1
|
Sun S, Guo H, Chen G, Zhang H, Zhang Z, Wang X, Li D, Li X, Zhao G, Lin F. Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Mol Med Rep 2025; 31:17. [PMID: 39513608 PMCID: PMC11551696 DOI: 10.3892/mmr.2024.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Heart disease (HD) is a general term for various diseases affecting the heart. An increasing body of evidence suggests that the pathogenesis of HD is closely related to mitochondrial dysfunction. Peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α) is a transcriptional coactivator that plays an important role in mitochondrial function by regulating mitochondrial biogenesis, energy metabolism and oxidative stress. The present review shows that PGC‑1α expression and activity in the heart are controlled by multiple signaling pathways, including adenosine monophosphate‑activated protein kinase, sirtuin 1/3 and nuclear factor κB. These can mediate the activation or inhibition of transcription and post‑translational modifications (such as phosphorylation and acetylation) of PGC‑1α. Furthermore, it highlighted the recent progress of PGC‑1α in HD, including heart failure, coronary heart disease, diabetic cardiomyopathy, drug‑induced cardiotoxicity and arrhythmia. Understanding the mechanisms underlying PGC‑1α in response to pathological stimulation may prove to be beneficial in developing new ideas and strategies for preventing and treating HDs. Meanwhile, the present review explored why the opposite results occurred when PGC‑1α was used as a target therapy.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Huige Guo
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Guohui Chen
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Hui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Zhanrui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xiulong Wang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Dongxu Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xuefang Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Guoan Zhao
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Fei Lin
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| |
Collapse
|
2
|
Wang H, Li Y, Cao X, Niu H, Li X, Wang J, Yang J, Xu C, Wang H, Wan S, Li K, Fu S, Yang L. MELATONIN ATTENUATES RENAL ISCHEMIA-REPERFUSION INJURY BY REGULATING MITOCHONDRIAL DYNAMICS AND AUTOPHAGY THROUGH AMPK/DRP1. Shock 2024; 62:74-84. [PMID: 38713551 DOI: 10.1097/shk.0000000000002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
ABSTRACT Ischemia-reperfusion injury (IRI) often stems from an imbalance between mitochondrial dynamics and autophagy. Melatonin mitigates IRI by regulating mitochondrial dynamics. However, the precise molecular mechanism underlying the role of melatonin in reducing IRI through modulating mitochondrial dynamics remains elusive. The objective of this study was to investigate whether pretreatment with melatonin before IRI confers protective effects by modulating mitochondrial dynamics and mitophagy. Melatonin pretreatment was administered to HK-2 cells and live rats before subjecting them to hypoxia-reoxygenation or IRI, respectively. Cells and rat kidney models were evaluated for markers of oxidative stress, autophagy, mitochondrial dynamics, and the expression of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phospho-AMPKα (P-AMPK). After renal IRI, increased mitochondrial fission and autophagy were observed, accompanied by exacerbated cellular oxidative stress injury and aggravated mitochondrial dysfunction. Nevertheless, melatonin pretreatment inhibited mitochondrial fission, promoted mitochondrial fusion, and attenuated autophagy levels. This intervention was correlated with a notable reduction in oxidative stress injury and remarkable restoration of mitochondrial functionality. Ischemia-reperfusion injury led to a decline in P-AMPK levels, whereas melatonin pretreatment increased the level of P-AMPK levels. Silencing AMPK with small interfering RNA exacerbated mitochondrial damage, and in this context, melatonin pretreatment did not alleviate mitochondrial fission or autophagy levels but resulted in sustained oxidative stress damage. Collectively, these findings indicate that melatonin pretreatment shields the kidneys from IRI by mitigating excessive mitochondrial fission, moderating autophagy levels, and preserving appropriate mitochondrial fission, all in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xichao Cao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Heping Niu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jirong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianwei Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Changhong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shun Wan
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Tang Y, Yin L, Yuan L, Lin X, Jiang B. Nucleolin myocardial-specific knockout exacerbates glucose metabolism disorder in endotoxemia-induced myocardial injury. PeerJ 2024; 12:e17414. [PMID: 38784400 PMCID: PMC11114111 DOI: 10.7717/peerj.17414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Background Sepsis-induced myocardial injury, as one of the important complications of sepsis, can significantly increase the mortality of septic patients. Our previous study found that nucleolin affected mitochondrial function in energy synthesis and had a protective effect on septic cardiomyopathy in mice. During sepsis, glucose metabolism disorders aggravated myocardial injury and had a negative effect on septic patients. Objectives We investigated whether nucleolin could regulate glucose metabolism during endotoxemia-induced myocardial injury. Methods The study tested whether the nucleolin cardiac-specific knockout in the mice could affect glucose metabolism through untargeted metabolomics, and the results of metabolomics were verified experimentally in H9C2 cells. The ATP content, lactate production, and oxygen consumption rate (OCR) were evaluated. Results The metabolomics results suggested that glycolytic products were increased in endotoxemia-induced myocardial injury, and that nucleolin myocardial-specific knockout altered oxidative phosphorylation-related pathways. The experiment data showed that TNF-α combined with LPS stimulation could increase the lactate content and the OCR values by about 25%, and decrease the ATP content by about 25%. However, interference with nucleolin expression could further decrease ATP content and OCR values by about 10-20% and partially increase the lactate level in the presence of TNF-α and LPS. However, nucleolin overexpression had the opposite protective effect, which partially reversed the decrease in ATP content and the increase in lactate level. Conclusion Down-regulation of nucleolin can exacerbate glucose metabolism disorders in endotoxemia-induced myocardial injury. Improving glucose metabolism by regulating nucleolin was expected to provide new therapeutic ideas for patients with septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li CJ, Du HB, Zhao ZA, Sun Q, Li YM, Chen SJ, Zhang H, Zhang N, Niu CY, Zhao ZG. STELLATE GANGLION BLOCK REVERSES PHSML-INDUCED VASCULAR HYPOREACTIVITY THROUGH INHIBITING AUTOPHAGY-MEDIATED PHENOTYPIC TRANSFORMATION OF VSMCs. Shock 2024; 61:414-423. [PMID: 38150357 DOI: 10.1097/shk.0000000000002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.
Collapse
Affiliation(s)
- Cai-Juan Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | | | | - Yi-Ming Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | - Si-Jie Chen
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | - Nan Zhang
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | |
Collapse
|
5
|
Zhao J, Hu J, Zhang R, Deng J. CEBPD REGULATES OXIDATIVE STRESS AND INFLAMMATORY RESPONSES IN HYPERTENSIVE CARDIAC REMODELING. Shock 2023; 60:713-723. [PMID: 37752084 DOI: 10.1097/shk.0000000000002228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
ABSTRACT Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1β/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1β/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.
Collapse
Affiliation(s)
- Jinghong Zhao
- Department of Cardiology, Nanchong Central Hospital, Nanchong, China
| | | | | | | |
Collapse
|
6
|
Yang X, Wu J, Cheng H, Chen S, Wang J. DEXMEDETOMIDINE AMELIORATES ACUTE BRAIN INJURY INDUCED BY MYOCARDIAL ISCHEMIA-REPERFUSION VIA UPREGULATING THE HIF-1 PATHWAY. Shock 2023; 60:678-687. [PMID: 37647083 DOI: 10.1097/shk.0000000000002217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Objective: Neurological complications after myocardial ischemia/reperfusion (IR) injury remain high and seriously burden patients and their families. Dexmedetomidine (Dex), an α 2 agonist, is endowed with analgesic-sedative and anti-inflammatory effects. Therefore, our study aims to explore the mechanism and effect of Dex on brain damage after myocardial IR injury. Methods C57BL/6 mice were randomly divided into sham, IR, and IR + Dex groups, and myocardial IR models were established. The impact of Dex on brain injury elicited by myocardial IR was assessed via ELISA for inflammatory factors in serum and brain; Evans blue for blood-brain barrier permeability; hematoxylin-eosin staining for pathological injury in brain; immunofluorescence for microglia activation in brain; Morris water maze for cognitive dysfunction; western blot for the expression level of HIF-1α, occludin, cleaved caspase-3, NF-κB p65, and p-NF-κB p65 in the brain. In addition, HIF-1α knockout mice were used to verify whether the neuroprotective function of Dex is associated with the HIF-1 pathway. Results: Dex was capable of reducing myocardial IR-induced brain damage including inflammatory factor secretion, blood-brain barrier disruption, neuronal edema, microglial activation, and acute cognitive dysfunction. However, the protective role of Dex was attenuated in HIF-1α knockout mice. Conclusion: Dex protects against myocardial IR-induced brain injury, and the neuroprotection of Dex is at least partially dependent on the activation of the HIF-1 pathway.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | | | | |
Collapse
|