1
|
Crucianelli S, Mariano A, Valeriani F, Cocomello N, Gianfranceschi G, Baseggio Conrado A, Moretti F, Scotto d'Abusco A, Mennuni G, Fraioli A, Del Ben M, Romano Spica V, Fontana M. Effects of sulphur thermal water inhalations in long-COVID syndrome: Spa-centred, double-blinded, randomised case-control pilot study. Clin Med (Lond) 2024; 24:100251. [PMID: 39370044 PMCID: PMC11570715 DOI: 10.1016/j.clinme.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The long-COVID syndrome is characterised by a plethora of symptoms. Given its social and economic impact, many studies have stressed the urgency of proposing innovative strategies other than hospital settings. In this double-blinded, randomised, case-control trial, we investigate the effects of sulphur thermal water inhalations, rich in H2S, compared to distilled water inhalations on symptoms, inflammatory markers and nasal microbiome in long-COVID patients. METHODS About 30 outpatients aged 18-75 with positive diagnosis for long-COVID were randomised in two groups undergoing 12 consecutive days of inhalations. The active group (STW) received sulphur thermal water inhalations whereas the placebo group received inhalations of sterile distilled non-pyrogenic water (SDW). Each participant was tested prior treatment at day 1 (T0), after the inhalations at day 14 (T1) and at 3 months follow-up (T2). At each time point, blood tests, nasal swabs for microbiome sampling, pulmonary functionality tests (PFTs) and pro-inflammatory marker measure were performed. RESULTS The scores obtained in the administered tests (6MWT, Borg score and SGRQ) at T0 showed a significant variation in the STW group, at T1 and T2. Serum cytokine levels and other inflammatory biomarkers reported a statistically significant decrease. Some specific parameters of PFTs showed ameliorations in the STW group only. Changes in the STW nasopharyngeal microbiota composition were noticed, especially from T0 to T2. CONCLUSIONS Inhalations of sulphur thermal water exerted objective and subjective improvements on participants affected by long-COVID. Significant reduction of inflammatory markers, dyspnoea scores and quantitative and qualitative changes in the nasopharyngeal microbiome were also assessed.
Collapse
Affiliation(s)
- Serena Crucianelli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Nicholas Cocomello
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gianluca Gianfranceschi
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Alessia Baseggio Conrado
- Department of Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ferdinando Moretti
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gioacchino Mennuni
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Antonio Fraioli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Maria Del Ben
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Mario Fontana
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
2
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| |
Collapse
|
3
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
4
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
5
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Kumar M. Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders. Nitric Oxide 2023; 140-141:8-15. [PMID: 37648016 DOI: 10.1016/j.niox.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| |
Collapse
|
7
|
Panagiotopoulos D, Andriopoulou T, Spanou VM, Droggiti DI, Gkavogianni T, Giamarellos-Bourboulis EJ, Panagopoulos P. Deficiency of hydrogen sulfide production and pregnancy rate in an experimental model: Association with preterm delivery. Am J Reprod Immunol 2023; 90:e13764. [PMID: 37641370 DOI: 10.1111/aji.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Pro-inflammatory phenomena drive preterm delivery (PTD). Hydrogen sulfide is a gasotransmitter with anti-inflammatory properties produced through the activity of the enzyme cystathionine-γ-lyase (CSE), and its impact was studied in models of normal delivery and PTD in mice. METHOD OF STUDY Female CSE+/+ and CSE-/- mice were mated with male CSE+/+ mice; mating was done with drinking water unsupplemented and supplemented with cysteine. The pregnancy rate was monitored. PTD was induced by the intraperitoneal injection of bacterial lipopolysaccharide (LPS) on day 14.5 of pregnancy. Mice were sacrificed for tissue collection and splenocyte isolation after 6 and 12 h. Isolated splenocytes were stimulated for the production of tumor necrosis factor-alpha (TNFα), interleukin (IL)-10 and interferon-gamma (IFNγ); TNFα and vascular endothelial growth factor (VEGF) were measured in the fetuses and the placenta. RESULTS The successful pregnancy rate was lower in CSE-/- mice and it was restored with cysteine supplementation. CSE deficiency was associated with higher tissue concentrations of TNFα in the fetuses, attenuated IL-10 responses and higher IFNγ production from splenocytes. CSE deficiency was not associated with PTD. Following PTD induction, CSE-/- mice did not show attenuated IL-10 responses but the production of TNFα and IFNγ was lowered over-time; placental VEGF was also increased over-time. CONCLUSIONS CSE deficiency has an unfavorable impact on pregnancy. H2 S deficiency through CSE does not drive PTD but mediates pro-inflammatory phenomena in fetuses.
Collapse
Affiliation(s)
- Dimitrios Panagiotopoulos
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theano Andriopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Victoria-Marina Spanou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dionysia-Irene Droggiti
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theologia Gkavogianni
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Periklis Panagopoulos
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
8
|
Escaffre O, Szaniszlo P, Törő G, Vilas CL, Servantes BJ, Lopez E, Juelich TL, Levine CB, McLellan SLF, Cardenas JC, Freiberg AN, Módis K. Hydrogen Sulfide Ameliorates SARS-CoV-2-Associated Lung Endothelial Barrier Disruption. Biomedicines 2023; 11:1790. [PMID: 37509430 PMCID: PMC10376201 DOI: 10.3390/biomedicines11071790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of H2S in several pathological processes and provided a rationale for considering the therapeutic implications of H2S in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing H2S donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with H2S-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabor Törő
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Caitlyn L. Vilas
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brenna J. Servantes
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ernesto Lopez
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corri B. Levine
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Susan L. F. McLellan
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jessica C. Cardenas
- The Center for Translational Injury Research, Department of Surgery, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Katalin Módis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Leyfman Y, Gohring G, Joshi M, Menon GP, Van de Kieft A, Rivero TD, Bellio MA, Mitrani MI. Extracellular vesicles: A promising therapy against SARS-CoV-2 infection. Mol Ther 2023; 31:1196-1200. [PMID: 37141856 PMCID: PMC10155280 DOI: 10.1016/j.ymthe.2023.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY, USA
| | | | - Muskan Joshi
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | | |
Collapse
|
10
|
Smartphone-controlled biosensor for viral respiratory infectious diseases: Screening and response. Talanta 2023; 254:124167. [PMID: 36493567 PMCID: PMC9721129 DOI: 10.1016/j.talanta.2022.124167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Outbreaks of emerging viral respiratory infectious diseases (VRIDs) including coronavirus disease 2019 (COVID-19) seriously endanger people's health. However, the traditional nucleic acid detection required professionals and larger instruments and antigen-antibody detection suffered a long window period of target generation. To facilitate the VRIDs detection in time for common populations, a smartphone-controlled biosensor, which integrated sample preparation (electromembrane extraction), biomarker detection (red-green-blue model) and remote response technology (a built-in APP), was developed in this work. With the intelligent biosensor, VRIDs could be recognized in the early stage by using endogenous hydrogen sulfide as the biomarker. Importantly, it only took 15 min to accomplish the whole process of screening and response to VRIDs. Moreover, the experimental data showed that this smartphone-controlled biosensor was suitable for ordinary residents and could successfully differentiate non-communicable respiratory diseases from VRIDs. To the best of our knowledge, this is the first time that a smartphone-controlled biosensor for screening and response to VRIDs was reported. We believe that the present biosensor will help ordinary residents jointly deal with the challenges brought by COVID-19 or other VRIDs in the future.
Collapse
|
11
|
Afaghi S, Moghimi N, Malekpour Alamdari N, Rahimi FS, Irilouzadian R, Esmaeili Tarki F, Moghimi M, Besharat S, Salehi Omran H, Karimi A. N-acetylcysteine as adjuvant therapy for hospitalized Covid-19 patients: A single-center prospective cohort study. CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:543-552. [PMID: 37520878 PMCID: PMC10379801 DOI: 10.22088/cjim.14.3.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/18/2022] [Accepted: 10/29/2022] [Indexed: 08/01/2023]
Abstract
Background Whilst over two years have passed since the COVID-19 pandemic's emergence, the proper management of the disease remains challenging. N-acetylcysteine (NAC) as a potentially effective therapeutic option has been suggested by studies, while the exact clinical role of this agent is yet to be evaluated. Methods This prospective case-control study was conducted in a major referral respiratory center in Tehran, Iran. We enrolled 217 patients treated with an intravenous daily dose of 1500 mg NAC as a case group; and 245 control patients who did not receive NAC. Two groups were matched based on other treatments, socio-demographics, medical history, and comorbidities. Results After ten days of adjuvant therapy with NAC, patients in the NAC group and control group had median room-air SpO2 of 91% and 88%, respectively (P=0.02). Also, the SpO2 to FiO2 ratio had a median of 463 and 421 in the case and control groups, respectively (P=0.01). Furthermore, the case group's hospitalization period was three days shorter (P=0.002). Further, cough, dyspnea, and decreased appetite were reported to have a significantly lower incidence in the case group (P=0.03, 0.001, 0.008). Conclusion We showed that a daily intravenous dose of NAC in hospitalized COVID-19 patients could shorten the hospital stay and improve some clinical symptoms; however, it does not remarkably improve the risk of ICU admission and the 28 days in-hospital mortality rate.
Collapse
Affiliation(s)
- Siamak Afaghi
- Research Institute of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- : Co-first authors co-equally contributed to this study
| | - Negin Moghimi
- Research Institute of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- : Co-first authors co-equally contributed to this study
| | - Nasser Malekpour Alamdari
- Clinical Research and Development Center, Department of Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rahimi
- Clinical Research and Development Center, Department of Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Research Institute of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Esmaeili Tarki
- Clinical Research and Development Center, Department of Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Moghimi
- School of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Sara Besharat
- Department of Radiology, Shahid Labafi Nejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Clinical Research and Development Center, Department of Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anita Karimi
- Research Institute of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Sun HJ, Xiong SP, Wang ZC, Nie XW, Bian JS. Hydrogen Sulfide in Diabetic Complications Revisited: The State of the Art, Challenges, and Future Directions. Antioxid Redox Signal 2023; 38:18-44. [PMID: 36310428 DOI: 10.1089/ars.2022.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Diabetes and its related complications are becoming an increasing public health problem that affects hundreds of millions of people globally. Increased disability and mortality rate of diabetic individuals are closely associated with various life-threatening complications, such as atherosclerosis, nephropathy, retinopathy, and cardiomyopathy. Recent Advances: Conventional treatments for diabetes are still limited because of undesirable side effects, including obesity, hypoglycemia, and hepatic and renal toxicity. Studies have shown that hydrogen sulfide (H2S) plays a critical role in the modulation of glycolipid metabolism, pancreatic β cell functions, and diabetic complications. Critical Issues: Preservation of endogenous H2S systems and supplementation of H2S donors are effective in attenuating diabetes-induced complications, thus representing a new avenue to treat diabetes and its associated complications. Future Directions: This review systematically recapitulates and discusses the most recent updates regarding the therapeutic effects of H2S on diabetes and its various complications, with an emphasis on the molecular mechanisms that underlie H2S-mediated protection against diabetic complications. Furthermore, current clinical trials of H2S in diabetic populations are highlighted, and the challenges and solutions to the clinical transformation of H2S-derived therapies in diabetes are proposed. Finally, future research directions of the pharmacological actions of H2S in diabetes and its related complications are summarized. Antioxid. Redox Signal. 38, 18-44.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Si-Ping Xiong
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zi-Chao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I. MLN-4760 Induces Oxidative Stress without Blood Pressure and Behavioural Alterations in SHRs: Roles of Nfe2l2 Gene, Nitric Oxide and Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11122385. [PMID: 36552591 PMCID: PMC9774314 DOI: 10.3390/antiox11122385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Reduced angiotensin 1-7 bioavailability due to inhibition of angiotensin-converting enzyme 2 (ACE2) may contribute to increased mortality in hypertensive individuals during COVID-19. However, effects of ACE2 inhibitor MLN-4760 in brain functions remain unknown. We investigated the selected behavioural and hemodynamic parameters in spontaneously hypertensive rats (SHRs) after a 2-week s.c. infusion of MLN-4760 (dose 1 mg/kg/day). The biochemical and molecular effects of MLN-4760 were investigated in the brainstem and blood plasma. MLN-4760 had no effects on hemodynamic and behavioural parameters. However, MLN-4760 increased plasma hydrogen sulfide (H2S) level and total nitric oxide (NO) synthase activity and conjugated dienes in the brainstem. Increased NO synthase activity correlated positively with gene expression of Nos3 while plasma H2S levels correlated positively with gene expressions of H2S-producing enzymes Mpst, Cth and Cbs. MLN-4760 administration increased gene expression of Ace2, Sod1, Sod2, Gpx4 and Hmox1, which positively correlated with expression of Nfe2l2 gene encoding the redox-sensitive transcription factor NRF2. Collectively, MLN-4760 did not exacerbate pre-existing hypertension and behavioural hyperactivity/anxiety in SHRs. However, MLN-4760-induced oxidative damage in brainstem was associated with activation of NO- and H2S-mediated compensatory mechanisms and with increased gene expression of antioxidant, NO- and H2S-producing enzymes that all correlated positively with elevated Nfe2l2 expression.
Collapse
|
14
|
Milara J, Martínez-Expósito F, Montero P, Roger I, Bayarri MA, Ribera P, Oishi-Konari MN, Alba-García JR, Zapater E, Cortijo J. N-acetylcysteine Reduces Inflammasome Activation Induced by SARS-CoV-2 Proteins In Vitro. Int J Mol Sci 2022; 23:ijms232314518. [PMID: 36498845 PMCID: PMC9738300 DOI: 10.3390/ijms232314518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammasome activation is one of the first steps in initiating innate immune responses. In this work, we studied the activation of inflammasomes in the airways of critically ill COVID-19 patients and the effects of N-acetylcysteine (NAC) on inflammasomes. Tracheal biopsies were obtained from critically ill patients without COVID-19 and no respiratory disease (control, n = 32), SARS-CoV-2 B.1 variant (n = 31), and B.1.1.7 VOC alpha variant (n = 20) patients. Gene expression and protein expression were measured by RT-qPCR and immunohistochemistry. Macrophages and bronchial epithelial cells were stimulated with different S, E, M, and N SARS-CoV-2 recombinant proteins in the presence or absence of NAC. NLRP3 inflammasome complex was over-expressed and activated in the COVID-19 B.1.1.7 VOC variant and associated with systemic inflammation and 28-day mortality. TLR2/MyD88 and redox NOX4/Nrf2 ratio were also over-expressed in the COVID-19 B.1.1.7 VOC variant. The combination of S-E-M SARS-CoV-2 recombinant proteins increased cytokine release in macrophages and bronchial epithelial cells through the activation of TLR2. NAC inhibited SARS-CoV-2 mosaic (S-E-M)-induced cytokine release and inflammasome activation. In summary, inflammasome is over-activated in severe COVID-19 and increased in B.1.1.7 VOC variant. In addition, NAC can reduce inflammasome activation induced by SARS-CoV-2 in vitro, which may be of potential translational value in COVID-19 patients.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Health Institute Carlos III, 46014 Valencia, Spain
- Correspondence:
| | | | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Health Institute Carlos III, 46014 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
| | | | - Jose Ramón Alba-García
- ENT Department, Consorci Hospital General Universitari de Valencia, 46014 Valencia, Spain
| | - Enrique Zapater
- ENT Department, Consorci Hospital General Universitari de Valencia, 46014 Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46014 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Health Institute Carlos III, 46014 Valencia, Spain
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
15
|
Zhao X, Cao Y, Zhao E, Li T, Cong T, Gao Y, Zhang J. The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-γ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide. Int J Mol Sci 2022; 23:13624. [PMID: 36362417 PMCID: PMC9656571 DOI: 10.3390/ijms232113624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 09/07/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs), which include Hashimoto's thyroiditis (HT) and Graves' disease (GD), have a higher prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the literature. The effects of AITD-associated cytokines on SARS-CoV-2 infection-mediating molecule levels might be involved in the pathogenesis of susceptibility. We speculated that hydrogen sulfide (H2S) might attenuate this process since H2S has antiviral effects. Using immunohistochemistry, we found that angiotensin-converting enzyme-II (ACE2) expression was higher in the HT group and neuropilin 1 (NRP1) expression was higher in HT and GD groups than in the normal group, while transmembrane protease serine type 2 (TMPRSS2) expression was lower in HT and GD groups. When culturing primary thyrocytes with cytokines or sodium hydrosulfide (NaHS) plus cytokines, we found that ACE2 and NRP1 mRNA levels were upregulated while TMPRSS2 levels were downregulated by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). After pretreatment with NaHS in thyrocytes, ACE2 and NRP1 expression were downregulated compared to IFN-γ or TNF-α treatment, and NaHS had no effect on TMPRSS2 expression. Our findings suggested that IFN-γ and TNF-α, which are elevated in AITDs, promoted ACE2 and NRP1 expression and inhibited TMPRSS2 expression. H2S might protect against SARS-CoV-2 infection by downregulating ACE2 and NRP1 levels.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Yedi Cao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Enmin Zhao
- Department of Otolaryngology, Peking University First Hospital, Beijing 100034, China
| | - Tiancheng Li
- Department of Otolaryngology, Peking University First Hospital, Beijing 100034, China
| | - Tiechuan Cong
- Department of Otolaryngology, Peking University First Hospital, Beijing 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
16
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
17
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
18
|
Hasanpour M, Safari H, Mohammadpour AH, Iranshahy M, Dehghan Nayyeri MJ, Farhadi F, Emami B, Iranshahi M. Efficacy of Covexir® (Ferula foetida oleo-gum) treatment in symptomatic improvement of patients with mild to moderate COVID-19: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:4504-4515. [PMID: 35896167 PMCID: PMC9353293 DOI: 10.1002/ptr.7567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 COVID-19 pandemic has emerged as an unprecedented emergency state in healthcare system and global challenge. In recent decade, the function of exogenous H2 S in the treatment of respiratory diseases has been investigated using H2 S-donor agents. Ferula foetida is a medicinal plant that is traditionally used in respiratory diseases including asthma and viral respiratory diseases. The oleo-gum of this plant is a rich source of several organic sulfides including thiophenes, disulfides and polysulfide derivatives, which can act as H2 S-donor agents. The purpose of this study was to investigate the efficacy of Covexir® (F. foetida oleo-gum) treatment as a rich source of H2 S-donor compounds in clinical presentations of patients with COVID-19. The efficacy of Covexir® was evaluated in a randomized, double-blind, placebo-controlled trial in outpatients with COVID-19. Covexir® could significantly inhibit cough when compared to the placebo group (p < .01 and p < 001, respectively). Moreover, there was a significant difference (p < 001) between the two groups in dyspnea symptom at follow-up interval of 7 day after receiving Covexir®. Furthermore, on days 3 and 7, statistically significant differences were observed in myalgia, anorexia, anosmia, and sense of taste severity between two groups. Our findings revealed that Covexir® was very safe in the treatment of COVID-19 patients with mild to moderate symptoms and it can be recommended to improve clinical presentations of patients with COVID-19 such as cough, shortness of breath, myalgia, anorexia, anosmia, and sense of taste.
Collapse
Affiliation(s)
- Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Safari
- Hasheminezhad HospitalMashhad University of Medical SciencesMashhadIran
| | | | - Milad Iranshahy
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Faegheh Farhadi
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran,Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesKermanIran
| | - Bahareh Emami
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
19
|
Munteanu C, Rotariu M, Turnea M, Dogaru G, Popescu C, Spînu A, Andone I, Postoiu R, Ionescu EV, Oprea C, Albadi I, Onose G. Recent Advances in Molecular Research on Hydrogen Sulfide (H 2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci 2022; 23:ijms23126720. [PMID: 35743160 PMCID: PMC9223903 DOI: 10.3390/ijms23126720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Abundant experimental data suggest that hydrogen sulfide (H2S) is related to the pathophysiology of Diabetes Mellitus (DM). Multiple molecular mechanisms, including receptors, membrane ion channels, signalingmolecules, enzymes, and transcription factors, are known to be responsible for the H2S biological actions; however, H2S is not fully documented as a gaseous signaling molecule interfering with DM and vascular-linked pathology. In recent decades, multiple approaches regarding therapeutic exploitation of H2S have been identified, either based on H2S exogenous apport or on its modulated endogenous biosynthesis. This paper aims to synthesize and systematize, as comprehensively as possible, the recent literature-related data regarding the therapeutic/rehabilitative role of H2S in DM. This review was conducted following the “Preferred reporting items for systematic reviews and meta-analyses” (PRISMA) methodology, interrogating five international medically renowned databases by specific keyword combinations/“syntaxes” used contextually, over the last five years (2017–2021). The respective search/filtered and selection methodology we applied has identified, in the first step, 212 articles. After deploying the next specific quest steps, 51 unique published papers qualified for minute analysis resulted. To these bibliographic resources obtained through the PRISMA methodology, in order to have the best available information coverage, we added 86 papers that were freely found by a direct internet search. Finally, we selected for a connected meta-analysis eight relevant reports that included 1237 human subjects elicited from clinical trial registration platforms. Numerous H2S releasing/stimulating compounds have been produced, some being used in experimental models. However, very few of them were further advanced in clinical studies, indicating that the development of H2S as a therapeutic agent is still at the beginning.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Correspondence: (C.M.); (G.O.)
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iași, Romania; (M.R.); (M.T.)
| | - Gabriela Dogaru
- Clinical Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Aura Spînu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ioana Andone
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Irina Albadi
- Faculty of Medicine, Ovidius University of Constanta, 900527 Constanta, Romania; (E.V.I.); (C.O.); (I.A.)
- Teaching Emergency County Hospital “Sf. Apostol Andrei” Constanta, 900591 Constanta, Romania
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (C.P.); (A.S.); (I.A.); (R.P.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Correspondence: (C.M.); (G.O.)
| |
Collapse
|
20
|
Wiernsperger N, Al-Salameh A, Cariou B, Lalau JD. Protection by metformin against severe Covid-19: an in-depth mechanistic analysis. DIABETES & METABOLISM 2022; 48:101359. [PMID: 35662580 PMCID: PMC9154087 DOI: 10.1016/j.diabet.2022.101359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/05/2022]
Abstract
Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifactorial pathophysiological mechanisms of Covid-19 progression with metformin's well-known pleiotropic properties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed, metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metformin mechanisms of action, we want to highlight more particularly its unique microcirculatory protective effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic drug that targets many of Covid-19′s pathophysiology processes in a diabetes-independent manner.
Collapse
Affiliation(s)
| | - Abdallah Al-Salameh
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France
| | - Bertrand Cariou
- Département d'Endocrinologie, Diabétologie et Nutrition, l'institut du thorax, Inserm, CNRS, UNIV Nantes, CHU Nantes, Hôpital Guillaume et René Laennec, 44093 Nantes Cedex 01, France
| | - Jean-Daniel Lalau
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, Amiens, France; PériTox/UMR-I 01, University of Picardie Jules Verne, Amiens, France.
| |
Collapse
|
21
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
22
|
Hemoglobin I from Lucina pectinata on Collagen Scaffold: A Prospective Hydrogen Sulfide Scavenger. J CHEM-NY 2022. [DOI: 10.1155/2022/5101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S), independently of being a toxic gas with a characteristic smell of rotten eggs, is a crucial signaling molecule with significant physiological functions. Given the rapid diffusivity of the gas, it is a challenge to develop robust sensors and biomarkers to quantify free or bound H2S. In addition, there is the need to further develop a robust biosystem to efficiently trap or scavenge H2S from different producing environments. The work presented here uses recombinant met-aquo rHbI (rHbI-H2O) immobilization techniques on collagen to determine its ability to bind H2S due to its high affinity (
M-1). The hemeprotein will function as a scavenger on this scaffold system. UV-Vis absorption and UV-Vis diffuse reflectance (%R) spectroscopy of rHbI-H2O and rHbI-sulfide (rHbI-H2S) complex in solution and collagen scaffold demonstrated that the heme chromophore retains its reactivity and properties. UV-Vis diffuse reflectance measurements, transformed using the Kubelka-Munk function (K-M function), show a linear correlation (
and 0.9916) of rHbI-H2O and rHbI-H2S within concentrations from 1 μM to 35 μM for derivatives. The extraordinary affinity of rHbI-H2O for H2S suggests recombinant met-aquo HbI in a collagen scaffold is an excellent scavenger moiety for hydrogen sulfide. These findings give insight into H2S trapping using the rHbI-H2O-collagen scaffold, where the rHbI-H2S concentration can be determined. Future pathways are to work toward the development of a met-aquo rHbI collagen solution capable of being printed as single drops on polymer, cotton or chromatographic paper. Upon exposure of these matrixes to H2S, the rHbI-H2S complex is formed and its concentration determined using UV-Vis diffuse reflectance technique.
Collapse
|
23
|
Gröger M, Hogg M, Abdelsalam E, Kress S, Hoffmann A, Stahl B, Calzia E, Wachter U, Vogt JA, Wang R, Merz T, Radermacher P, McCook O. Effects of Sodium Thiosulfate During Resuscitation From Trauma-and-Hemorrhage in Cystathionine-γ-Lyase Knockout Mice With Diabetes Type 1. Front Med (Lausanne) 2022; 9:878823. [PMID: 35572988 PMCID: PMC9106371 DOI: 10.3389/fmed.2022.878823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sodium thiosulfate (STS) is a recognized drug with antioxidant and H2S releasing properties. We recently showed that STS attenuated organ dysfunction and injury during resuscitation from trauma-and-hemorrhage in CSE-ko mice, confirming its previously described organ-protective and anti-inflammatory properties. The role of H2S in diabetes mellitus type 1 (DMT1) is controversial: genetic DMT1 impairs H2S biosynthesis, which has been referred to contribute to endothelial dysfunction and cardiomyopathy. In contrast, development and severity of hyperglycemia in streptozotocin(STZ)-induced DMT1 was attenuated in CSE-ko mice. Therefore, we tested the hypothesis whether STS would also exert organ-protective effects in CSE-ko mice with STZ-induced DMT1, similar to our findings in animals without underlying co-morbidity. Methods Under short-term anesthesia with sevoflurane and analgesia with buprenorphine CSE-ko mice underwent DMT1-induction by single STZ injection (100 μg⋅g-1). Seven days later, animals underwent blast wave-induced blunt chest trauma and surgical instrumentation followed by 1 h of hemorrhagic shock (MAP 35 ± 5 mmHg). Resuscitation comprised re-transfusion of shed blood, lung-protective mechanical ventilation, fluid resuscitation and continuous i.v. norepinephrine together with either i.v. STS (0.45 mg⋅g-1) or vehicle (n = 9 in each group). Lung mechanics, hemodynamics, gas exchange, acid-base status, stable isotope-based metabolism, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, chemokines, and immunoblotting. Results Diabetes mellitus type 1 was associated with more severe circulatory shock when compared to our previous study using the same experimental design in CSE-ko mice without co-morbidity. STS did not exert any beneficial therapeutic effect. Most of the parameters measured of the inflammatory response nor the tissue expression of marker proteins of the stress response were affected either. Conclusion In contrast to our previous findings in CSE-ko mice without underlying co-morbidity, STS did not exert any beneficial therapeutic effect in mice with STZ-induced DMT1, possibly due to DMT1-related more severe circulatory shock. This result highlights the translational importance of both integrating standard ICU procedures and investigating underlying co-morbidity in animal models of shock research.
Collapse
Affiliation(s)
- Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Melanie Hogg
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Essam Abdelsalam
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Sandra Kress
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef A. Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON, Canada
| | - Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
24
|
Merz T, McCook O, Brucker C, Waller C, Calzia E, Radermacher P, Datzmann T. H 2S in Critical Illness-A New Horizon for Sodium Thiosulfate? Biomolecules 2022; 12:543. [PMID: 35454132 PMCID: PMC9029606 DOI: 10.3390/biom12040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ever since the discovery of endogenous H2S and the identification of its cytoprotective properties, efforts have been made to develop strategies to use H2S as a therapeutic agent. The ability of H2S to regulate vascular tone, inflammation, oxidative stress, and apoptosis might be particularly useful in the therapeutic management of critical illness. However, neither the inhalation of gaseous H2S, nor the administration of inorganic H2S-releasing salts or slow-releasing H2S-donors are feasible for clinical use. Na2S2O3 is a clinically approved compound with a good safety profile and is able to release H2S, in particular under hypoxic conditions. Pre-clinical studies show promise for Na2S2O3 in the acute management of critical illness. A current clinical trial is investigating the therapeutic potential for Na2S2O3 in myocardial infarct. Pre-eclampsia and COVID-19 pneumonia might be relevant targets for future clinical trials.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Cosima Brucker
- Department of Gynecology and Obstetrics, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Thomas Datzmann
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
25
|
Yang B, Yin C, Zhang Y, Xing G, Wang S, Li F, Aschner M, Lu R. Differential effects of subchronic acrylonitrile exposure on hydrogen sulfide levels in rat blood, brain, and liver. Toxicol Res (Camb) 2022; 11:374-384. [PMID: 35510234 PMCID: PMC9052317 DOI: 10.1093/toxres/tfac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Background Hydrogen sulfide (H2S), as the third gasotransmitter participates in both cellular physiological and pathological processes, including chemical-induced injuries. We recently reported acute acrylonitrile (AN) treatment inhibited endogenous H2S biosynthesis pathway in rat and astrocyte models. However, there is still no evidence to address the correlation between endogenous H2S and sub-chronic AN exposure. Objectives This study aims to explore the modulatory effects of prolonged AN exposure on endogenous H2S levels and its biosynthetic enzymes in rat blood, brain and liver. Methods A total of 50 male Sprague-Dawley rats were randomly divided into 5 groups, including the control group and AN-treated groups at dosages of 6.25, 12.5, 25 or 50 mg/kg. Rats received one exposure/day, 5 days/week, for 4 consecutive weeks. The rat bodyweight and brain/liver organ coefficient were detected, along with liver cytochrome P450 2E1(CYP2E1) expression. In addition, the H2S contents in rat serum and plasma, and in cerebral cortex and liver tissues were measured by methylene blue method. The expression of H2S-generating enzymes, including cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MPST) was also measured with Western blot both in rat cerebral cortex and liver. Results Subchronic exposure to AN significantly inhibited bodyweight-gain and increased the liver CYP2E1 expression compared with the control. In addition, AN significantly increased H2S levels in rat plasma and serum, but not in liver. The endogenous H2S level in rat cerebral cortex was also significantly increased upon AN treatment, when expression of the major H2S-generating enzymes, CBS and 3-MPST were significantly enhanced. However, hepatic protein levels of CBS and CSE were significantly increased, whereas hepatic levels of 3-MPST were significantly decreased. Conclusion This study showed that sub-chronic AN exposure increased endogenous H2S contents in rat blood and brain tissues, but not liver, which may be resulted from the distinct expression profile of H2S-producing enzymes in response to AN. The blood H2S contents may be applied as a potential novel biomarker for surveillance of chronically AN-exposed populations. Highlights Subchronic intraperitoneal exposure to acrylonitrile increased H2S content in rat blood and cerebral cortex, but not in liver.Distinct tissue expression profiles of H2S-producing enzymes contribute to the acrylonitrile-induced differential effects on the H2S level.Blood H2S level may be a biomarker for subchronic exposure to acrylonitrile.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yu Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University School of Medicine, Kunshan, Suzhou, Jiangsu 215300, China
| |
Collapse
|
26
|
Hyperglycemia and Loss of Redox Homeostasis in COVID-19 Patients. Cells 2022; 11:cells11060932. [PMID: 35326383 PMCID: PMC8946177 DOI: 10.3390/cells11060932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The infection with SARS-CoV-2 impairs the glucose−insulin axis and this contributes to oxidative (OS) and nitrosative (NSS) stress. Here, we evaluated changes in glucose metabolism that could promote the loss of redox homeostasis in COVID-19 patients. This was comparative cohort and analytical study that compared COVID-19 patients and healthy subjects. The study population consisted of 61 COVID-19 patients with and without comorbidities and 25 healthy subjects (HS). In all subjects the plasma glucose, insulin, 8-isoprostane, Vitamin D, H2S and 3-nitrotyrosine were determined by ELISA. The nitrites (NO2−), lipid-peroxidation (LPO), total-antioxidant-capacity (TAC), thiols, glutathione (GSH) and selenium (Se) were determined by spectrophotometry. The glucose, insulin and HOMA-IR (p < 0.001), 8-isoprostanes, 3-nitrotyrosine (p < 0.001) and LPO were increased (p = 0.02) while Vitamin D (p = 0.01), H2S, thiols, TAC, GSH and Se (p < 0.001) decreased in COVID-19 patients in comparison to HS. The SARS-CoV-2 infection resulted in alterations in the glucose−insulin axis that led to hyperglycemia, hyperinsulinemia and IR in patients with and without comorbidities. These alterations increase OS and NSS reflected in increases or decreases in some oxidative markers in plasma with major impact or fatal consequences in patients that course with metabolic syndrome. Moreover, subjects without comorbidities could have long-term alterations in the redox homeostasis after infection.
Collapse
|
27
|
Barrow K, Wang Y, Yu R, Zhu J, Yang G. H 2S protects from oxidative stress-driven ACE2 expression and cardiac aging. Mol Cell Biochem 2022; 477:1393-1403. [PMID: 35147902 PMCID: PMC8831182 DOI: 10.1007/s11010-022-04386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022]
Abstract
Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H2S) plays an essential role in preserving cardiac functions. Angiotensin-converting enzyme 2 (ACE2) acts as the negative regulator of the renin-angiotensin system, exerting anti-oxidative stress and anti-inflammatory properties within the body. The interplays of CSE/H2S signaling and ACE2 in cardiac aging are unclear. In this study, the regulatory roles of H2S on ACE2 expression in mouse heart tissue and rat cardiomyocytes under different stress conditions were investigated. It was found that ACE2 protein level was lower in heart tissues from old mice (56-week-old) than young mice (8-week-old), and the knockout of CSE (CSE KO) induced moderate oxidative stress and further inhibited ACE2 protein level in mouse hearts at both young and old age. Incubation of rat cardiac cells (H9C2) with a low dose of H2O2 (50 µM) suppressed ACE2 protein level and induced cellular senescence, which was completely reversed by co-incubation with 30 µM NaHS (a H2S donor). Prolonged nutrient excess is an increased risk of heart disorders by causing metabolic dysfunction and cardiac remodeling. We further found high-fat diet feeding stimulated ACE2 expression and induced severe oxidative stress in CSE KO heart in comparison with wild-type heart. Lipid overload in H9C2 cells to mimic a status of nutrient excess also enhanced the expression of ACE2 protein and induced severe oxidative stress and cell senescence, which were significantly attenuated by the supplementation of exogenous H2S. Furthermore, the manipulation of ACE2 expression partially abolished the protective role of H2S against cellular senescence. These results demonstrate the dynamic roles of H2S in the maintenance of ACE2 levels under different levels of oxidative stress, pointing to the potential implications in targeting the CSE/H2S system for the interruption of aging and diabetes-related heart disorders.
Collapse
Affiliation(s)
- Kalem Barrow
- School of Natural Sciences, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ruihuan Yu
- School of Natural Sciences, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Jiechun Zhu
- School of Natural Sciences, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada. .,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
28
|
Dugbartey GJ, Alornyo KK, Ohene BO, Boima V, Antwi S, Sener A. Renal consequences of the novel coronavirus disease 2019 (COVID-19) and hydrogen sulfide as a potential therapy. Nitric Oxide 2022; 120:16-25. [PMID: 35032641 PMCID: PMC8755416 DOI: 10.1016/j.niox.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bright O Ohene
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sampson Antwi
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology and Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-organ Transplant Program, London Health Sciences Center, Ontario, Canada; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Ye H, Sun L, Pang Z, Ji X, Jiao Y, Tu X, Huang H, Tang X, Xi Z, Yi L. Cell-Trappable BODIPY-NBD Dyad for Imaging of Basal and Stress-Induced H 2S in Live Biosystems. Anal Chem 2022; 94:1733-1741. [PMID: 35019257 DOI: 10.1021/acs.analchem.1c04324] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
H2S is a gaseous signaling molecule that is involved in many physiological and pathological processes. In general, the level of intracellular H2S (<1 μM) is much lower than that of GSH (∼1-10 mM), leading to the remaining challenge of selective detection and differentiation of endogenous H2S in live biosystems. To this end, we quantitatively demonstrate that the thiolysis of NBD amine has much higher selectivity for H2S over GSH than that of the reduction of aryl azide. Subsequently, we developed the first NBD-based cell-trappable probe 1 (AM-BODIPY-NBD) for highly selective and ultrasensitive imaging of intracellular H2S. Probe 1 demonstrates a 207-fold fluorescence enhancement at 520 nm after reaction with H2S/esterase to produce a bright BODIPY (quantum yield 0.42) and a detection limit of 15.7 nM. Probe 1 is water-soluble, cell-trappable, and not cytotoxic. Based on this excellent chemical tool, relative levels of basal H2S in different cell lines were measured to reveal a positive correlation between endogenous H2S and the metastatic potential of colon and breast cancer cells. In addition, H2S biogenesis in vivo was also validated by probe 1 both in tobacco leaves under viral infection and in zebrafish after tail amputation. It is anticipated that probe 1 will have widespread applications in imaging and for investigating different H2S-related biological processes and diseases.
Collapse
Affiliation(s)
- Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Sun
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhili Pang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiuru Ji
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yan Jiao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoqiang Tu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University No. 38, Xueyuan Road, Beijing 100191, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Mild Coronavirus Disease 2019 (COVID-19) Is Marked by Systemic Oxidative Stress: A Pilot Study. Antioxidants (Basel) 2021; 10:antiox10122022. [PMID: 34943125 PMCID: PMC8698810 DOI: 10.3390/antiox10122022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been implicated to play a critical role in the pathophysiology of coronavirus disease 2019 (COVID-19) and may therefore be considered as a relevant therapeutic target. Serum free thiols (R-SH, sulfhydryl groups) comprise a robust marker of systemic oxidative stress, since they are readily oxidized by reactive oxygen species (ROS). In this study, serum free thiol concentrations were measured in hospitalized and non-hospitalized patients with COVID-19 and healthy controls and their associations with relevant clinical parameters were examined. Serum free thiol concentrations were measured colorimetrically (Ellman's method) in 29 non-hospitalized COVID-19 subjects and 30 age-, sex-, and body-mass index (BMI)-matched healthy controls and analyzed for associations with clinical and biochemical disease parameters. Additional free thiol measurements were performed on seven serum samples from COVID-19 subjects who required hospitalization to examine their correlation with disease severity. Non-hospitalized subjects with COVID-19 had significantly lower concentrations of serum free thiols compared to healthy controls (p = 0.014), indicating oxidative stress. Serum free thiols were positively associated with albumin (St. β = 0.710, p < 0.001) and inversely associated with CRP (St. β = -0.434, p = 0.027), and showed significant discriminative ability to differentiate subjects with COVID-19 from healthy controls (AUC = 0.69, p = 0.011), which was slightly higher than the discriminative performance of CRP concentrations regarding COVID-19 diagnosis (AUC = 0.66, p = 0.042). This study concludes that systemic oxidative stress is increased in patients with COVID-19 compared with healthy controls. This opens an avenue of treatment options since free thiols are amenable to therapeutic modulation.
Collapse
|
31
|
Liang T, Zhang D, Hu W, Tian C, Zeng L, Wu T, Lei D, Qiang T, Yang X, Sun X. A dual lock-and-key two photon fluorescence probe in response to hydrogen peroxide and viscosity: Application in cellular imaging and inflammation therapy. Talanta 2021; 235:122719. [PMID: 34517587 DOI: 10.1016/j.talanta.2021.122719] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.
Collapse
Affiliation(s)
- Tianyu Liang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Wei Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chenyang Tian
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China
| | - Lingyu Zeng
- Department of Chemistry, The University of Texas at Austin, Texas, 78712, United States
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongqing Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi 'an, 710032, China.
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
32
|
Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, Fleischmann-Struzek C, Pletz MW, Netea MG, Reinhart K, Kyriazopoulou E. Coronavirus Disease 2019 as Cause of Viral Sepsis: A Systematic Review and Meta-Analysis. Crit Care Med 2021; 49:2042-2057. [PMID: 34259663 PMCID: PMC8594513 DOI: 10.1097/ccm.0000000000005195] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Coronavirus disease 2019 is a heterogeneous disease most frequently causing respiratory tract infection, which can induce respiratory failure and multiple organ dysfunction syndrome in its severe forms. The prevalence of coronavirus disease 2019-related sepsis is still unclear; we aimed to describe this in a systematic review. DATA SOURCES MEDLINE (PubMed), Cochrane, and Google Scholar databases were searched based on a prespecified protocol (International Prospective Register for Systematic Reviews: CRD42020202018). STUDY SELECTION Studies reporting on patients with confirmed coronavirus disease 2019 diagnosed with sepsis according to sepsis-3 or according to the presence of infection-related organ dysfunctions necessitating organ support/replacement were included in the analysis. The primary end point was prevalence of coronavirus disease 2019-related sepsis among adults hospitalized in the ICU and the general ward. Among secondary end points were the need for ICU admission among patients initially hospitalized in the general ward and the prevalence of new onset of organ dysfunction in the ICU. Outcomes were expressed as proportions with respective 95% CI. DATA EXTRACTION Two reviewers independently screened and reviewed existing literature and assessed study quality with the Newcastle-Ottawa Scale and the Methodological index for nonrandomized studies. DATA SYNTHESIS Of 3,825 articles, 151 were analyzed, only five of which directly reported sepsis prevalence. Noting the high heterogeneity observed, coronavirus disease 2019-related sepsis prevalence was 77.9% (95% CI, 75.9-79.8; I2 = 91%; 57 studies) in the ICU, and 33.3% (95% CI, 30.3-36.4; I2 = 99%; 86 studies) in the general ward. ICU admission was required for 17.7% (95% CI, 12.9-23.6; I2 = 100%) of ward patients. Acute respiratory distress syndrome was the most common organ dysfunction in the ICU (87.5%; 95% CI, 83.3-90.7; I2 = 98%). CONCLUSIONS The majority of coronavirus disease 2019 patients hospitalized in the ICU meet Sepsis-3 criteria and present infection-associated organ dysfunction. The medical and scientific community should be aware and systematically report viral sepsis for prognostic and treatment implications.
Collapse
Affiliation(s)
- Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Miltiades Kyprianou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Carolin Fleischmann-Struzek
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Center for Infectious Diseases, Radboud University, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Konrad Reinhart
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Evdoxia Kyriazopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
33
|
Pal VK, Agrawal R, Rakshit S, Shekar P, Murthy DTN, Vyakarnam A, Singh A. Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial bioenergetics and redox homeostasis. eLife 2021; 10:68487. [PMID: 34792020 PMCID: PMC8660018 DOI: 10.7554/elife.68487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
A fundamental challenge in human immunodeficiency virus (HIV) eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral therapy (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV is associated with downregulation of the key H2S producing enzyme cystathionine-γ-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-κB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ragini Agrawal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Pooja Shekar
- BMCRI, Bangalore Medical College and Research Institute, Bangalore, India
| | | | | | - Amit Singh
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
35
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Bourgonje AR, Offringa AK, van Eijk LE, Abdulle AE, Hillebrands JL, van der Voort PHJ, van Goor H, van Hezik EJ. N-Acetylcysteine and Hydrogen Sulfide in Coronavirus Disease 2019. Antioxid Redox Signal 2021; 35:1207-1225. [PMID: 33607929 DOI: 10.1089/ars.2020.8247] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is one of the three main gasotransmitters that are endogenously produced in humans and are protective against oxidative stress. Recent findings from studies focusing on coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shifted our attention to a potentially modulatory role of H2S in this viral respiratory disease. Recent Advances: H2S levels at hospital admission may be of importance since this gasotransmitter has been shown to be protective against lung damage through its antiviral, antioxidant, and anti-inflammatory actions. Furthermore, many COVID-19 cases have been described demonstrating remarkable clinical improvement upon administration of high doses of N-acetylcysteine (NAC). NAC is a renowned pharmacological antioxidant substance acting as a source of cysteine, thereby promoting endogenous glutathione (GSH) biosynthesis as well as generation of sulfane sulfur species when desulfurated to H2S. Critical Issues: Combining H2S physiology and currently available knowledge of COVID-19, H2S is hypothesized to target three main vulnerabilities of SARS-CoV-2: (i) cell entry through interfering with functional host receptors, (ii) viral replication through acting on RNA-dependent RNA polymerase (RdRp), and (iii) the escalation of inflammation to a potentially lethal hyperinflammatory cytokine storm (toll-like receptor 4 [TLR4] pathway and NLR family pyrin domain containing 3 [NLRP3] inflammasome). Future Directions: Dissecting the breakdown of NAC reveals the possibility of increasing endogenous H2S levels, which may provide a convenient rationale for the application of H2S-targeted therapeutics. Further randomized-controlled trials are warranted to investigate its definitive role.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annette K Offringa
- Microbiology and System Biology, Netherlands Organisation for Applied Scientific Research, Zeist, the Netherlands
| | - Larissa E van Eijk
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amaal E Abdulle
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter H J van der Voort
- Department of Critical Care Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ed J van Hezik
- Visiting Consultant Chest Physician, formerly Walcheren Hospital, Vlissingen, the Netherlands
| |
Collapse
|
37
|
Ali Qaba MAM, Saleem MK, Ali Qaba NK, Alani MA, Ahmed MM, Sabry SM. Assessment of Inhaled Hydrogen Sulfide in Suppressing Deterioration in Patients With COVID-19. Shock 2021; 56:868-869. [PMID: 34652343 PMCID: PMC8518203 DOI: 10.1097/shk.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Affiliation(s)
| | | | - Nahla Kh Ali Qaba
- Trainning and Development Center Ninawa Health Directorate Mosul, Iraq
| | - Muataz A Alani
- Alkhansaa Teaching Hospital, Ninawa Health Directorate, Mosul, Iraq
| | - Muna Muneer Ahmed
- Department of Family and Community Medicine, College of Medicine, University of Mosul, Mosul, Iraq
| | - Salih M Sabry
- Al-Shifa Hospital, Ninawa Health Directorate, Mosul, Iraq
| |
Collapse
|
38
|
Affiliation(s)
- Thomas Datzmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Csaba Szabo
- Chair of Pharmacology, OMI Department, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| |
Collapse
|
39
|
Shekhar N, Kaur H, Sarma P, Prakash A, Medhi B. Indomethacin: an exploratory study of antiviral mechanism and host-pathogen interaction in COVID-19. Expert Rev Anti Infect Ther 2021; 20:383-390. [PMID: 34633277 PMCID: PMC8544661 DOI: 10.1080/14787210.2022.1990756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction COVID-19, a dreadful pandemic that has impacted human life like no other pathogenic invasion, has claimed the lives of over 100 million people. The need for effective treatment strategies is still a subject of intense research considering the rapidly evolving genome and continental diversity. Indomethacin is administered mostly as co-treatment for affected patients as a non-steroidal anti-inflammatory drug (NSAID). However, the underlying mechanism of action is unresolved. This study explores the basal mechanism of indomethacin and potency in alleviating the damage caused by SARS-CoV-2 and discusses the experimental and clinical efficacy in recent studies. Areas covered The literature search and system biology-based network formation were employed to describe the potent effects and risks associated with indomethacin in in-vitro, in-vivo, and clinical studies. This study also highlights the plausible mechanism of antiviral action of indomethacin with its apparent viral protein targets. The SARS-CoV-2 protein, the interacting host proteins, and the effect of indomethacin on this interactome as a standalone treatment or as part of a co-therapy strategy are particularly emphasized using network modeling. Expert opinion Indomethacin has demonstrated excellent clinical endpoint characteristics in several studies, and we recommend that it be utilized in the treatment of mild-to-moderate COVID patients.
Collapse
Affiliation(s)
- Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Harpinder Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, INDIA
| |
Collapse
|
40
|
Geng J, Yu X, Bao H, Feng Z, Yuan X, Zhang J, Chen X, Chen Y, Li C, Yu H. Chronic Diseases as a Predictor for Severity and Mortality of COVID-19: A Systematic Review With Cumulative Meta-Analysis. Front Med (Lausanne) 2021; 8:588013. [PMID: 34540855 PMCID: PMC8440884 DOI: 10.3389/fmed.2021.588013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Given the ongoing coronavirus disease 2019 (COVID-19) pandemic and the consequent global healthcare crisis, there is an urgent need to better understand risk factors for symptom deterioration and mortality among patients with COVID-19. This systematic review aimed to meet the need by determining the predictive value of chronic diseases for COVID-19 severity and mortality. Methods: We searched PubMed, Embase, Web of Science, and Cumulative Index to Nursing and Allied Health Complete to identify studies published between December 1, 2019, and December 31, 2020. Two hundred and seventeen observational studies from 26 countries involving 624,986 patients were included. We assessed the risk of bias of the included studies and performed a cumulative meta-analysis. Results: We found that among COVID-19 patients, hypertension was a very common condition and was associated with higher severity, intensive care unit (ICU) admission, acute respiratory distress syndrome, and mortality. Chronic obstructive pulmonary disease was the strongest predictor for COVID-19 severity, admission to ICU, and mortality, while asthma was associated with a reduced risk of COVID-19 mortality. Patients with obesity were at a higher risk of experiencing severe symptoms of COVID-19 rather than mortality. Patients with cerebrovascular disease, chronic liver disease, chronic renal disease, or cancer were more likely to become severe COVID-19 cases and had a greater probability of mortality. Conclusions: COVID-19 patients with chronic diseases were more likely to experience severe symptoms and ICU admission and faced a higher risk of mortality. Aggressive strategies to combat the COVID-19 pandemic should target patients with chronic diseases as a priority.
Collapse
Affiliation(s)
- JinSong Geng
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - XiaoLan Yu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - HaiNi Bao
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - Zhe Feng
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - XiaoYu Yuan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - JiaYing Zhang
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - XiaoWei Chen
- Library and Reference Department, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - YaLan Chen
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - ChengLong Li
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - Hao Yu
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| |
Collapse
|
41
|
Pozzi G, Masselli E, Gobbi G, Mirandola P, Taborda-Barata L, Ampollini L, Carbognani P, Micheloni C, Corazza F, Galli D, Carubbi C, Vitale M. Hydrogen Sulfide Inhibits TMPRSS2 in Human Airway Epithelial Cells: Implications for SARS-CoV-2 Infection. Biomedicines 2021; 9:1273. [PMID: 34572459 PMCID: PMC8469712 DOI: 10.3390/biomedicines9091273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has now affected around 190 million people worldwide, accounting for more than 4 million confirmed deaths. Besides ongoing global vaccination, finding protective and therapeutic strategies is an urgent clinical need. SARS-CoV-2 mostly infects the host organism via the respiratory system, requiring angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) to enter target cells. Therefore, these surface proteins are considered potential druggable targets. Hydrogen sulfide (H2S) is a gasotransmitter produced by several cell types and is also part of natural compounds, such as sulfurous waters that are often inhaled as low-intensity therapy and prevention in different respiratory conditions. H2S is a potent biological mediator, with anti-oxidant, anti-inflammatory, and, as more recently shown, also anti-viral activities. Considering that respiratory epithelial cells can be directly exposed to H2S by inhalation, here we tested the in vitro effects of H2S-donors on TMPRSS2 and ACE2 expression in human upper and lower airway epithelial cells. We showed that H2S significantly reduces the expression of TMPRSS2 without modifying ACE2 expression both in respiratory cell lines and primary human upper and lower airway epithelial cells. Results suggest that inhalational exposure of respiratory epithelial cells to natural H2S sources may hinder SARS-CoV-2 entry into airway epithelial cells and, consequently, potentially prevent the virus from spreading into the lower respiratory tract and the lung.
Collapse
Affiliation(s)
- Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Luis Taborda-Barata
- CICS-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Luca Ampollini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Paolo Carbognani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cristina Micheloni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Francesco Corazza
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
- Italian Foundation for Research in Balneotherapy (FoRST), 00198 Rome, Italy
| |
Collapse
|
42
|
Analytical Methods for Detection of Gasotransmitter Hydrogen Sulfide Released from Live Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5473965. [PMID: 34497847 PMCID: PMC8419496 DOI: 10.1155/2021/5473965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/31/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) plays an important role in mammals as a signaling molecule. Recently, abnormal H2S concentration has been associated with several pathophysiological states, such as diabetes mellitus, hypertension, Alzheimer's disease, and Parkinson's disease. As regulating H2S concentration can be a very prominent way of developing new drugs, many researchers have paid great attention to H2S research. To understand the role of H2S in pathophysiology and develop H2S-based therapies, it is necessary to measure the exact concentration of H2S within biological systems. But, H2S is volatile and can be easily oxidized. Besides, the active sites for several biological effects of H2S are inside the cell. Therefore, there is a need for the development of new methods for the accurate and reliable detection of H2S within live cells. This review provides a summary of recent developments in H2S detection methods for live cell analysis.
Collapse
|
43
|
Dai J, Teng X, Jin S, Wu Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7866992. [PMID: 34497683 PMCID: PMC8421161 DOI: 10.1155/2021/7866992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is posing a great threat to the global economy and public health security. Together with the acknowledged angiotensin-converting enzyme 2, glucose-regulated protein 78, transferrin receptor, AXL, kidney injury molecule-1, and neuropilin 1 are also identified as potential receptors to mediate SARS-CoV-2 infection. Therefore, how to inhibit or delay the binding of SARS-CoV-2 with the abovementioned receptors is a key step for the prevention and treatment of COVID-19. As the third gasotransmitter, hydrogen sulfide (H2S) plays an important role in many physiological and pathophysiological processes. Recently, survivors were reported to have significantly higher H2S levels in COVID-19 patients, and mortality was significantly greater among patients with decreased H2S levels. Considering that the beneficial role of H2S against COVID-19 and COVID-19-induced comorbidities and multiorgan damage has been well-examined and reported in some excellent reviews, this review will discuss the recent findings on the potential receptors of SARS-CoV-2 and how H2S modulates the above receptors, in turn blocking SARS-CoV-2 entry into host cells.
Collapse
Affiliation(s)
- Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050017, China
- Key Laboratory of Vascular Medicine of Hebei Province, Hebei 050017, China
| |
Collapse
|
44
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
45
|
Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H 2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021; 9:biomedicines9091107. [PMID: 34572292 PMCID: PMC8472626 DOI: 10.3390/biomedicines9091107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelium controls vascular homeostasis through a delicate balance between secretion of vasodilators and vasoconstrictors. The loss of physiological homeostasis leads to endothelial dysfunction, for which inflammatory events represent critical determinants. In this context, therapeutic approaches targeting inflammation-related vascular injury may help for the treatment of cardiovascular disease and a multitude of other conditions related to endothelium dysfunction, including COVID-19. In recent years, within the complexity of the inflammatory scenario related to loss of vessel integrity, hydrogen sulfide (H2S) has aroused great interest due to its importance in different signaling pathways at the endothelial level. In this review, we discuss the effects of H2S, a molecule which has been reported to demonstrate anti-inflammatory activity, in addition to many other biological functions related to endothelium and sulfur-drugs as new possible therapeutic options in diseases involving vascular pathobiology, such as in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (L.S.); (M.G.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy
- Correspondence: (F.G.); (S.D.T.); (C.V.)
| |
Collapse
|
46
|
Merz T, McCook O, Denoix N, Radermacher P, Waller C, Kapapa T. Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. Int J Mol Sci 2021; 22:9192. [PMID: 34502097 PMCID: PMC8430789 DOI: 10.3390/ijms22179192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Medical Center, Ulm University, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Thomas Kapapa
- Clinic for Neurosurgery, Medical Center, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
47
|
Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A 2021; 118:e2024358118. [PMID: 34400495 PMCID: PMC8403932 DOI: 10.1073/pnas.2024358118] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although most patients recover from acute COVID-19, some experience postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called "long COVID-19," reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debilitating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits, and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying biological abnormalities. However, in this review, we summarize the evidence that people with acute COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflammation and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypometabolic state. These phenomena have not yet been well studied in people with long COVID-19, and each of them has been reported in other diseases as well, particularly neurological diseases. We also examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits, and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, understanding the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Anthony L Komaroff
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02120
| | - Solomon H Snyder
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
48
|
Avdeev SN, Gaynitdinova VV, Merzhoeva ZM, Berikkhanov ZGM. N-acetylcysteine for the treatment of COVID-19 among hospitalized patients. J Infect 2021; 84:94-118. [PMID: 34252497 PMCID: PMC8271031 DOI: 10.1016/j.jinf.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sergey N Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Viliya V Gaynitdinova
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Zamira M Merzhoeva
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Zelimkhan G-M Berikkhanov
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
49
|
Lee EE, Hwang W, Song KH, Jung J, Kang CK, Kim JH, Oh HS, Kang YM, Lee EB, Chin BS, Song W, Kim NJ, Park JK. Predication of oxygen requirement in COVID-19 patients using dynamic change of inflammatory markers: CRP, hypertension, age, neutrophil and lymphocyte (CHANeL). Sci Rep 2021; 11:13026. [PMID: 34158545 PMCID: PMC8219792 DOI: 10.1038/s41598-021-92418-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
The objective of the study was to develop and validate a prediction model that identifies COVID-19 patients at risk of requiring oxygen support based on five parameters: C-reactive protein (CRP), hypertension, age, and neutrophil and lymphocyte counts (CHANeL). This retrospective cohort study included 221 consecutive COVID-19 patients and the patients were randomly assigned randomly to a training set and a test set in a ratio of 1:1. Logistic regression, logistic LASSO regression, Random Forest, Support Vector Machine, and XGBoost analyses were performed based on age, hypertension status, serial CRP, and neutrophil and lymphocyte counts during the first 3 days of hospitalization. The ability of the model to predict oxygen requirement during hospitalization was tested. During hospitalization, 45 (41.8%) patients in the training set (n = 110) and 41 (36.9%) in the test set (n = 111) required supplementary oxygen support. The logistic LASSO regression model exhibited the highest AUC for the test set, with a sensitivity of 0.927 and a specificity of 0.814. An online risk calculator for oxygen requirement using CHANeL predictors was developed. "CHANeL" prediction models based on serial CRP, neutrophil, and lymphocyte counts during the first 3 days of hospitalization, along with age and hypertension status, provide a reliable estimate of the risk of supplement oxygen requirement among patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Eunyoung Emily Lee
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-Si, Gyeonggi-do, South Korea
| | - Woochang Hwang
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, South Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jongtak Jung
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Chang Kyung Kang
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jeong-Han Kim
- Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam-Si, Gyeonggi-do, South Korea
| | - Hong Sang Oh
- Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam-Si, Gyeonggi-do, South Korea
| | - Yu Min Kang
- Department of Infectious Diseases, Myongji Hospital, Goyang, Gyeonggi-do, South Korea
- Department of Medical Education, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Bum Sik Chin
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul, South Korea
| | - Woojeung Song
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, South Korea
| | - Nam Joong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
50
|
Dominic P, Ahmad J, Bhandari R, Pardue S, Solorzano J, Jaisingh K, Watts M, Bailey SR, Orr AW, Kevil CG, Kolluru GK. Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19. Redox Biol 2021; 43:101982. [PMID: 34020311 PMCID: PMC8106525 DOI: 10.1016/j.redox.2021.101982] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is involved in a global outbreak affecting millions of people who manifest a variety of symptoms. Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is increasingly associated with cardiovascular complications requiring hospitalizations; however, the mechanisms underlying these complications remain unknown. Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters that regulate key cardiovascular functions. METHODS Blood samples were obtained from 68 COVID-19 patients and 33 controls and NO and H2S metabolites were assessed. H2S and NO levels were compared between cases and controls in the entire study population and subgroups based on race. The availability of gasotransmitters was examined based on severity and outcome of COVID-19 infection. The performance of H2S and NO levels in predicting COVID-19 infection was also analyzed. Multivariable regression analysis was performed to identify the effects of traditional determinants of gasotransmitters on NO and H2S levels in the patients with COVID-19 infection. RESULTS Significantly reduced NO and H2S levels were observed in both Caucasian and African American COVID-19 patients compared to healthy controls. COVID-19 patients who died had significantly higher NO and H2S levels compared to COVID-19 patients who survived. Receiver-operating characteristic analysis of NO and H2S metabolites in the study population showed free sulfide levels to be highly predictive of COVID-19 infection based on reduced availability. Traditional determinants of gasotransmitters, namely age, race, sex, diabetes, and hypertension had no effect on NO and H2S levels in COVID-19 patients. CONCLUSION These observations provide the first insight into the role of NO and H2S in COVID-19 infection, where their low availability may be a result of reduced synthesis secondary to endotheliitis, or increased consumption from scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Paari Dominic
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States; Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States; Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Javaria Ahmad
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Ruchi Bhandari
- Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, United States
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Juan Solorzano
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Keerthish Jaisingh
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Megan Watts
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Steven R. Bailey
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - A. Wayne Orr
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Christopher G. Kevil
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Gopi K. Kolluru
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Corresponding author. Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|