg/mL, which was associated with dramatically increased mortality (HR4.87, 95%CI 1.95-12.1; p < 0.001). iFABP levels predicted mortality independent from time to ROSC and the disease severity score SAPS II. In contrast to mortality, iFABP plasma levels were not associated with neurological outcome. CONCLUSIONS In this small, single centre study, cumulative dose of epinephrine used in cardiac arrest patients was associated with an increase in biomarker indicative of intestinal injury and 6-month mortality.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Bernhard Richter
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp J Hohensinner
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminen Hospital, Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Gottfried Heinz
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Cardiogenic shock remains beside sudden cardiac death the most outcome relevant complication of acute myocardial infarction. Over the last two decades as confirmation of the benefit of early revascularization no further relevant improvement in outcome could be achieved. Biomarkers are important for diagnosis, monitoring, and management in cardiogenic shock patients. RECENT FINDINGS A bunch of different biomarkers have been associated with prognosis in patients with cardiogenic shock. In routine use standard parameters such as serum lactate or serum creatinine are still most important in monitoring these patients. These established markers outperformed novel markers in prognostic impact in recent trials. SUMMARY Biomarkers serve as important treatment targets and may help physicians in therapeutic decision-making. Furthermore, the complex pathophysiology of cardiogenic shock may be better understood by investigation of different biomarkers.
Collapse
|
17
|
Szasz J, Noitz M, Dünser M. [Diagnosing acute organ ischemia : A practical guide for the emergency and intensive care physician]. Med Klin Intensivmed Notfmed 2020; 115:159-172. [PMID: 32086542 DOI: 10.1007/s00063-020-00655-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Ischemia refers to a reduction or interruption of the blood flow to one or more organs. Early recognition of shock, a global ischemic state of the body, is of key importance in emergency and intensive care medicine. The physical examination and point-of-care laboratory diagnostics (i.e. lactate, base deficit, central/mixed venous oxygen saturation, venous-arterial carbon dioxide partial tension) are the methods of choice to diagnose shock in clinical practice. Importantly, a state of shock can also be present in patients with normo- or hypertensive arterial blood pressures. In shock, hypoperfusion of vital and visceral organs occurs. In the second part of this article, physical examination techniques, laboratory and diagnostic methods to detect shock-related hypoperfusion of the brain, heart, kidney and gastrointestinal tract are reviewed.
Collapse
Affiliation(s)
- Johannes Szasz
- Universitätsklinik für Anästhesiologie und Operative Intensivmedizin, Kepler Universitätsklinikum GmbH, Krankenhausstraße 9, 4020, Linz, Österreich
| | - Matthias Noitz
- Universitätsklinik für Anästhesiologie und Operative Intensivmedizin, Kepler Universitätsklinikum GmbH, Krankenhausstraße 9, 4020, Linz, Österreich
- Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich
| | - Martin Dünser
- Universitätsklinik für Anästhesiologie und Operative Intensivmedizin, Kepler Universitätsklinikum GmbH, Krankenhausstraße 9, 4020, Linz, Österreich.
- Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich.
| |
Collapse
|
18
|
What'S New in Shock, April 2019? Shock 2019; 51:407-409. [PMID: 30870400 DOI: 10.1097/shk.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|