1
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2025; 267:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It is now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Li C, Zhou F, Wu J, Fu D, Li X, Niu W. Iron metabolism biomarkers and mortality risk in U.S. patients with congestive heart failure: NHANES 1999-2018 analysis. Nutr Metab Cardiovasc Dis 2024; 34:2325-2333. [PMID: 39004591 DOI: 10.1016/j.numecd.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND AIMS Iron deficiency is a major public health concern. We aimed to assess the predictive capability of 4 iron metabolism biomarkers for all-cause and cardiovascular disease-specific mortality in U.S. patients with congestive heart failure (CHF). METHODS AND RESULTS 1904 CHF patients aged ≥20 years were enrolled from NHANES, 1999-2000 to 2017-2018. All analyses were weighted to provide nationally representative estimates. Among 1905 CHF patients, mean age was 71 years, and 1024 (53.8%), 459 (24.1%), 206 (10.8%), and 216 (11.3%) were Non-Hispanic Black, Non-Hispanic White, Hispanic-Mexican American, and Hispanic-Other Hispanic, respectively. During follow-ups, 1080 deaths occurred. Median follow-up time was 5.08 years. Per-unit increase in natural-logarithmic-transformed iron and transferrin saturation decreased all-cause mortality risk separately by 33.0% (adjusted hazard ratio: 0.670, 95% confidence interval: 0.563 to 0.797, P < 0.001) and 32.6% (0.674, 0.495 to 0.917, 0.013), and per-unit increase in transferrin receptor increased mortality risk by 33.7% (1.337, 1.104 to 1.618, 0.004). Two derivates from 3 significant iron biomarkers were generated - transferrin receptor to natural-logarithmic-transformed iron ratio (TRI) and transferrin receptor to natural-logarithmic-transformed transferrin saturation ratio (TRTS), which were significantly associated with all-cause mortality, with per-unit increase corresponding to 2.692- and 1.655-fold increased all-cause mortality risk (P: 0.003 and 0.023). Only iron and TRTS were associated with the significant risk of cardiovascular disease-specific mortality (P: 0.004 and 0.017). CONCLUSIONS Our findings identified 3 iron metabolism biomarkers that were individually, significantly, and independently associated with all-cause mortality in patients with CHF, and importantly 2 derivates generated exhibited stronger predictive capability.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Cardiology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Fushu Zhou
- Department of Cardiology, Shahe Hospital, Beijing, China
| | - Jing Wu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Dongliang Fu
- Department of Cardiology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xianlun Li
- Department of Cardiology, Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Wenquan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
3
|
He RR, Yue GL, Dong ML, Wang JQ, Cheng C. Sepsis Biomarkers: Advancements and Clinical Applications-A Narrative Review. Int J Mol Sci 2024; 25:9010. [PMID: 39201697 PMCID: PMC11354379 DOI: 10.3390/ijms25169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Sepsis is now defined as a life-threatening syndrome of organ dysfunction triggered by a dysregulated host response to infection, posing significant challenges in critical care. The main objective of this review is to evaluate the potential of emerging biomarkers for early diagnosis and accurate prognosis in sepsis management, which are pivotal for enhancing patient outcomes. Despite advances in supportive care, traditional biomarkers like C-reactive protein and procalcitonin have limitations, and recent studies have identified novel biomarkers with increased sensitivity and specificity, including circular RNAs, HOXA distal transcript antisense RNA, microRNA-486-5p, protein C, triiodothyronine, and prokineticin 2. These emerging biomarkers hold promising potential for the early detection and prognostication of sepsis. They play a crucial role not only in diagnosis but also in guiding antibiotic therapy and evaluating treatment effectiveness. The introduction of point-of-care testing technologies has brought about a paradigm shift in biomarker application, enabling swift and real-time patient evaluation. Despite these advancements, challenges persist, notably concerning biomarker variability and the lack of standardized thresholds. This review summarizes the latest advancements in sepsis biomarker research, spotlighting the progress and clinical implications. It emphasizes the significance of multi-biomarker strategies and the feasibility of personalized medicine in sepsis management. Further verification of biomarkers on a large scale and their integration into clinical practice are advocated to maximize their efficacy in future sepsis treatment.
Collapse
Affiliation(s)
- Rong-Rong He
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Guo-Li Yue
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.-R.H.); (G.-L.Y.)
| | - Mei-Ling Dong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jia-Qi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Chen Cheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| |
Collapse
|
4
|
Mun SJ, Cho E, Kim HK, Gil WJ, Yang CS. Enhancing acute inflammatory and sepsis treatment: superiority of membrane receptor blockade. Front Immunol 2024; 15:1424768. [PMID: 39081318 PMCID: PMC11286478 DOI: 10.3389/fimmu.2024.1424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, μ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
5
|
Jing G, Zuo J, Liu Z, Liu H, Cheng M, Yuan M, Gong H, Wu X, Song X. Mendelian randomization analysis reveals causal associations of serum metabolites with sepsis and 28-day mortality. Sci Rep 2024; 14:11551. [PMID: 38773119 PMCID: PMC11109149 DOI: 10.1038/s41598-024-58160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 05/23/2024] Open
Abstract
Metabolic disorder has been found to be an important factor in the pathogenesis and progression of sepsis. However, the causation of such an association between serum metabolites and sepsis has not been established. We conducted a two-sample Mendelian randomization (MR) study. A genome-wide association study of 486 human serum metabolites was used as the exposure, whereas sepsis and sepsis mortality within 28 days were set as the outcomes. In MR analysis, 6 serum metabolites were identified to be associated with an increased risk of sepsis, and 6 serum metabolites were found to be related to a reduced risk of sepsis. Furthermore, there were 9 metabolites positively associated with sepsis-related mortality, and 8 metabolites were negatively correlated with sepsis mortality. In addition, "glycolysis/gluconeogenesis" (p = 0.001), and "pyruvate metabolism" (p = 0.042) two metabolic pathways were associated with the incidence of sepsis. This MR study suggested that serum metabolites played significant roles in the pathogenesis of sepsis, which may provide helpful biomarkers for early disease diagnosis, therapeutic interventions, and prognostic assessments for sepsis.
Collapse
Affiliation(s)
- Guoqing Jing
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Zuo
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huifan Liu
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Miao Cheng
- Jingmen Central Hospital, Jingmen, Hubei, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hailong Gong
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xuemin Song
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Giamarellos-Bourboulis EJ. Immune-mediated inflammatory diseases as long-term sepsis complications: Long-term persistence of host dysregulation? J Intern Med 2024; 295:123-125. [PMID: 38091384 DOI: 10.1111/joim.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
|
7
|
Cui L, Gao L, Geng H, Zhang H, Wei H. Analysis of the relationship between mild cognitive impairment and serum klotho protein and insulin-like growth factor-1 in the elderly. Technol Health Care 2024; 32:1455-1462. [PMID: 37599547 DOI: 10.3233/thc-230462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a mild memory or cognitive impairment. OBJECTIVE To explore the relationship between serum klotho (K1) protein and insulin-like growth factor-1 and mild cognitive impairment in the elderly in order to provide accurate and appropriate indicators for clinical diagnosis and treatment of MCI. METHODS This randomized stratified study adopted a multistage cluster sampling method. 161 elderly patients with mild cognitive impairment were included as the MCI group, and 161 healthy people matched with the MCI group in gender, age and education were selected as the control group. RESULTS The levels of serum K1 protein and insulin-like growth factor-1 in the MCI group were lower than those in the control group (P< 0.05). Both IGF-1 and K1 had predictive value for MCI (P< 0.05). The area under the curve (AUC) of IGF-1 for predicting MCI was 0.859 (95% CI: 0.790∼0.929), and the AUC of K1 for predicting MCI was 0.793 (95% CI: 0.694∼0.892). The value of joint prediction of the two indicators was the highest, with an AUC of 0.939 (95% CI: 0.896-0.993). CONCLUSION High serum K1 and insulin-like growth factor-1 are the protective factors of cognitive impairment in MCI patients. Both IGF-1 and serum K1 proteins have predictive value for MCI, and the combination of the two indicators has the highest predictive value.
Collapse
|
8
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Mar Drugs 2023; 21:md21030149. [PMID: 36976198 PMCID: PMC10051127 DOI: 10.3390/md21030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Excisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (−19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of −7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study’s findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.
Collapse
|
10
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
11
|
Hou HF, Liu Y, Zhang X, Han Z, Chen T. The value of postoperative HLA-DR expression and high mobility group box 1 level in predictive diagnosis of sepsis in percutaneous nephrolithotomy surgery. Ren Fail 2022; 44:1338-1344. [PMID: 35930298 PMCID: PMC9359155 DOI: 10.1080/0886022x.2022.2107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
OBJECTIVE To analyze the value of postoperative human leukocyte antigen-DR (HLA-DR) expression and high mobility group box 1 (HMGB1) level in predictive diagnosis of postoperative sepsis for patients with percutaneous nephrolithotomy (PCNL) surgery. METHODS The present prospective observational study included 387 patients with renal calculus who received PCNL surgery from January 2017 to October 2020 in our hospital. After exclusion criteria, 33 patients with sepsis and 78 patients with no sepsis remained. All patients received PCNL surgery. Sepsis definition is according to the third international consensus definitions for sepsis and septic shock (Sepsis-3). The data of the HMGB1, c-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin (PCT) and HLA-DR expression were collected within admission and 24 h and 72 h after surgery. Postoperative HMGB1 levels and HLA-DR expression at 24 h and 72 h were respectively compared between the two groups using t test. ROC cure was used to analyze the value of postoperative HLA-DR expression and HMGB1 level in predictive diagnosis of sepsis. RESULTS The positive rate of urine culture and the time of hospitalization time in patients with sepsis were significantly higher than those in patients with no sepsis. Sepsis group had higher levels of HMGB1 at post-24 h ((93.07 ± 11.37) ng/mL vs (75.41 ± 4.85) ng/mL), p < 0.05) and 72 h ((96.58 ± 12.12) ng/mL vs (81.16 ± 8.86) ng/mL), p < 0.05) than nosepsis group. Meanwhile, sepsis group had lower expression of HLA-DR at post-24 h ((50.01 ± 7.42) % vs (69.32 ± 10.58) %), p < 0.05) and 72 h ((54.85 ± 9.45) % vs (69.98 ± 11.00) %), p < 0.05) than non-sepsis group. ROC analysis showed that the HLA-DR expression at postoperative 24 h had highest predictive value in the diagnosis of sepsis, the AUC of HLA-DR was 0.934, cutoff value 56.19%, with sensitivity 89.7%, specificity 81.8%. CONCLUSION Postoperative HLA-DR and HMGB1 can both be used as a predictive diagnosis of sepsis for patients with renal calculus received PCNL surgery. HighlightsSepsis group had higher levels of high mobility group box 1 at post-24 h and 72 h than nosepsis group.Sepsis group had lower expression of HLA-DR at post-24 h and 72 h than nosepsis group.Postoperative HLA-DR and HMGB1 can both be used as a predictive diagnosis of sepsis for patients with renal calculus received PCNL surgery.
Collapse
Affiliation(s)
- Hai Feng Hou
- Department of Urology Surgery, Chongqin Jiangjin District Central Hospital, Jiangjin, China
| | - Ying Liu
- Department of Urology Surgery, Chongqin Jiangjin District Central Hospital, Jiangjin, China
| | - Xiaoyang Zhang
- Department of Urology Surgery, Chongqin Jiangjin District Central Hospital, Jiangjin, China
| | - Zhenhua Han
- Department of Urology Surgery, Chongqin Jiangjin District Central Hospital, Jiangjin, China
| | - Tianming Chen
- Department of Urology Surgery, Chongqin Jiangjin District Central Hospital, Jiangjin, China
| |
Collapse
|
12
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
13
|
Renieris G, Karakike E, Gkavogianni T, Droggiti DE, Stylianakis E, Andriopoulou T, Spanou VM, Kafousopoulos D, Netea MG, Eugen-Olsen J, Simard J, Giamarellos-Bourboulis EJ. IL-1 Mediates Tissue-Specific Inflammation and Severe Respiratory Failure in COVID-19. J Innate Immun 2022; 14:643-656. [PMID: 35545011 PMCID: PMC9801253 DOI: 10.1159/000524560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) in COVID-19 has been associated with catastrophic inflammation. We present measurements in humans and a new animal model implicating a role in danger-associated molecular patterns. Calprotectin (S100A8/A9) and high-mobility group box 1 (HMGB1) were measured in patients without/with ARDS, and admission calprotectin was associated with soluble urokinase plasminogen activator receptor (suPAR). An animal model was developed by intravenous injection of plasma from healthy or patients with COVID-19 ARDS into C57/BL6 mice once daily for 3 consecutive days. Mice were treated with one anti-S100A8/A9 antibody, the IL-1 receptor antagonist anakinra or vehicle, and Flo1-2a anti-murine anti-IL-1α monoclonal antibody or the specific antihuman IL-1α antibody XB2001 or isotype controls. Cytokines and myeloperoxidase (MPO) were measured in tissues. Calprotectin, but not HMGB1, was elevated in ARDS. Higher suPAR indicated higher calprotectin. Animal challenge with COVID-19 plasma led to inflammatory reactions in murine lung and intestines as evidenced by increased levels of TNFα, IL-6, IFNγ, and MPO. Lung inflammation was attenuated with anti-S100A8/A9 pre-treatment. Anakinra treatment restored these levels. Similar decrease was found in mice treated with Flo1-2a but not with XB2001. Circulating alarmins, specifically calprotectin, of critically ill COVID-19 patients induces tissue-specific inflammatory responses through an IL-1-mediated mechanism. This could be attenuated through inhibition of IL-1 receptor or of IL-1α.
Collapse
Affiliation(s)
- Georgios Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theologia Gkavogianni
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dionysia-Eirini Droggiti
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Emmanouil Stylianakis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theano Andriopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Victoria-Marina Spanou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dionyssios Kafousopoulos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Mihai G. Netea
- Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany,Department of Internal Medicine and Center for Infectious Diseases, Radboud University, Nijmegen, The Netherlands
| | - Jesper Eugen-Olsen
- Department of Clinical Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Evangelos J. Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece,*Evangelos J. Giamarellos-Bourboulis,
| |
Collapse
|
14
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
15
|
Liu FJ, Gu TJ, Wei DY. Emodin alleviates sepsis-mediated lung injury via inhibition and reduction of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J Med Sci 2022; 38:253-260. [PMID: 34806822 DOI: 10.1002/kjm2.12476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Inflammation plays an important role during sepsis, and excessive inflammation can result in organ damage, chronic inflammation, fibrosis, and scarring. The study aimed to investigate the specific mechanism of emodin by constructing in vivo and in vitro septic lung injury models via inhibition and reduction of NF-kB and high mobility group box 1 (HMGB1) pathways. A cecal ligation and puncture (CLP) model was built for adult male Sprague-Dawley rats. Concentrations of TNF-α, IL-1β, and IL-6 in bronchoalveolar lavage fluid were determined using commercially available ELISA kits. Hematoxylin and eosin staining was used for the right lung inferior lobes. Myeloperoxidase (MPO) activity of the lung tissue was detected by using the MPO kit. Murine alveolar epithelial cell line (MLE-12) cells were used for flow cytometry and Western blot to analyze the apoptosis rate and protein expression. Emodin significantly decreased CLP-induced cell apoptosis, upregulated expression of sirtuin 1 (SIRT1), and inhibited p-p65/p65 and HMGB1. In lipopolysaccharide (LPS) treated cell model, emodin treatment markedly decreased LPS-induced release of IL-1, IL-6, and tumor necrosis factor (TNF)-α, inhibited LPS-induced cell apoptosis and suppressed protein levels of P-P65/P65 and HMGB1. However, science of SIRT1 reversed the above effects by treatment of emodin. In summarize, this study found that emodin can alleviate sepsis-induced lung injury in vivo and in vitro through regulation of SIRT1.
Collapse
Affiliation(s)
- Fu-Jing Liu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ti-Jun Gu
- Department of Emergency, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong-Yue Wei
- Department of Pediatric, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care 2022; 26:14. [PMID: 34991675 PMCID: PMC8740483 DOI: 10.1186/s13054-021-03862-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
A biomarker describes a measurable indicator of a patient's clinical condition that can be measured accurately and reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, we aim to answer the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, multiple organ dysfunction syndrome (MODS), or organ dysfunction?" We also discuss the role of pro- and anti-inflammatory biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood-brain barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabolites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can augment diagnosis, treatment, and good patient outcomes.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054 USA
| | - Jaqueline S. Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| |
Collapse
|
17
|
Lai HJ, Zhan YQ, Qiu YX, Ling YH, Zhang XY, Chang ZN, Zhang YN, Liu ZM, Wen SH. HMGB1 signaling-regulated endoplasmic reticulum stress mediates intestinal ischemia/reperfusion-induced acute renal damage. Surgery 2021; 170:239-248. [PMID: 33745733 DOI: 10.1016/j.surg.2021.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ischemia/reperfusion of the intestine often leads to distant organ injury, but the mechanism of intestinal ischemia/reperfusion-induced renal dysfunction is still not clear. The present study aimed to investigate the mechanisms of acute renal damage after intestinal ischemia/reperfusion challenge and explore the role of released high-mobility group box-1 in this process. METHODS Intestinal ischemia/reperfusion was induced in male Sprague-Dawley rats by clamping the superior mesenteric artery for 1.5 hours. At different reperfusion time points, anti-high-mobility group box-1 neutralizing antibodies or ethyl pyruvate were administered to neutralize or inhibit circulating high-mobility group box-1, respectively. RESULTS Significant kidney injury was observed after 6 hours of intestinal reperfusion, as indicated by increased serum levels of urea nitrogen and creatinine, increased expression of neutrophil gelatinase-associated lipocalin, interleukin-6, and MIP-2, and enhanced cell apoptosis, as indicated by cleaved caspase 3 levels in renal tissues. The levels of phosphorylated eIF2ɑ, activating transcription factor 4, and C/EBP-homologous protein (CHOP) were markedly elevated, indicating the activation of endoplasmic reticulum stress in the impaired kidney. High-mobility group box-1 translocated to cytoplasm in the intestine and serum concentrations of high-mobility group box-1 increased notably during the reperfusion phase. Both anti-high-mobility group box-1 antibodies and ethyl pyruvate treatment significantly reduced serum high-mobility group box-1 concentrations, attenuated endoplasmic reticulum stress in renal tissue and inhibited the development of renal damage. Moreover, the elevated expression of receptor for advanced glycation end products in the kidneys after intestinal ischemia/reperfusion was abrogated after high-mobility group box-1 inhibition. CONCLUSION These results suggested that high-mobility group box-1 signaling regulated endoplasmic reticulum stress and promoted intestinal ischemia/reperfusion-induced acute kidney injury. High-mobility group box-1 neutralization/inhibition might serve as a pharmacological intervention strategy for these pathophysiological processes.
Collapse
Affiliation(s)
- Han-Jin Lai
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ya-Qing Zhan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu-Xin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yi-Hong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xu-Yu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ze-Nan Chang
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yi-Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zi-Meng Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Shi-Hong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
18
|
Salem RM, El-Fallah AA, Shaker R. HMGB1-RAGE-moesin axis may be indicted for acne vulgaris. J Cosmet Dermatol 2021; 21:1642-1646. [PMID: 34053168 DOI: 10.1111/jocd.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND High-mobility group box 1 (HMGB1)-receptor for advanced glycation end (RAGE)-moesin axis could be implicated in induction of inflammation. However, there is a scarcity in literature discussing the role of this axis in inflammatory skin disorders. AIMS The aim of the present study was to evaluate the serum levels of HMGB1 and moesin in patients with inflammatory acne vulgaris. PATIENTS/METHODS This comparative cross-sectional study included 66 inflammatory acne vulgaris patients classified according to Global Acne Grading System (GAGS) into three groups (22 patients each): mild, moderate, and severe acne vulgaris. In addition, 82 acne-free individuals were included as a control group. Serum HMGB 1 and moesin levels were measured using enzyme-linked immunosorbent assay kits. RESULTS High-mobility group box 1 and moe sin serum levels in acne patients were significantly higher than the levels in control subjects (p = 0.04, 0.0005 respectively). Serum levels of both markers in severe acne patients and in those with post-acne scarring were elevated when compared to the levels in the other groups, and however, this elevation was significant only for moesin levels. There was a significant positive correlation between the serum levels of HMGB1 and moesin in the studied patient's sample (r = 0.3079, p = 0.011). CONCLUSION High-mobility group box 1-receptor for advanced glycation end-moesin axis may be implicated in acne vulgaris pathogenesis, and it may be a promising therapeutic target.
Collapse
Affiliation(s)
- Rehab Mohammed Salem
- Department of Dermatology and Andrology, Faculty of Medicine- Benha University, Benha, Egypt
| | - Asmaa Adel El-Fallah
- Department of Chemical and Clinical Pathology, Faculty of Medicine- Benha University, Benha, Egypt
| | - Rasha Shaker
- Department of Public Health, Faculty of Medicine- Benha University, Benha, Egypt
| |
Collapse
|
19
|
Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes. Sci Rep 2021; 11:9512. [PMID: 33947887 PMCID: PMC8097071 DOI: 10.1038/s41598-021-88970-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The role of high-mobility group box-1 (HMGB1) in outcome prediction in sepsis is controversial. Furthermore, its association with necroptosis, a programmed cell necrosis mechanism, is still unclear. The purpose of this study is to identify the association between the plasma levels of HMGB1 and the severity and clinical outcomes of sepsis, and to examine the correlation between HMGB1 and key executors of necroptosis including receptor-interacting kinase 3 (RIPK3) and mixed lineage kinase domain-like- (MLKL) proteins. Plasma HMGB1, RIPK3, and MLKL levels were measured with the enzyme-linked immunosorbent assay from the derivation cohort of 188 prospectively enrolled, critically-ill patients between April 2014 and December 2016, and from the validation cohort of 77 patients with sepsis between January 2017 and January 2019. In the derivation cohort, the plasma HMGB1 levels of the control (n = 46, 24.5%), sepsis (n = 58, 30.9%), and septic shock (n = 84, 44.7%) groups were significantly increased (P < 0.001). A difference in mortality between high (≥ 5.9 ng/mL) and low (< 5.9 ng/mL) HMGB1 levels was observed up to 90 days (Log-rank test, P = 0.009). There were positive linear correlations of plasma HMGB1 with RIPK3 (R2 = 0.61, P < 0.001) and MLKL (R2 = 0.7890, P < 0.001). The difference in mortality and correlation of HMGB1 levels with RIPK3 and MLKL were confirmed in the validation cohort. Plasma levels of HMGB1 were associated with the severity and mortality attributed to sepsis. They were correlated with RIPK3 and MLKL, thus suggesting an association of HMGB1 with necroptosis.
Collapse
|
20
|
Overexpression of miR-129-5p Mitigates Sepsis-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res 2020; 256:23-30. [PMID: 32682121 DOI: 10.1016/j.jss.2020.05.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs are dysregulated in sepsis. Acute lung injury is a progressive syndrome during sepsis. However, the role of miR-129-5p in the development of acute lung injury induced by sepsis remains unclear. METHODS The acute lung injury of sepsis model was established by cecal ligation puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated murine alveolar epithelial cell line (MLE)-12 cells. The lung injury in vivo was investigated by hematoxylin and eosin staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, lung wet-to-dry weight ratio, and myeloperoxidase activity. The lung injury in vitro was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assay. The expression levels of miR-129-5p and high mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction and Western blot. The association between miR-129-5p and HMGB1 was validated by luciferase assay and RNA immunoprecipitation. RESULTS The expression of miR-129-5p was decreased in CLP model and LPS-treated MLE-12 cells. Overexpression of miR-129-5p attenuated inflammatory response, apoptosis, lung wet/dry weight ratio, and myeloperoxidase activity induced by CLP surgery in vivo. Moreover, addition of miR-129-5p increased cell viability and suppressed cell apoptosis and inflammatory response in vitro. HMGB1 as a target of miR-129-5p alleviated miR-129-5p-mediated injury suppression in LPS-treated MLE-12 cells. CONCLUSIONS miR-129-5p protects against sepsis-induced acute lung injury by decreasing HMGB1 expression, providing new target for sepsis treatment.
Collapse
|
21
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
What's New in Shock, September 2019? Shock 2019; 52:285-287. [PMID: 31408047 DOI: 10.1097/shk.0000000000001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Karakike E, Giamarellos-Bourboulis EJ. Macrophage Activation-Like Syndrome: A Distinct Entity Leading to Early Death in Sepsis. Front Immunol 2019; 10:55. [PMID: 30766533 PMCID: PMC6365431 DOI: 10.3389/fimmu.2019.00055] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hemophagocytic lymphohistocytosis (HLH) is characterized by fulminant cytokine storm leading to multiple organ dysfunction and high mortality. HLH is classified into familial (fHLH) and into secondary (sHLH). fHLH is rare and it is due to mutations of genes encoding for perforin or excretory granules of natural killer (NK) cells of CD8-lymphocytes. sHLH is also known as macrophage activation syndrome (MAS). Macrophage activation syndrome (MAS) in adults is poorly studied. Main features are fever, hepatosplenomegaly, hepatobiliary dysfunction (HBD), coagulopathy, cytopenia of two to three cell lineages, increased triglycerides and hemophagocytosis in the bone marrow. sHLH/MAS complicates hematologic malignancies, autoimmune disorders and infections mainly of viral origin. Pathogenesis is poorly understood and it is associated with increased activation of macrophages and NK cells. An autocrine loop of interleukin (IL)-1β over-secretion leads to cytokine storm of IL-6, IL-18, ferritin, and interferon-gamma; soluble CD163 is highly increased from macrophages. The true incidence of sHLH/MAS among patients with sepsis has only been studied in the cohort of the Hellenic Sepsis Study Group. Patients meeting the Sepsis-3 criteria and who had positive HSscore or co-presence of HBD and disseminated intravascular coagulation (DIC) were classified as patients with macrophage activation-like syndrome (MALS). The frequency of MALS ranged between 3 and 4% and it was an independent entity associated with early mortality after 10 days. Ferritin was proposed as a diagnostic and surrogate biomarker. Concentrations >4,420 ng/ml were associated with diagnosis of MALS with 97.1% specificity and 98% negative predictive value. Increased ferritin was also associated with increased IL-6, IL-18, IFNγ, and sCD163 and by decreased IL-10/TNFα ratio. A drop of ferritin by 15% the first 48 h was a surrogate finding of favorable outcome. There are 10 on-going trials in adults with sHLH; two for the development of biomarkers and eight for management. Only one of them is focusing in sepsis. The acronym of the trial is PROVIDE (ClinicalTrials.gov NCT03332225) and it is a double-blind randomized clinical trial aiming to deliver to patients with septic shock treatment targeting their precise immune state. Patients diagnosed with MALS are receiving randomized treatment with placebo or the IL-1β blocker anakinra.
Collapse
Affiliation(s)
- Eleni Karakike
- Fourth Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|