1
|
Xu M, Alwahsh SM, Kim MH, Kollmar O. A Multidrug Donor Preconditioning Improves Steatotic Rat Liver Allograft Function and Recipient Survival After Transplantation. Transpl Int 2024; 37:13557. [PMID: 39726675 PMCID: PMC11671227 DOI: 10.3389/ti.2024.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The scarcity of donors has prompted the growing utilization of steatotic livers, which are susceptible to injuries following orthotopic liver transplantation (OLT). This study aims to assess the efficacy of multidrug donor preconditioning (MDDP) in alleviating injuries of steatotic grafts following rat OLT. Lean rats were subjected to a Western-style diet with high-fat (HF) and high-fructose (HFr) for 30 days to induce steatosis. Both lean and steatotic livers were implanted into lean recipients fed with a chow diet after OLT. The HF + HFr diet effectively elevated blood triglyceride and cholesterol levels and induced fat accumulation in rat livers. Our results demonstrated a significant decrease in alanine aminotransferase levels (p = 0.003), aspartate aminotransferase levels (p = 0.021), and hepatic Suzuki scores (p = 0.045) in the steatotic rat liver allograft group following MDDP treatment on post-operation day (POD) 7. Furthermore, the survival rates of steatotic rat liver allografts with MDDP (19/21, 90.5%) were significantly higher than those in the steatotic control (12/21, 57.1%, *p = 0.019). These findings indicate that MDDP treatment improves steatotic rat liver allograft function and recipient survival following OLT.
Collapse
Affiliation(s)
- Min Xu
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Salamah M. Alwahsh
- Department of Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Program of Medicine, College of Medicine and Health Sciences, Palestine Polytechnic University, Hebron, Palestine
| | - Myung-Ho Kim
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Otto Kollmar
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Joseph BC, Sekayan T, Falah N, Barnes RFW, Flood V, De Pablo-Moreno JA, von Drygalski A. Traumatic bleeding and mortality in mice are intensified by iron deficiency anemia and can be rescued with tranexamic acid. Res Pract Thromb Haemost 2024; 8:102543. [PMID: 39286605 PMCID: PMC11403369 DOI: 10.1016/j.rpth.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background Clinical evidence suggests that anemia exacerbates traumatic bleeding and worsens outcomes. Objectives To study the influence of iron deficiency anemia on traumatic bleeding, coagulopathy, and mortality. Methods C57BL/6J mice received an iron-deficient diet (8 weeks; ±1 mg intraperitoneal iron dextran 2 weeks before trauma). Control mice received a normal diet. Iron deficiency anemia was confirmed by hematocrit, red cell indices, and liver iron. Mice received saline or tranexamic acid (TXA; 10 mg/kg) just before liver laceration. Blood loss, coagulopathy (activated partial thromboplastin time, factor [F]II, FV, FVIII, FX, and fibrinogen), D-dimer, thrombin-antithrombin complexes, and plasmin-alpha-2-antiplasmin complexes were analyzed at 15 and 60 minutes, and a cytokine panel was performed at 60 minutes and 6 hours after trauma. Survival was monitored for 7 days. Results Compared with nonanemic mice, anemic mice had lower hematocrit and hepatic iron content. Anemic mice experienced higher blood loss compared with nonanemic mice, which was reduced by TXA. Both groups developed traumatic coagulopathy characterized by activated partial thromboplastin time prolongation, thrombin-antithrombin complex formation, and depletion of FV, FVIII, and fibrinogen. TXA corrected the coagulopathy. However, plasmin-alpha-2-antiplasmin complex formation and D-dimers, markers of fibrinolysis, were higher in anemic mice and were not corrected by TXA. Seven-day survival was low in anemic mice, and rescued by TXA, but high in nonanemic mice without additional improvement by TXA. Among cytokines, only interleukin-6 increased, which was prevented by TXA most notably in anemic mice. Conclusion These observations provide first and critical proof-of-principle evidence that anemia accelerates traumatic bleeding and increases mortality, which could be rescued by anemia correction (parenteral iron) or periprocedural TXA.
Collapse
Affiliation(s)
- Bilgimol Chumappumkal Joseph
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, USA
| | - Tro Sekayan
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, USA
| | - Nicca Falah
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, USA
| | - Richard F W Barnes
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, USA
| | - Veronica Flood
- Versiti Blood Research Institute, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Juan A De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, Madrid, Spain
| | - Annette von Drygalski
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Meng F, Zhou Y, Wagner A, Bülow JM, Köhler K, Neunaber C, Bundkirchen K, Relja B. Impact of age on liver damage, inflammation, and molecular signaling pathways in response to femoral fracture and hemorrhage. Front Immunol 2023; 14:1239145. [PMID: 37691959 PMCID: PMC10484338 DOI: 10.3389/fimmu.2023.1239145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Background Trauma causes disability and mortality globally, leading to fractures and hemorrhagic shock. This can trigger an irregular inflammatory response that damages remote organs, including liver. Aging increases the susceptibility to dysregulated immune responses following trauma, raising the risk of organ damage, infections, and higher morbidity and mortality in elderly patients. This study investigates how aging affects liver inflammation and damage post-trauma. Methods 24 male C57BL/6J mice were randomly divided into four groups. Twelve young (17-26 weeks) and 12 aged (64-72 weeks) mice were included. Mice further underwent either hemorrhagic shock (trauma/hemorrhage, TH), and femoral fracture (osteotomy) with external fixation (Fx) (THFx, n=6) or sham procedures (n=6). After 24 hours, mice were sacrificed. Liver injury and apoptosis were evaluated using hematoxylin-eosin staining and activated caspase-3 immunostaining. CXCL1 and infiltrating polymorphonuclear leukocytes (PMNL) in the liver were assessed by immunostaining, and concentrations of CXCL1, TNF, IL-1β, and IL-10 in the liver tissue were determined by ELISA. Gene expression of Tnf, Cxcl1, Il-1β, and Cxcl2 in the liver tissue was determined by qRT-PCR. Finally, western blot was used to determine protein expression levels of IκBα, Akt, and their phosphorylated forms. Results THFx caused liver damage and increased presence of active caspase-3-positive cells compared to the corresponding sham group. THFx aged group had more severe liver injury than the young group. CXCL1 and PMNL levels were significantly higher in both aged groups, and THFx caused a greater increase in CXCL and PMNL levels in aged compared to the young group. Pro-inflammatory TNF and IL-1β levels were elevated in aged groups, further intensified by THFx. Anti-inflammatory IL-10 levels were lower in aged groups. Tnf and Cxcl1 gene expression was enhanced in the aged sham group. Phosphorylation ratio of IκBα was significantly increased in the aged sham group versus young sham group. THFx-induced IκBα phosphorylation in the young group was significantly reduced in the aged THFx group. Akt phosphorylation was significantly reduced in the THFx aged group compared to the THFx young group. Conclusion The findings indicate that aging may lead to increased vulnerability to liver injury and inflammation following trauma due to dysregulated immune responses.
Collapse
Affiliation(s)
- Fanshuai Meng
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
- Department of Trauma and Reconstructive Surgery, Uniklinik RWTH Aachen, Aachen, Germany
| | - Yuzhuo Zhou
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Alessa Wagner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Maria Bülow
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Liang H, Feng Y, Cui R, Qiu M, Zhang J, Liu C. Simvastatin protects against acetaminophen-induced liver injury in mice. Biomed Pharmacother 2018; 98:916-924. [PMID: 29421861 DOI: 10.1016/j.biopha.2017.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the effect of simvastatin on acetaminophen (APAP) hepatotoxicity in a mouse model. Male C57BL/6 mice were allocated into the following groups: control, APAP, APAP+SIM10, APAP+SIM20, APAP+SIM100 and APAP+SIM200 groups. The mice in the APAP group were treated with saline intraperitoneally (i.p.) 72 h before and 24 h or 72 h after APAP challenge (i.p., 400 mg/kg of APAP). The simvastatin-treated groups were treated with different doses of simvastatin i.p. (10, 20, 100 and 200 mg/kg/day) as in the APAP group. After 24 h or 72 h of APAP challenge, blood and liver samples were collected to detect hepatic injury and liver regeneration. The results showed that low doses of simvastatin (10 and 20 mg/kg) could significantly reverse the histological change and decrease hepatic injury. Simvastatin also reduced the serum cytokine levels and transcriptional levels of tumor necrosis factor-α and interleukin-6 in the liver. The malonyldialdehyde and myeloperoxidase levels significantly decreased in the simvastatin treatment groups compared with the APAP group. Simvastatin restored the decrease in superoxide dismutase, catalase, glutathione and glutathione peroxidase activities induced by APAP hepatotoxicity. In addition, simvastatin inhibited hepatic C/EBP-homologous protein expression and hepatocyte apoptosis. However, simvastatin had no effect on liver regeneration after APAP hepatotoxicity. Moreover, high doses could aggravate APAP-induced liver injury. In conclusion, low doses of simvastatin had a significant therapeutic effect in APAP-induced liver injury by inhibiting oxidative stress, inflammation and apoptosis. However, high doses of simvastatin had adverse hepatotoxicity.
Collapse
Affiliation(s)
- Huan Liang
- Emergency Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yang Feng
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, People's Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of ICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Minglong Qiu
- Xi'an Jiaotong University Health Science Center, Xi'an Shaanxi 710061, People's Republic of China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| |
Collapse
|
5
|
Moctezuma-Velázquez C, Abraldes JG, Montano-Loza AJ. The Use of Statins in Patients With Chronic Liver Disease and Cirrhosis. ACTA ACUST UNITED AC 2018; 16:226-240. [PMID: 29572618 DOI: 10.1007/s11938-018-0180-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Statins are drugs developed to treat hypercholesterolemia. Its use in patients with liver disease has been limited because one of its potential and most feared side effects is hepatotoxicity. However, there is robust evidence that supports the safety of statins in this population in the absence of severe liver dysfunction. In this review, we will summarize the efficacy and safety of statins in cirrhosis. RECENT FINDINGS Statins are effective in the treatment of dyslipidemia in patients with liver disease, because of their pleiotropic properties. These properties are independent of their effect on cholesterol levels, such as improving endothelial dysfunction or having antioxidant, antifibrotic, anti-inflammatory, antiproliferative, antiangiogenic, proapoptotic, or immunomodulation properties. Statins have been studied in other areas such as in treatment of portal hypertension, prevention of hepatocellular carcinoma, and/or protection against ischemia/reperfusion injury. Approved indications for statins in patients with cirrhosis are those of the general population, including dyslipidemia and increased cardiovascular risk. Compensated cirrhosis is not a contraindication. In patients with decompensated cirrhosis, statins should be prescribed with extreme caution at low doses, and with frequent monitoring of creatinine phosphokinase levels in order to detect adverse events in a timely fashion.
Collapse
Affiliation(s)
- Carlos Moctezuma-Velázquez
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada
| | - Juan G Abraldes
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, 8540 112 Street NW, Zeidler Ledcor Centre, Room 1-20B, Edmonton, Alberta, T6G 2X8, Canada.
| |
Collapse
|
6
|
Simvastatin Attenuates Liver Injury in Rodents with Biliary Cirrhosis Submitted to Hemorrhage/Resuscitation. Shock 2017; 47:370-377. [DOI: 10.1097/shk.0000000000000734] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
|
8
|
Relja B, Weber R, Maraslioglu M, Wagner N, Borsello T, Jobin C, Marzi I, Lehnert M. Differential Relevance of NF-κB and JNK in the Pathophysiology of Hemorrhage/Resususcitation-Induced Liver Injury after Chronic Ethanol Feeding. PLoS One 2015; 10:e0137875. [PMID: 26367181 PMCID: PMC4569329 DOI: 10.1371/journal.pone.0137875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/22/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic ethanol (EtOH) abuse worsens pathophysiological derangements after hemorrhagic shock and resuscitation (H/R) that induce hepatic injury and strong inflammatory changes via JNK and NF-κB activation. Inhibiting JNK with a cell-penetrating, protease-resistant peptide D-JNKI-1 after H/R in mice with healthy livers ameliorated these effects. Here, we studied if JNK inhibition by D-JNKI-1 in chronically EtOH-fed mice after hemorrhagic shock prior to the onset of resuscitation also confers protection. METHODS Male mice were fed a Lieber-DeCarli diet containing EtOH or an isocaloric control (ctrl) diet for 4 weeks. Animals were hemorrhaged for 90 min (32 ± 2 mm Hg) and randomly received either D-JNKI-1 (11 mg/kg, intraperitoneally, i. p.) or sterile saline as vehicle (veh) immediately before the onset of resuscitation. Sham animals underwent surgical procedures without H/R and were either D-JNKI-1 or veh treated. Two hours after resuscitation, blood samples and liver tissue were harvested. RESULTS H/R induced hepatic injury with increased systemic interleukin (IL)-6 levels, and enhanced local gene expression of NF-κB-controlled genes such as intercellular adhesion molecule (ICAM)-1 and matrix metallopeptidase (MMP)9. c-Jun and NF-κB phosphorylation were increased after H/R. These effects were further increased in EtOH-fed mice after H/R. D-JNKI-1 application inhibited the proinflammatory changes and reduced significantly hepatic injury after H/R in ctrl-fed mice. Moreover, D-JNKI-1 reduces in ctrl-fed mice the H/R-induced c-Jun and NF-κB phosphorylation. However, in chronically EtOH-fed mice, JNK inhibition did not prevent the H/R-induced hepatic damage and proinflammatory changes nor c-Jun and NF-κB phosphorylation after H/R. CONCLUSIONS These results indicate, that JNK inhibition is protective only in not pre-harmed liver after H/R. In contrast, the pronounced H/R-induced liver damage in mice being chronically fed with ethanol cannot be prevented by JNK inhibition after H/R and seems to be under the control of NF-κB.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- * E-mail:
| | - Roxane Weber
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Miriam Maraslioglu
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nils Wagner
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Tiziana Borsello
- Neuronal Death and Neuroprotection Unit, Instituto Di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Mark Lehnert
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
9
|
Myeloid knockout of HIF-1 α does not markedly affect hemorrhage/resuscitation-induced inflammation and hepatic injury. Mediators Inflamm 2014; 2014:930419. [PMID: 24991092 PMCID: PMC4058797 DOI: 10.1155/2014/930419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypoxia-inducible factor-1 α (HIF-1 α ) and NF- κ B play important roles in the inflammatory response after hemorrhagic shock and resuscitation (H/R). Here, the role of myeloid HIF-1 α in liver hypoxia, injury, and inflammation after H/R with special regard to NF- κ B activation was studied. METHODS Mice with a conditional HIF-1 α knockout (KO) in myeloid cell-line and wild-type (WT) controls were hemorrhaged for 90 min (30 ± 2 mm Hg) and resuscitated. Controls underwent only surgical procedures. RESULTS After six hours, H/R enhanced the expression of HIF-1 α -induced genes vascular endothelial growth factor (VEGF) and adrenomedullin (ADM). In KO mice, this was not observed. H/R-induced liver injury in HIF-1 α KO was comparable to WT. Elevated plasma interleukin-6 (IL-6) levels after H/R were not reduced by HIF-1 α KO. Local hepatic hypoxia was not significantly reduced in HIF-1 α KO compared to controls after H/R. H/R-induced NF- κB phosphorylation in liver did not significantly differ between WT and KO. CONCLUSIONS Here, deleting HIF-1 α in myeloid cells and thereby in Kupffer cells was not protective after H/R. This data indicates that other factors, such as NF- κB, due to its upregulated phosphorylation in WT and KO mice, contrary to HIF-1 α, are rather key modulators of inflammation after H/R in our model.
Collapse
|
10
|
Relja B, Henrich D, Wetzel G, Sander AL, Jakob H, Maraslioglu M, Marzi I, Lehnert M. Effects of acute ethanol gavage on intestinal integrity after hemorrhage/resuscitation. Scand J Gastroenterol 2013; 48:448-58. [PMID: 23517294 DOI: 10.3109/00365521.2013.772228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In hemorrhagic shock with subsequent resuscitation (H/R), increased pro-inflammatory changes contribute to tissue injury and mortality in rodent models. Ethanol (EtOH) is assumed to modulate the inflammatory response and the subsequent organ injury after H/R. Therefore, we determined the contribution of acute ethanol gavage on intestinal inflammation and injury as well as survival after H/R in rats. METHODS Fourteen hours before H/R, female LEWIS rats were gavaged with single dose of EtOH or saline (5 g/kg, 30% EtOH, H/R_EtOH group or H/R_ctrl group). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Control groups underwent surgical procedures and gavage without H/R (sham_ctrl group and sham_EtOH group). Tissue was harvested 2 h after resuscitation. Mortality was assessed 72 h after H/R. RESULTS Ethanol gavage increased survival after H/R from 20% to 80%, but amplified plasma alanineaminotransferase (ALT) release compared to saline gavage (2847 ± 406 vs. 1159 ± 200 IU/L, p < 0.05). Intestinal mucosal damage index, intestinal permeability, ileal myeloperoxidase levels as indicators of polymorphonuclear leukocyte (PMNL) infiltration and systemic IL-6 levels as well as ileal IL-6 and TNF gene expressions after H/R were reduced and partly restored after ethanol gavage when compared to the saline gavaged group after H/R. CONCLUSIONS Taken together, we propose that acute ethanol gavage prior to H/R 1) did not enhance intestinal mucosa injury after H/R and 2) suppressed the H/R-induced inflammatory response. Both findings seem to contribute to the ethanol-induced survival benefit after H/R in our model.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Resuscitation after hemorrhagic shock: the effect on the liver--a review of experimental data. J Anesth 2012; 27:447-60. [PMID: 23275009 DOI: 10.1007/s00540-012-1543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 12/30/2022]
Abstract
The liver is currently considered to be one of the first organs to be subjected to the hypoxic insult inflicted by hemorrhagic shock. The oxidative injury caused by resuscitation also targets the liver and can lead to malfunction and the eventual failure of this organ. Each of the various fluids, vasoactive drugs, and pharmacologic substances used for resuscitation has its own distinct effect(s) on the liver, and the anesthetic agents used during surgical resuscitation also have an impact on hepatocytes. The aim of our study was to identify the specific effect of these substances on the liver. To this end, we conducted a literature search of MEDLINE for all types of articles published in English, with a focus on articles published in the last 12 years. Our search terms were "hemorrhagic shock," "liver," "resuscitation," "vasopressors," and "anesthesia." Experimental studies form the majority of articles found in bibliographic databases. The effect of a specific resuscitation agent on the liver is assessed mainly by measuring apoptotic pathway regulators and inflammation-induced indicators. Apart from a wide range of pharmacological substances, modifications of Ringer's Lactate, colloids, and pyruvate provide protection to the liver after hemorrhage and resuscitation. In this setting, it is of paramount importance that the treating physician recognize those agents that may attenuate liver injury and avoid using those which inflict additional damage.
Collapse
|
12
|
Relja B, Höhn C, Bormann F, Seyboth K, Henrich D, Marzi I, Lehnert M. Acute alcohol intoxication reduces mortality, inflammatory responses and hepatic injury after haemorrhage and resuscitation in vivo. Br J Pharmacol 2012; 165:1188-99. [PMID: 21790532 DOI: 10.1111/j.1476-5381.2011.01595.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Haemorrhagic shock and resuscitation (H/R) induces hepatic injury, strong inflammatory changes and death. Alcohol intoxication is assumed to worsen pathophysiological derangements after H/R. Here, we studied the effects of acute alcohol intoxication on survival, liver injury and inflammation after H/R, in rats. EXPERIMENTAL APPROACH Rats were given a single oral dose of ethanol (5 g·kg(-1) , 30%) or saline (control), 12 h before they were haemorrhaged for 60 min and resuscitated (H/R). Sham groups received the same procedures without H/R. Measurements were made 2, 24 and 72 h after resuscitation. Survival was assessed 72 h after H/R. KEY RESULTS Ethanol increased survival after H/R three-fold and also induced fatty changes in the liver. H/R-induced liver injury was amplified by ethanol at 2 h but inhibited 24 h after H/R. Elevated serum IL-6 levels as well as hepatic IL-6 and TNF-α gene expression 2 h after H/R were reduced by ethanol. Ethanol enhanced serum IL-1β at 2 h, but did not affect increased hepatic IL-1β expression at 72 h after H/R. Local inflammatory markers, hepatic infiltration with polymorphonuclear leukocytes and intercellular adhesion molecule 1 expression decreased after ethanol compared with saline, following H/R. Ethanol reduced H/R-induced IκBα activation 2 h after H/R, and NF-κB-dependent gene expression of MMP9. CONCLUSIONS AND IMPLICATIONS Ethanol reduced H/R-induced mortality at 72 h, accompanied by a suppression of proinflammatory changes after H/R in ethanol-treated animals. Binge-like ethanol exposure modulated the inflammatory response after H/R, an effect that was associated with NF-κB activity.
Collapse
Affiliation(s)
- B Relja
- Department of Trauma Surgery, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:983427. [PMID: 22550557 PMCID: PMC3328156 DOI: 10.1155/2012/983427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/13/2023]
Abstract
Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
Collapse
|
14
|
Plant polyphenols attenuate hepatic injury after hemorrhage/resuscitation by inhibition of apoptosis, oxidative stress, and inflammation via NF-kappaB in rats. Eur J Nutr 2011; 51:311-21. [PMID: 21698494 DOI: 10.1007/s00394-011-0216-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 01/04/2023]
Abstract
PURPOSE Oxidative stress and inflammation contribute to hepatic injury after hemorrhage/resuscitation (H/R). Natural plant polyphenols, i.e., green tea extract (GTE) possess high anti-oxidant and anti-inflammatory activities in various models of acute inflammation. However, possible protective effects and feasible mechanisms by which plant polyphenols modulate pro-inflammatory, apoptotic, and oxidant signaling after H/R in the liver remain unknown. Therefore, we investigated the effects of GTE and its impact on the activation of NF-kappaB in the pathogenesis of hepatic injury induced by H/R. METHODS Twenty-four female LEWIS rats (180-250 g) were fed a standard chow (ctrl) or a diet containing 0.1% polyphenolic extracts (GTE) from Camellia sinensis starting 5 days before H/R. Rats were hemorrhaged to a mean arterial pressure of 30 ± 2 mmHg for 60 min and resuscitated (H/R and GTE H/R groups). Control groups (sham, ctrl, and GTE) underwent surgical procedures without H/R. Two hours after resuscitation, tissues were harvested. RESULTS Plasma alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) increased 3.5-fold and fourfold, respectively, in vehicle-treated rats as compared to GTE-fed rats. Histopathological analysis revealed significantly decreased hepatic necrosis and apoptosis in GTE-fed rats after H/R. Real-time PCR showed that GTE diminished gene expression of pro-apoptotic caspase-8 and Bax, while anti-apoptotic Bcl-2 was increased after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as systemic IL-6 level and hepatic IL-6 mRNA were markedly reduced in GTE-fed rats compared with controls after H/R. Plant polyphenols also decreased the activation of both JNK and NFκB. CONCLUSIONS Taken together, GTE application blunts hepatic damage, apoptotic, oxidative, and pro-inflammatory changes after H/R. These results underline the important roles of JNK and NF-kappaB in inflammatory processes after H/R and the beneficial impact of plant polyphenols in preventing their activation.
Collapse
|
15
|
Llacuna L, Fernández A, Montfort CV, Matías N, Martínez L, Caballero F, Rimola A, Elena M, Morales A, Fernández-Checa JC, García-Ruiz C. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J Hepatol 2011; 54:1002-10. [PMID: 21145825 DOI: 10.1016/j.jhep.2010.08.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Liver steatosis enhances ischemia/reperfusion (I/R) injury and is considered a primary factor in graft failure after liver transplantation. Although previous reports have shown a role for qualitative steatosis (macrovesicular vs. microvesicular) in hepatic I/R injury, no studies have compared side by side the specific contribution of individual lipids accumulating in fatty liver to I/R damage. METHODS We used nutritional and genetic models of micro and macrovesicular fatty livers exhibiting specific lipid profiles to assess their susceptibility to normothermic I/R injury. RESULTS Unlike choline-deficient (CD) diet-fed mice, characterized by predominant liver triglycerides/free fatty acids (TG/FFA) accumulation, mice fed a cholesterol-enriched (HC) diet, which exhibited enhanced hepatic cholesterol loading in mitochondria, were highly sensitive to I/R-induced liver injury. In vivo two-photon confocal imaging revealed enhanced mitochondrial depolarization and generation of reactive oxygen species following hepatic I/R in HC-fed but not in CD-fed mice, consistent with decreased mitochondrial GSH (mGSH) observed in HC-fed mice. Moreover, ob/ob mice, characterized by increased hepatic TG, FFA, and cholesterol levels, were as sensitive to I/R-mediated liver injury as mice fed the HC diet. Livers from ob/ob mice displayed increased StAR expression and mitochondrial cholesterol accumulation, resulting in mGSH depletion. Interestingly, atorvastatin therapy or squalene synthase inhibition in vivo attenuated StAR overexpression, mitochondrial cholesterol loading, and mGSH depletion, protecting ob/ob mice from I/R-mediated liver injury. CONCLUSIONS Cholesterol accumulation, particularly in mitochondria, sensitizes to hepatic I/R injury, and thus represents a novel target to prevent the enhanced damage of steatotic livers to I/R-mediated damage.
Collapse
Affiliation(s)
- Laura Llacuna
- Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital Clínic i Provincial and CIBEREHD, IDIBAPS, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Experimental trauma models: an update. J Biomed Biotechnol 2011; 2011:797383. [PMID: 21331361 PMCID: PMC3035380 DOI: 10.1155/2011/797383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023] Open
Abstract
Treatment of polytrauma patients remains a medical as well as socioeconomic challenge. Although diagnostics and therapy improved during the last decades, multiple injuries are still the major cause of fatalities in patients below 45 years of age. Organ dysfunction and organ failure are major complications in patients with major injuries and contribute to mortality during the clinical course. Profound understanding of the systemic pathophysiological response is crucial for innovative therapeutic approaches. Therefore, experimental studies in various animal models are necessary. This review is aimed at providing detailed information of common trauma models in small as well as in large animals.
Collapse
|
17
|
Giunta B, Rezai-Zadeh K, Tan J. Impact of the CD40-CD40L dyad in Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:149-55. [PMID: 20205645 DOI: 10.2174/187152710791012099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 12/22/2009] [Indexed: 01/14/2023]
Abstract
As the number of elderly individuals rises, Alzheimer's disease (AD), marked by amyloid-beta deposition, neurofibrillary tangle formation, and low-level neuroinflammation, is expected to lead to an ever-worsening socioeconomic burden. AD pathoetiologic mechanisms are believed to involve chronic microglial activation. This phenomenon is associated with increased expression of membrane-bound CD40 with its cognate ligand, CD40 ligand (CD40L), as well as increased circulating levels of soluble forms of CD40 (sCD40) and CD40L (sCD40L). Here, we review the role of this inflammatory dyad in the pathogenesis of AD. In addition, we examine potential therapeutic strategies such as statins, flavonoids, and human umbilical cord blood transplantation, all of which have been shown to modulate CD40-CD40L interaction in mouse models of AD. Importantly, therapeutic approaches focusing on CD40-CD40L dyad regulation, either alone or in combination with amyloid-beta immunotherapy, may provide for a safe and effective AD prophylaxis or treatment in the near future.
Collapse
Affiliation(s)
- Brian Giunta
- Department of Psychiatry & Behavioral Medicine, Institute for Research in Psychiatry Neuroimmunology Laboratory, University of South Florida College of Medicine, Tampa, FL 33613, USA.
| | | | | |
Collapse
|
18
|
WHAT'S NEW IN SHOCK, JULY 2010? Shock 2010. [DOI: 10.1097/shk.0b013e3181e0fed5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Lapchak PA, Han MK. Simvastatin improves clinical scores in a rabbit multiple infarct ischemic stroke model: synergism with a ROCK inhibitor but not the thrombolytic tissue plasminogen activator. Brain Res 2010; 1344:217-25. [PMID: 20493175 DOI: 10.1016/j.brainres.2010.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/09/2023]
Abstract
Statins have pleiotropic neuroprotective effects in the central nervous system. In this study, we assessed the pharmacological effects of simvastatin on measures of behavior in New Zealand white rabbits embolized using a suspension of small-sized blood clots. For these studies, simvastatin was administered up to 3 hours following embolization, and behavior was measured 48 hours following embolization to calculate the dose of emboli (P(50) in mg) that produces neurological deficits in 50% of the rabbits. A treatment is considered neuroprotective if it significantly increases the P(50) compared to control. Simvastatin treatment (20mg/kg, bolus subcutaneous injection) significantly improved clinical function and increased the P(50) by 143% when administered 1 hour following embolization but was ineffective at 3 hours. In combination studies with the thrombolytic, tissue plasminogen activator (tPA) using a standard intravenous dose of 3.3mg/kg (20% bolus, 80% infused), we found that simvastatin could be safely administered with tPA to improve clinical scores; however, the maximum behavioral improvement with the combination treatment was similar to either monotherapy alone, both of which significantly improved behavior (p<0.05). It has been proposed that Simvastatin neuroprotection may be related to a variety of signaling pathways including Rho-kinase (ROCK). To determine if a ROCK mechanism is involved in simvastatin-induced neuroprotection following embolic strokes, we used pharmacological intervention with the ROCK inhibitor, fasudil. When fasudil was administered 30 minutes before simvastatin (given at 1 hour), there was an additional significant (p=0.0217) synergistic increase in behavioral function. However, fasudil as a monotherapy did not affect behavioral function in embolized rabbits. The study suggests that there may be an interaction between simvastatin treatment and the ROCK signaling pathway that should be further explored. Our results suggest that simvastatin treatment may have clinical benefit when used alone or in the presence of tPA, but the therapeutic window using a single-dose regimen is narrow.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, 8730 Alden Drive, Thalians E216, Los Angeles, CA 90048, USA.
| | | |
Collapse
|