1
|
Iba T, Helms J, Levi M, Levy JH. Thromboinflammation in acute injury: infections, heatstroke, and trauma. J Thromb Haemost 2024; 22:7-22. [PMID: 37541590 DOI: 10.1016/j.jtha.2023.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
Tissue microcirculation is essential for the maintenance of organ homeostasis. Following acute infections, activation of coagulation and inflammation, which are critical interconnected responses, lead to thromboinflammation and microthrombosis, thereby contributing to multiorgan dysfunction. Sepsis is the most common underlying disease and has been extensively studied. However, the COVID-19 pandemic further illustrated the pathomechanisms of diseases in which thromboinflammation plays a critical role. During thromboinflammation, injury to monocytes, neutrophils, platelets, and endothelial cells, along with coagulation and complement activation, was further characterized. Thrombin is pivotal in orchestrating thrombosis and inflammation and has long been considered a potential therapeutic target in sepsis. Although thromboprophylaxis for venous thromboembolism with heparins is part of standard management for COVID-19, it also potentially attenuates organ dysfunction due to thrombotic sequela. In contrast, the effectiveness of anticoagulation with heparin, antithrombin, or thrombomodulin to reduce mortality has not conclusively been proven in sepsis. Nonetheless, thromboinflammation has also been reported as an important pathophysiologic mechanism in other critical illnesses, including heatstroke, trauma, and ischemia/reperfusion injury, and may provide a potential therapeutic target for future clinical studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit - NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, The Netherlands; Department of Medicine, University College London Hospitals NHS Foundation Trust (UCLH), Cardio-metabolic Programme-National Institute for Health and Care Research UCLH/UCL Biomedical Research Centres, London, United Kingdom
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Maneta E, Aivalioti E, Tual-Chalot S, Emini Veseli B, Gatsiou A, Stamatelopoulos K, Stellos K. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol 2023; 14:1144229. [PMID: 37081895 PMCID: PMC10110956 DOI: 10.3389/fimmu.2023.1144229] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen’s dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet–endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.
Collapse
Affiliation(s)
- Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Besa Emini Veseli
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| |
Collapse
|
3
|
Colomb F, Giron LB, Kuri-Cervantes L, Adeniji OS, Ma T, Dweep H, Battivelli E, Verdin E, Palmer CS, Tateno H, Kossenkov AV, Roan NR, Betts MR, Abdel-Mohsen M. Sialyl-Lewis X Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy. Cell Rep 2020; 32:107991. [PMID: 32755584 PMCID: PMC7432956 DOI: 10.1016/j.celrep.2020.107991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.
Collapse
Affiliation(s)
- Florent Colomb
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Opeyemi S Adeniji
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Harsh Dweep
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Eric Verdin
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Clovis S Palmer
- The Burnet Institute, Melbourne, VIC 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Hiroaki Tateno
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, PA 19104, USA; Penn Center for AIDS Research (Penn CFAR), University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion Molecules: Master Controllers of the Circulatory System. Compr Physiol 2016; 6:945-73. [PMID: 27065171 DOI: 10.1002/cphy.c150020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.
Collapse
Affiliation(s)
- Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Respirology and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Departments of Medicine, Pediatrics, and Biomedical Research, National Jewish Health, Denver, Colorado, USA
- Departments of Medicine, and Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
5
|
Díaz-González F, Sánchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol 2015; 45:679-86. [PMID: 25523026 DOI: 10.1002/eji.201445222] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/16/2014] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) comprise a heterogeneous group of pharmacological agents used for the symptomatic treatment of fever, pain, and inflammation. Although the main mechanism of action of NSAIDs consists of inhibiting prostaglandin synthesis by blocking the enzyme cyclooxygenase (COX), clinical, and experimental data strongly indicate the existence of additional mechanisms. Some of the COX-independent effects are related to the ability of NSAIDs to penetrate biological membranes and disrupt important molecular interactions necessary for a wide array of cellular functions, including cell adhesion. These effects, in particular those that interfere with L-selectin function in neutrophils during the inflammatory response, may contribute to the anti-inflammatory properties that NSAIDs exert in vivo. Recent contributions in this field have shown that the anti-L-selectin effect of NSAIDs is related to the NADPH-oxidase-dependent generation of superoxide anion at the plasma membrane. These findings might represent a novel approach for developing new and effective anti-inflammatory compounds with a better safety profile than the currently available NSAIDs.
Collapse
Affiliation(s)
- Federico Díaz-González
- Department of Internal Medicine, Universidad de La Laguna, Rheumatology Service, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
6
|
Wrigley BJ, Shantsila E, Tapp LD, Lip GY. Increased Formation of Monocyte-Platelet Aggregates in Ischemic Heart Failure. Circ Heart Fail 2013; 6:127-35. [DOI: 10.1161/circheartfailure.112.968073] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background—
Cross-talk between monocytes and platelets is reflected by the formation of monocyte-platelet aggregates (MPAs). It is not known whether MPAs are affected in heart failure (HF), and we examined differences in patients with acute HF (AHF), stable HF (SHF), stable coronary artery disease (CAD) without HF, and healthy controls (HCs).
Methods and Results—
MPAs were analyzed by flow cytometry for the 3 monocyte subsets (CD14++CD16-CCR2+ [Mon1], CD14++CD16+CCR2+ [Mon2] and CD14+CD16++CCR2– [Mon3]) in patients with AHF (n=51), SHF (n=42), stable CAD (n=44), and HCs (n=40). Counts of total MPA and MPAs associated with Mon1 and Mon2 were significantly higher in AHF compared with SHF, CAD, and HCs (
P
<0.001 for all). The proportion of Mon1 aggregated with platelets was increased in AHF compared with SHF (
P
=0.033), CAD (
P
<0.001), and HCs (
P
<0.001). A higher percentage of Mon3 aggregated with platelets was also seen in AHF compared with SHF (
P
=0.012) and HCs (
P
<0.001) but not compared with CAD (
P
=0.647). MPAs associated with Mon2 were significantly lower in patients who experienced adverse clinical outcomes of death or rehospitalization compared with those who remained free of events (
P
=0.03). Mon2 count remained an independent negative predictor of combined death and rehospitalization after adjustment for age, left ventricular ejection fraction, creatinine, and brain natriuretic peptide (hazard ratio, 0.58 [95% CI, 0.34–0.98];
P
=0.043).
Conclusions—
MPA formation in patients with both acute and stable HF is increased and seems to be confined to monocytes from Mon1 and Mon2 subsets. MPAs associated with Mon2 seem to be negatively predictive of a worse prognosis in AHF.
Collapse
Affiliation(s)
- Benjamin J. Wrigley
- From the University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Eduard Shantsila
- From the University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Luke D. Tapp
- From the University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Gregory Y.H. Lip
- From the University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| |
Collapse
|
7
|
Paschos KA, Canovas D, Bird NC. The engagement of selectins and their ligands in colorectal cancer liver metastases. J Cell Mol Med 2011; 14:165-74. [PMID: 19627399 PMCID: PMC3837616 DOI: 10.1111/j.1582-4934.2009.00852.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The colonization of the liver by colorectal cancer (CRC) cells is a complicated process which includes many stages, until macrometastases occur. The entrapment of malignant cells within the hepatic sinusoids and their interactions with resident non-parenchymal cells are considered very important for the whole metastatic sequence. In the sinusoids, cell connection and signalling is mediated by multiple cell adhesion molecules, such as the selectins. The three members of the selectin family, E-, P- and L-selectin, in conjunction with sialylated Lewis ligands and CD44 variants, regulate colorectal cell communication and adhesion with platelets, leucocytes, sinusoidal endothelial cells and stellate cells. Their role in CRC liver metastases has been investigated in animal models and human tissue, in vivo and in vitro, in static and shear flow conditions, and their key-function in several molecular pathways has been displayed. Therefore, trials have already commenced aiming to exploit selectins and their ligands in the treatment of benign and malignant diseases. Multiple pharmacological agents have been developed that are being tested for potential therapeutic applications.
Collapse
Affiliation(s)
- Konstantinos A Paschos
- Liver Research Group, Section of Oncology, School of Medicine, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
8
|
Antonopoulou A, Giamarellos-Bourboulis EJ. Immunomodulation in sepsis: state of the art and future perspective. Immunotherapy 2011; 3:117-28. [DOI: 10.2217/imt.10.82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite advances in supportive care of critically ill patients, sepsis remains an important cause of death worldwide. More than 750,000 individuals develop severe sepsis in North America annually, with a mortality rate varying between 35 and 50%. Over recent years, numerous efforts have been committed to understanding the pathophysiology of septic syndrome, as well as attempts to intervene in the inflammatory cascade with the aim of altering the outcome of the syndrome and to improve survival. Not all of these attempts have been successful. Issued guidelines by the International Sepsis Forum have incorporated only the use of corticosteroids, tight glycemic control and the use of recombinant activated protein C as recommendations for the management of the septic patient along with the initial resuscitation and infection-site control measures. These strategies along, with novel attempts of immunomodulation, are thoroughly reviewed in this article.
Collapse
Affiliation(s)
- Anastasia Antonopoulou
- 4th Department of Internal Medicine, ATTIKON University General Hospital, 1 Rimini St., 12462 Athens, Greece
| | | |
Collapse
|
9
|
De Boever S, Croubels S, Meyer E, Sys S, Beyaert R, Ducatelle R, De Backer P. Characterization of an intravenous lipopolysaccharide inflammation model in broiler chickens. Avian Pathol 2009; 38:403-11. [DOI: 10.1080/03079450903190871] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Nitric oxide inhalation and glucocorticoids as combined treatment in human experimental endotoxemia: It takes not always two to tango. Crit Care Med 2009; 37:2676; author reply 2676-7. [DOI: 10.1097/ccm.0b013e3181aff5cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
What's new in Shock, April 2008? Shock 2008; 29:427-30. [PMID: 18344841 DOI: 10.1097/shk.0b013e31816c14e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|