1
|
Liu XJ, Ma ZS, Li Y, Fan TB, Ge ZW, Ou ZJ, Ou JS. A Simple Modification Results in a Significant Improvement in Measuring the Size of Extracellular Vesicles. Curr Med Sci 2025:10.1007/s11596-025-00045-z. [PMID: 40205301 DOI: 10.1007/s11596-025-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Size distribution is an important biophysical property of extracellular vesicles (EVs). EVs include small EVs (s-EVs) and large EVs (l-EVs) by size. Differential ultracentrifugation (dUC) is widely used to separate EVs from biofluids, but it can precipitate large impurity particles. Dynamic light scattering (DLS) is a simple and fast method for analyzing the size distribution of EVs. However, this approach is nonideal for heterogeneous and polydisperse samples since a small quantity of large impurity particles can markedly disturb the DLS results. Here, we developed a simple method to improve the reliability of DLS measurements. METHODS Plasma was obtained from 13 volunteers. The plasma was first processed by dUC to obtain crude l-EVs. The crude l-EVs were filtered with syringe filters (pore size of 1 μm and membrane material of hydrophilic polyvinylidene fluoride (PVDF)) to remove large impurity particles from l-EVs. The size distributions of the crude l-EVs and filtered l-EVs were measured via DLS. RESULTS After the samples were filtered, the coefficients of variation of the hydrodynamic radius and Peak 1 intensity of the filtered l-EVs decreased from 20.39% (12.76-28.96%) and 20.44% (14.58-28.32%) to 3.05% (1.79-4.72%) and 3.43% (1.76-5.88%), respectively, compared with those of the crude l-EVs. CONCLUSION These findings suggest that filtration can effectively separate circulating l-EVs in plasma to remove large impurity particles and make samples suitable for characterization by DLS. Our findings provide a simple method to improve precision via DLS to measure the size distribution of EVs.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Tai-Bing Fan
- Department of Children Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen-Wei Ge
- Department of Adult Heart Center, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Cardiovascular Department, Henan Provincial Chest Hospital, Zhengzhou, 450003, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Li Y, Chen YT, Liu JS, Liang KF, Song YK, Cao Y, Chen CY, Jian YP, Liu XJ, Xu YQ, Yuan HX, Ou ZJ, Ou JS. Oncoprotein-induced transcript 3 protein-enriched extracellular vesicles promotes NLRP3 ubiquitination to alleviate acute lung injury after cardiac surgery. J Mol Cell Cardiol 2024; 195:55-67. [PMID: 39089571 DOI: 10.1016/j.yjmcc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China.
| | - Zhi-Jun Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Yuan HX, Chen YT, Li YQ, Wang YS, Ou ZJ, Li Y, Gao JJ, Deng MJ, Song YK, Fu L, Ci HB, Chang FJ, Cao Y, Jian YP, Kang BA, Mo ZW, Ning DS, Peng YM, Liu ZL, Liu XJ, Xu YQ, Xu J, Ou JS. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:475-487. [PMID: 37219765 PMCID: PMC10202752 DOI: 10.1007/s11427-022-2328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 05/24/2023]
Abstract
Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear. Plasma plasminogen-activated inhibitor-1 (PAI-1) and eEV levels were measured in patients with cardiopulmonary bypass. Endothelial cells and mice (C57BL/6, Toll-like receptor 4 knockout (TLR4-/-) and inducible nitric oxide synthase knockout (iNOS-/-)) were challenged with eEVs isolated from PAI-1-stimulated endothelial cells. Plasma PAI-1 and eEVs were remarkably enhanced after cardiopulmonary bypass. Plasma PAI-1 elevation was positively correlated with the increase in eEVs. The increase in plasma PAI-1 and eEV levels was associated with post-operative ARDS. The eEVs derived from PAI-1-stimulated endothelial cells could recognize TLR4 to stimulate a downstream signaling cascade identified as the Janus kinase 2/3 (JAK2/3)-signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 1 (IRF-1) pathway, along with iNOS induction, and cytokine/chemokine production in vascular endothelial cells and C57BL/6 mice, ultimately contributing to ALI. ALI could be attenuated by JAK2/3 or STAT3 inhibitors (AG490 or S3I-201, respectively), and was relieved in TLR4-/- and iNOS-/- mice. eEVs activate the TLR4/JAK3/STAT3/IRF-1 signaling pathway to induce ALI/ARDS by delivering follistatin-like protein 1 (FSTL1), and FSTL1 knockdown in eEVs alleviates eEV-induced ALI/ARDS. Our data thus demonstrate that cardiopulmonary bypass may increase plasma PAI-1 levels to induce FSTL1-enriched eEVs, which target the TLR4-mediated JAK2/3/STAT3/IRF-1 signaling cascade and form a positive feedback loop, leading to ALI/ARDS after cardiac surgery. Our findings provide new insight into the molecular mechanisms and therapeutic targets for ALI/ARDS after cardiac surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan-Sheng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Li Fu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hong-Bo Ci
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Feng-Jun Chang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jun Xu
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Abdolalian M, Zarif MN, Javan M. The role of extracellular vesicles on the occurrence of clinical complications in β-thalassemia. Exp Hematol 2023; 127:28-39. [PMID: 37652128 DOI: 10.1016/j.exphem.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Thalassemia is the most common monogenic disorder of red blood cells (RBCs) caused by defects in the synthesis of globin chains. Thalassemia phenotypes have a wide spectrum of clinical manifestations and vary from severe anemia requiring regular blood transfusions to clinically asymptomatic states. Ineffective erythropoiesis and toxicity caused by iron overload are major factors responsible for various complications in thalassemia patients, especially patients with β-thalassemia major (β-TM). Common complications in patients with thalassemia include iron overload, thrombosis, cardiac morbidity, vascular dysfunction, inflammation, and organ dysfunction. Extracellular vesicles (EVs) are small membrane vesicles released from various cells' plasma membranes due to activation and apoptosis. Based on studies, EVs play a role in various processes, including clot formation, vascular damage, and proinflammatory processes. In recent years, they have also been studied as biomarkers in the diagnosis and prognosis of diseases. Considering the high concentration of EVs in thalassemia and their role in cellular processes, this study reviews the role of EVs in the common complications of patients with β-thalassemia for the first time.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mahin Nikogouftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
5
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
6
|
Yalameha B, Nejabati HR, Nouri M. Circulating microparticles as indicators of cardiometabolic risk in PCOS. Clin Chim Acta 2022; 533:63-70. [PMID: 35718107 DOI: 10.1016/j.cca.2022.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most prevalent endocrine disturbance of the female reproductive system, is associated with several pathologic conditions, such as metabolic syndrome, obesity, diabetes, dyslipidemia, and insulin resistance, all of which are tightly connected to its progression. These factors are associated with a type of extracellular vesicle, ie, microparticles (MPs), released by shedding due to cell activation and apoptosis. Circulating MPs (cMPs) are secreted by a variety of cells, such as platelets, endothelial, leukocytes, and erythrocytes, and contain cytoplasmic substances derived from parent cells that account for their biologic activity. Current evidence has clearly shown that increased cMPs contribute to endothelial dysfunction, diabetes, hypertriglyceridemia, metabolic syndrome, cardiovascular abnormalities as well as PCOS. It has also been reported that platelet and endothelial MPs are specifically increased in PCOS thus endangering vascular health and subsequent cardiovascular disease. Given the importance of cMPs in the pathophysiology of PCOS, we review the role of cMPs in PCOS with a special focus on cardiometabolic significance.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Preeclampsia is a common complication of pregnancy and contributes significantly to maternal and fetal morbidity and mortality. A protective hypercoagulable state is often developed during late pregnancy and can evolve into a prothrombotic state in patients with preeclampsia. The underlying mechanism of this prothrombotic transition remains poorly understood. We discuss recent progress in understanding the pathophysiology of preeclampsia and associated prothrombotic state. RECENT FINDINGS The hypercoagulable state developed during pregnancy is initiated by placental factors and progresses into the prothrombotic state in preeclampsia when the placenta is subjected ischemic and oxidative injuries. The cause of the preeclampsia-induced prothrombotic state is multifactorial, involving not only placental factors but also maternal conditions, which include genetic predisposition, preexisting medical conditions, and conditions acquired during pregnancy. Endotheliopathy is the primary pathology of preeclampsia and contributes to the prothrombotic state by inducing the dysregulation of coagulation, platelets, and adhesive ligands. SUMMARY Patients with preeclampsia often develop a severe prothrombotic state that predisposes them to life-threatening thrombosis and thromboembolism during and after pregnancy. Early recognition and treatment of this prothrombotic state can improve maternal and infant outcomes of preeclampsia patients.
Collapse
Affiliation(s)
- Chan Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Yuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
9
|
Saheera S, Jani VP, Witwer KW, Kutty S. Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1749-H1761. [PMID: 33666501 PMCID: PMC8163654 DOI: 10.1152/ajpheart.00925.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma membrane ectosomes or microvesicles and endosomal origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. We summarize contemporary understanding of EV biogenesis, composition, and function, with an emphasis on the role of EVs in the cardiovascular system. In addition, we outline the functional relevance of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vivek P Jani
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Ma J, Yuan HX, Chen YT, Ning DS, Liu XJ, Peng YM, Chen C, Song YK, Jian YP, Li Y, Liu Z, Ou ZJ, Ou JS. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:786. [PMID: 34268399 PMCID: PMC8246187 DOI: 10.21037/atm-20-7828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Background Current diagnostic strategies for acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB) are nonspecific and limited. Previously, we demonstrated that circulating microparticles (MPs) in patients with valve heart disease (VHD) and congenital heart diseases (CHD) induce endothelial dysfunction and neutrophil chemotaxis, which may result in kidney injury. We also found that circulating MPs increase after cardiac surgery with CPB and are related to cardiac function. However, the relationship between circulating MPs and AKI after CPB is unknown. Methods Eighty-five patients undergoing cardiac surgery with CPB were enrolled. Patients were divided into AKI and non-AKI groups based on the serum creatinine levels at 12 h and 3 d post-CPB. Circulating MPs were isolated from plasma, and their levels including its subtypes were detected by flow cytometer. Independent risk factors for the CPB-associated AKI (CPB-AKI) were determined by multivariate logistic regression analysis. Receiver operating characteristic (ROC) analysis was used to measure the prognostic potential of CPB-AKI. Results The morbidity of AKI at 12 h and 3 d after cardiac surgery with CPB was 40% and 31.76%, respectively. The concentrations of total MPs and platelet-derived MPs (PMP) remained unchanged at 12 h and then increased at 3 d post-CPB, while that of endothelial-derived MPs (EMP) increased at both time points. In patients with AKI, PMP and EMP were elevated compared with the patients without AKI. However, no significant change was detected on monocyte-derived MPs (MMP) at 12 h and 3 d post-CPB. The logistic regression analysis showed that EMP was the independent risk factor for AKI both at 12 h and 3 d post-CPB. The area under ROC for the concentrations of EMP at 12 h and 3 d post-CPB was 0.86 and 0.91, with the specificity up to 0.88 and 0.91, respectively. Conclusions Circulating EMP may serve as a potential biomarker of AKI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
11
|
Angiogenic and Antiangiogenic mechanisms of high density lipoprotein from healthy subjects and coronary artery diseases patients. Redox Biol 2020; 36:101642. [PMID: 32863238 PMCID: PMC7364160 DOI: 10.1016/j.redox.2020.101642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
Normal high-density lipoprotein (nHDL) in normal, healthy subjects is able to promote angiogenesis, but the mechanism remains incompletely understood. HDL from patients with coronary artery disease may undergo a variety of oxidative modifications, rendering it dysfunctional; whether the angiogenic effect is mitigated by such dysfunctional HDL (dHDL) is unknown. We hypothesized that dHDL compromises angiogenesis. The angiogenic effects of nHDL and dHDL were assessed using endothelial cell culture, endothelial sprouts from cardiac tissue from C57BL/6 mice, zebrafish model for vascular growth and a model of impaired vascular growth in hypercholesterolemic low-density lipoprotein receptor null(LDLr-/-)mice. MiRNA microarray and proteomic analyses were used to determine the mechanisms. Lipid hydroperoxides were greater in dHDL than in nHDL. While nHDL stimulated angiogenesis, dHDL attenuated these responses. Protein and miRNA profiles in endothelial cells differed between nHDL and dHDL treatments. Moreover, nHDL suppressed miR-24-3p expression to increase vinculin expression resulting in nitric oxide (NO) production, whereas dHDL delivered miR-24-3p to inhibit vinculin expression leading to superoxide anion (O2•-) generation via scavenger receptor class B type 1. Vinculin was required for endothelial nitric oxide synthase (eNOS) expression and activation and modulated the PI3K/AKT/eNOS and ERK1/2 signaling pathways to regulate nHDL- and VEGF-induced angiogenesis. Vinculin overexpression or miR-24-3p inhibition reversed dHDL-impaired angiogenesis. The expressions of vinculin and eNOS and angiogenesis were decreased, but the expression of miR-24-3p and lipid hydroperoxides in HDL were increased in the ischemic lower limbs of hypercholesterolemic LDLr-/- mice. Overexpression of vinculin or miR-24-3p antagomir restored the impaired-angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Collectively, nHDL stimulated vinculin and eNOS expression to increase NO production by suppressing miR-24-3p to induce angiogenesis, whereas dHDL inhibited vinculin and eNOS expression to enhance O2•- generation by delivering miR-24-3p to impair angiogenesis, and that vinculin and miR-24-3p may be therapeutic targets for dHDL-impaired angiogenesis. nHDL and dHDL regulated angiogenesis differently via alterations in vinculin expression. nHDL suppressed miR-24-3p to increase vinculin expression to stimulate NO production. dHDL delivered miR-24-3p to inhibit vinculin expression to enhance O2.•- generation. Vinculin and miR-24-3p may be therapeutic targets for dHDL-impaired angiogenesis. Cell-free assay may be used to measure the oxidative levels of HDL.
Collapse
|
12
|
Yuan HX, Chen CY, Li YQ, Ning DS, Li Y, Chen YT, Li SX, Fu MX, Li XD, Ma J, Jian YP, Liu DH, Mo ZW, Peng YM, Xu KQ, Ou ZJ, Ou JS. Circulating extracellular vesicles from patients with valvular heart disease induce neutrophil chemotaxis via FOXO3a and the inhibiting role of dexmedetomidine. Am J Physiol Endocrinol Metab 2020; 319:E217-E231. [PMID: 32516026 DOI: 10.1152/ajpendo.00062.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Quan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Xia Fu
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Di Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong-Hong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kang-Qing Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Li Y, Yuan H, Chen C, Chen C, Ma J, Chen Y, Li Y, Jian Y, Liu D, Ou Z, Ou J. Concentration of circulating microparticles: a new biomarker of acute heart failure after cardiac surgery with cardiopulmonary bypass. SCIENCE CHINA-LIFE SCIENCES 2020; 64:107-116. [PMID: 32548691 DOI: 10.1007/s11427-020-1708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Acute heart failure (AHF) is a severe complication after cardiac surgery with cardiopulmonary bypass (CPB). Although some AHF biomarkers have been used in clinic, they have limitations when applied in the prediction and diagnosis of AHF after cardiac surgery with CPB, and there are still no effective and specific biomarkers. We and other researchers have shown that circulating microparticles (MPs) increased in a variety of cardiovascular diseases. However, whether the concentration of circulating MPs could be a new biomarker for AHF after cardiac surgery remains unknown. Here, 90 patients undergoing cardiac surgery with CPB and 45 healthy subjects were enrolled. Patients were assigned into AHF (n=14) or non-AHF (n=76) group according to the diagnosis criteria of AHF. The concentrations of circulating MPs were determined before, as well as 12 h and 3 days after operation with nanoparticle tracking analysis technique. MPs concentrations in patients before surgery were significantly higher than those of healthy subjects. Plasma levels of MPs were significantly elevated at 12 h after surgery in patients with AHF, but not in those without AHF, and the circulating MPs concentrations at 12 h after surgery were higher in AHF group compared with non-AHF group. Logistic regression analysis indicated that MPs concentration at postoperative 12 h was an independent risk factor for AHF. The area under receiver operating characteristic curve for MPs concentration at postoperative 12 h was 0.81 and the best cut-off value is 5.20×108 particles mL-1 with a sensitivity of 93% and a specificity of 10%. These data suggested that the concentration of circulating MPs might be a new biomarker for the occurrence of AHF after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Yuquan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Haoxiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Caiyun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yating Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yupeng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Donghong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhijun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review summarizes the effects of microparticles and exosomes in the progression of atherosclerosis and the prospect for their diagnostic and therapeutic potentials. RECENT FINDINGS Microparticles and exosomes can induce endothelial dysfunction, vascular inflammation, coagulation, thrombosis, and calcification via their components of proteins and noncoding RNAs, which may promote the progression of atherosclerosis. The applications of microparticles and exosomes become the spotlight of clinical diagnosis and therapy. Microparticles and exosomes are members of extracellular vesicles, which are generated in various cell types by different mechanisms of cell membrane budding and multivesicular body secretion, respectively. They are important physiologic pathways of cell-to-cell communication in vivo and act as messengers accelerating or alleviating the process of atherosclerosis. Microparticles and exosomes may become diagnostic biomarkers and therapeutic approaches of atherosclerosis.
Collapse
|
15
|
What'd New in Shock, November 2019? Shock 2019; 52:477-480. [PMID: 31613864 DOI: 10.1097/shk.0000000000001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|