1
|
Scherr F, Schwarzkopf D, Thomas-Rüddel D, Bauer M, Kiehntopf M. C-terminal alpha-1-antitrypsin peptides as novel predictor of hospital mortality in critically ill COVID-19 patients. Clin Chem Lab Med 2025; 63:e78-e81. [PMID: 39164989 DOI: 10.1515/cclm-2024-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Daniel Schwarzkopf
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Daniel Thomas-Rüddel
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| |
Collapse
|
2
|
Abodi M, Mazzocchi A, Risé P, Marangoni F, Agostoni C, Milani GP. Salivary fatty acids in humans: a comprehensive literature review. Clin Chem Lab Med 2025; 63:14-26. [PMID: 38634552 DOI: 10.1515/cclm-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Fatty acids (FAs) exert diverse biological functions in humans, influencing physiological responses and, ultimately, health and disease risk. The analysis of FAs in human samples has significant implications and attracts interest in diagnostics and research. The standard method for assessing FA profiles involves the collection of blood samples, which can be inconvenient, invasive, and potentially painful, particularly for young individuals outside hospital settings. Saliva emerged as a promising alternative for evaluating FA profiles in both clinical and research settings. However, to the best of our knowledge, an updated synthesis of the related evidence is unavailable. This comprehensive review aims to summarize data on FA analysis and highlight the potential of the use of salivary FAs as a biomarker in health and disease. Over the past decade, there has been a growing interest in studying salivary FAs in chronic diseases, and more recently, researchers have explored the prognostic value of FAs in acute conditions to check the availability of a non-invasive sampling methodology. A deeper understanding of salivary FAs could have relevant implications both for healthy individuals and patients, particularly in elucidating the correlation between the dietary lipidic content and salivary FA level, Finally, it is crucial to address the standardization of the methods as the sampling, processing, and analysis of saliva are heterogeneous among studies, and limited correlation between blood FAs and salivary FAs is available.
Collapse
Affiliation(s)
- Martina Abodi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, 9304 University of Milan , Milan, Italy
| | | | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Mi Y, Burnham KL, Charles PD, Heilig R, Vendrell I, Whalley J, Torrance HD, Antcliffe DB, May SM, Neville MJ, Berridge G, Hutton P, Geoghegan CG, Radhakrishnan J, Nesvizhskii AI, Yu F, Davenport EE, McKechnie S, Davies R, O'Callaghan DJP, Patel P, Del Arroyo AG, Karpe F, Gordon AC, Ackland GL, Hinds CJ, Fischer R, Knight JC. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med 2024; 16:eadh0185. [PMID: 38838133 DOI: 10.1126/scitranslmed.adh0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.
Collapse
Affiliation(s)
- Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Katie L Burnham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Hew D Torrance
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paula Hutton
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Cyndi G Geoghegan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jayachandran Radhakrishnan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma E Davenport
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Stuart McKechnie
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Roger Davies
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David J P O'Callaghan
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Parind Patel
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Ana G Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles J Hinds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Oda Y, Takahashi C, Harada S, Nakamura S, Sun D, Kiso K, Urata Y, Miyachi H, Fujiyoshi Y, Honigmann A, Uchida S, Ishihama Y, Toyoshima F. Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation. SCIENCE ADVANCES 2021; 7:eabj6895. [PMID: 34788088 PMCID: PMC8597994 DOI: 10.1126/sciadv.abj6895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Epithelial barriers that prevent dehydration and pathogen invasion are established by tight junctions (TJs), and their disruption leads to various inflammatory diseases and tissue destruction. However, a therapeutic strategy to overcome TJ disruption in diseases has not been established because of the lack of clinically applicable TJ-inducing molecules. Here, we found TJ-inducing peptides (JIPs) in mice and humans that corresponded to 35 to 42 residue peptides of the C terminus of alpha 1-antitrypsin (A1AT), an acute-phase anti-inflammatory protein. JIPs were inserted into the plasma membrane of epithelial cells, which promoted TJ formation by directly activating the heterotrimeric G protein G13. In a mouse intestinal epithelial injury model established by dextran sodium sulfate, mouse or human JIP administration restored TJ integrity and strongly prevented colitis. Our study has revealed TJ-inducing anti-inflammatory physiological peptides that play a critical role in tissue repair and proposes a previously unidentified therapeutic strategy for TJ-disrupted diseases.
Collapse
Affiliation(s)
- Yukako Oda
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chisato Takahashi
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan
| | - Shota Harada
- Laboratory of Human Interface, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun Nakamura
- Cellular and Structural Physiology Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- CeSPIA Inc., Tokyo 100-0004, Japan
| | - Daxiao Sun
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01309, Germany
| | - Kazumi Kiso
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Urata
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- CeSPIA Inc., Tokyo 100-0004, Japan
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01309, Germany
| | - Seiichi Uchida
- Laboratory of Human Interface, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Multiple biomarkers of sepsis identified by novel time-lapse proteomics of patient serum. PLoS One 2019; 14:e0222403. [PMID: 31568522 PMCID: PMC6768476 DOI: 10.1371/journal.pone.0222403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
Serum components of sepsis patients vary with the severity of infection, the resulting inflammatory response, per individual, and even over time. Tracking these changes is crucial in properly treating sepsis. Hence, several blood-derived biomarkers have been studied for their potential in assessing sepsis severity. However, the classical approach of selecting individual biomarkers is problematic in terms of accuracy and efficiency. We therefore present a novel approach for detecting biomarkers using longitudinal proteomics data. This does not require a predetermined set of proteins and can therefore reveal previously unknown related proteins. Our approach involves examining changes over time of both protein abundance and post-translational modifications in serum, using two-dimensional gel electrophoresis (2D-PAGE). 2D-PAGE was conducted using serum from n = 20 patients, collected at five time points, starting from the onset of sepsis. Changes in protein spots were examined using 49 spots for which the signal intensity changed by at least two-fold over time. These were then screened for significant spikes or dips in intensity that occurred exclusively in patients with adverse outcome. Individual level variation was handled by a mixed effects model. Finally, for each time transition, partial correlations between spots were estimated through a Gaussian graphical model (GGM) based on the ridge penalty. Identifications of spots of interest by tandem mass spectrometry revealed that many were either known biomarkers for inflammation (complement components), or had previously been suggested as biomarkers for kidney failure (haptoglobin) or liver failure (ceruloplasmin). The latter two are common complications in severe sepsis. In the GGM, many of the tightly connected spots shared known biological functions or even belonged to the same protein; including hemoglobin chains and acute phase proteins. Altogether, these results suggest that our screening method can successfully identify biomarkers for disease states and cluster biologically related proteins using longitudinal proteomics data derived from 2D-PAGE.
Collapse
|
6
|
Novel Biomarker Candidates for Febrile Neutropenia in Hematological Patients Using Nontargeted Metabolomics. DISEASE MARKERS 2018; 2018:6964529. [PMID: 29849825 PMCID: PMC5925027 DOI: 10.1155/2018/6964529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/04/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Background Novel potential small molecular biomarkers for sepsis were analyzed with nontargeted metabolite profiling to find biomarkers for febrile neutropenia after intensive chemotherapy for hematological malignancies. Methods Altogether, 85 patients were included into this prospective study at the start of febrile neutropenia after intensive chemotherapy for acute myeloid leukemia or after autologous stem cell transplantation. The plasma samples for the nontargeted metabolite profiling analysis by liquid chromatography-mass spectrometry were taken when fever rose over 38° and on the next morning. Results Altogether, 90 differential molecular features were shown to explain the differences between patients with complicated (bacteremia, severe sepsis, or fatal outcome) and noncomplicated courses of febrile neutropenia. The most differential compounds were an androgen hormone, citrulline, and phosphatidylethanolamine PE(18:0/20:4). The clinical relevance of the findings was evaluated by comparing them with conventional biomarkers like C-reactive protein and procalcitonin. Conclusion These results hold promise to find out novel biomarkers for febrile neutropenia, including citrulline. Furthermore, androgen metabolism merits further studies.
Collapse
|
7
|
Heilmann RM, Grützner N, Thames BE, Steiner JM, Barr JW. Serum alpha 1 -proteinase inhibitor concentrations in dogs with systemic inflammatory response syndrome or sepsis. J Vet Emerg Crit Care (San Antonio) 2017; 27:674-683. [PMID: 29068553 DOI: 10.1111/vec.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/08/2016] [Accepted: 04/27/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine whether the concentration of serum canine alpha1 -proteinase inhibitor (cα1 -PI) has diagnostic or prognostic utility in dogs with sepsis or noninfectious systemic inflammatory response syndrome (SIRS). DESIGN Prospective, observational study from May to December 2010. SETTING University teaching hospital ICU. ANIMALS Sixty-nine client-owned dogs: 19 dogs with SIRS or sepsis and 50 healthy control dogs. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Serum and plasma samples were collected from dogs with SIRS or sepsis on the day of hospital admission and once on the following 2 days, and on a single day in healthy controls. Patients were assessed using the 10-parameter Acute Patient Physiologic and Laboratory Evaluation (APPLEfull ) and 5-parameter (APPLEfast ) score. Serum cα1 -PI concentrations were measured, compared among groups of dogs, and evaluated for a correlation with the concentration of serum C-reactive protein, plasma interleukin-6, tumor necrosis factor-α, the APPLE scores, and survival to discharge. Serum cα1 -PI concentrations were significantly lower in dogs with SIRS/sepsis (P < 0.001) than in healthy controls. While day 1 serum cα1 -PI concentrations did not differ between dogs with SIRS and those with sepsis (P = 0.592), septic dogs had significantly lower serum cα1 -PI concentrations on days 2 (P = 0.017) and 3 (P = 0.036) than dogs with SIRS. Serum cα1 -PI concentrations did not differ between survivors and nonsurvivors (P = 1.000), but were inversely correlated with the APPLEfull score (ρ = -0.48; P = 0.040) and plasma interleukin-6 concentrations (ρ = -0.50; P = 0.037). CONCLUSIONS These results suggest a role of cα1 -PI as a negative acute phase protein in dogs. The concentration of serum cα1 -PI at the time of hospital admission does not have utility to identify dogs with sepsis from those with noninfectious SIRS, but may be a useful surrogate marker for early stratification of illness severity.
Collapse
Affiliation(s)
- Romy M Heilmann
- Gastrointestinal Laboratory, College Station, TX.,the Department of Small Animal Clinical Sciences, College Station, TX
| | - Niels Grützner
- Gastrointestinal Laboratory, College Station, TX.,College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX.,the Farm Animal Clinic, Vetsuisse Faculty Berne, University of Berne, Bremgartenstrasse, Switzerland
| | - Brittany E Thames
- the Department of Small Animal Clinical Sciences, College Station, TX.,the Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Jörg M Steiner
- Gastrointestinal Laboratory, College Station, TX.,the Department of Small Animal Clinical Sciences, College Station, TX
| | - James W Barr
- the Department of Small Animal Clinical Sciences, College Station, TX
| |
Collapse
|
8
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2016; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
9
|
Blaurock N, Schmerler D, Hünniger K, Kurzai O, Ludewig K, Baier M, Brunkhorst FM, Imhof D, Kiehntopf M. C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function. Mediators Inflamm 2016; 2016:6129437. [PMID: 27382189 PMCID: PMC4921625 DOI: 10.1155/2016/6129437] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/29/2016] [Accepted: 05/16/2016] [Indexed: 01/04/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a life threatening condition and the leading cause of death in intensive care units. Although single aspects of pathophysiology have been described in detail, numerous unknown mediators contribute to the progression of this complex disease. The aim of this study was to elucidate the pathophysiological role of CAAP48, a C-terminal alpha-1 antitrypsin fragment, that we found to be elevated in septic patients and to apply this peptide as diagnostic marker for infectious and noninfectious etiologies of SIRS. Incubation of human polymorphonuclear neutrophils with synthetic CAAP48, the SNP-variant CAAP47, and several control peptides revealed intense neutrophil activation, induction of neutrophil chemotaxis, reduction of neutrophil viability, and release of cytokines. We determined the abundance of CAAP48 in patients with severe sepsis, severe SIRS of noninfectious origin, and viral infection. CAAP48 levels were 3-4-fold higher in patients with sepsis compared to SIRS of noninfectious origin and allowed discrimination of those patients with high sensitivity and specificity. Our results suggest that CAAP48 is a promising discriminatory sepsis biomarker with immunomodulatory functions, particularly on human neutrophils, supporting its important role in the host response and pathophysiology of sepsis.
Collapse
Affiliation(s)
- Nancy Blaurock
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Diana Schmerler
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Albert-Einstein-Street 10, 07745 Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Albert-Einstein-Street 10, 07745 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Katrin Ludewig
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Michael Baier
- Department for Medical Microbiology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Frank Martin Brunkhorst
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
- Paul-Martini-Research Group, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Diana Imhof
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Brühler Street 7, 53119 Bonn, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| |
Collapse
|
10
|
Richter ME, Neugebauer S, Engelmann F, Hagel S, Ludewig K, La Rosée P, Sayer HG, Hochhaus A, von Lilienfeld-Toal M, Bretschneider T, Pausch C, Engel C, Brunkhorst FM, Kiehntopf M. Biomarker candidates for the detection of an infectious etiology of febrile neutropenia. Infection 2015; 44:175-86. [PMID: 26275448 DOI: 10.1007/s15010-015-0830-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Infections and subsequent septicemia are major complications in neutropenic patients with hematological malignancies. Here, we identify biomarker candidates for the early detection of an infectious origin, and monitoring of febrile neutropenia (FN). METHODS Proteome, metabolome, and conventional biomarkers from 20 patients with febrile neutropenia without proven infection (FNPI) were compared to 28 patients with proven infection, including 17 patients with bacteremia. RESULTS Three peptides (mass to charge ratio 1017.4-1057.3; p-values 0.011-0.024), six proteins (mass to charge ratio 6881-17,215; p-values 0.002-0.004), and six phosphatidylcholines (p-values 0.007-0.037) were identified that differed in FNPI patients compared to patients with infection or bacteremia. Seven of these marker candidates discriminated FNPI from infection at fever onset with higher sensitivity and specificity (ROC-AUC 0.688-0.824) than conventional biomarkers i.e., procalcitonin, C-reactive protein, or interleukin-6 (ROC-AUC 0.535-0.672). In a post hoc analysis, monitoring the time course of four lysophosphatidylcholines, threonine, and tryptophan allowed for discrimination of patients with or without resolution of FN (ROC-AUC 0.648-0.919) with higher accuracy compared to conventional markers (ROC-AUC 0.514-0.871). CONCLUSIONS Twenty-one promising biomarker candidates for the early detection of an infectious origin or for monitoring the course of FN were found which might overcome known shortcomings of conventional markers.
Collapse
Affiliation(s)
- Martin E Richter
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Sophie Neugebauer
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Falco Engelmann
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Stefan Hagel
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Zentrum für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin IV (Gastroenterologie, Hepatologie, Infektiologie), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Katrin Ludewig
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Paul La Rosée
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Herbert G Sayer
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,4. Medizinische Klinik (Hämatologie und internistische Onkologie, Hämostaseologie), HELIOS Klinikum Erfurt, Nordhäuser Straße 74, 99089, Erfurt, Germany
| | - Andreas Hochhaus
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Klinik für Innere Medizin II, Abt. Hämatologie und Intern. Onkologie, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Tom Bretschneider
- Leibniz Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Christine Pausch
- Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.,Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Christoph Engel
- Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Frank M Brunkhorst
- Zentrum für Klinische Studien, Universitätsklinikum Jena, Salvador-Allende-Platz 27, 07747, Jena, Germany
| | - Michael Kiehntopf
- Institut für Klinische Chemie und Laboratoriumsdiagnostik, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany. .,Integriertes Forschungs- und Behandlungszentrum Sepsis und Sepsisfolgen (CSCC), Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany.
| |
Collapse
|
11
|
Abstract
Sepsis is the primary cause of death in the intensive care unit. The prevention of sepsis complications requires an early and accurate diagnosis as well as the appropriate mon itoring. A deep knowledge of the immunologic basis of sepsis is essential to better understand the scope of incorporating a new marker into clinical practice. Besides revising this theoretical aspect, the current available tools for bacterial iden tification have been briefly reviewed as well as a variety of new markers showing either well-recognized or potential usefulness for diagnosis and prognosis of infections in crit ically ill patients. Particular conditions such as community acquired pneumonia, pedi atric sepsis, or liver transplantation, among others, have been separately treated, since the optimal approaches and markers might be different in these special cases.
Collapse
|
12
|
Inflammation biomarkers and delirium in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R106. [PMID: 24886875 PMCID: PMC4075116 DOI: 10.1186/cc13887] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
Introduction Delirium is a common occurrence in critically ill patients and is associated with an increase in morbidity and mortality. Septic patients with delirium may differ from a general critically ill population. The aim of this investigation was to study the relationship between systemic inflammation and the development of delirium in septic and non-septic critically ill patients. Methods We performed a prospective cohort study in a 20-bed mixed intensive care unit (ICU) including 78 (delirium = 31; non-delirium = 47) consecutive patients admitted for more than 24 hours. At enrollment, patients were allocated to septic or non-septic groups according to internationally agreed criteria. Delirium was diagnosed using the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) during the first 72 hours of ICU admission. Blood samples were collected within 12 hours of enrollment for determination of tumor necrosis factor (TNF)-α, soluble TNF Receptor (STNFR)-1 and -2, interleukin (IL)-1β, IL-6, IL-10 and adiponectin. Results Out of all analyzed biomarkers, only STNFR1 (P = 0.003), STNFR2 (P = 0.005), adiponectin (P = 0.005) and IL-1β (P < 0.001) levels were higher in delirium patients. Adjusting for sepsis and sedation, these biomarkers were also independently associated with delirium occurrence. However, none of them were significant influenced by sepsis. Conclusions STNFR1, STNFR2, adiponectin and IL-1β were associated with delirium. Sepsis did not modify the relationship between the biomarkers and delirium occurrence.
Collapse
|
13
|
Neugebauer U, Trenkmann S, Bocklitz T, Schmerler D, Kiehntopf M, Popp J. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2014; 7:232-240. [PMID: 24638955 DOI: 10.1002/jbio.201400010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Currently, there is no biomarker that can reliable distinguish between infectious and non-infectious systemic inflammatory response syndrome (SIRS). However, such a biomarker would be of utmost importance for early identification and stratification of patients at risk to initiate timely and appropriate antibiotic treatment. Within this proof of principle study, the high potential of Raman spectroscopy for the fast differentiation of non-infectious SIRS and sepsis is demonstrated. Blood plasma collected from 70 patients from the intensive care unit (31 patients with sepsis and 39 patients classified with SIRS without infection) was analyzed by means of Raman spectroscopy. A PCA-LDA based classification model was trained with Raman spectra from test samples and yielded for sepsis a sensitivity of 1.0 and specificity of 0.82. These results have been confirmed with an independent dataset (prediction accuracy 80%).
Collapse
Affiliation(s)
- Ute Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, Remick DG. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev 2013; 93:1247-88. [PMID: 23899564 DOI: 10.1152/physrev.00037.2012] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed.
Collapse
Affiliation(s)
- Kendra N Iskander
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Lavigne JP, Espinal P, Dunyach-Remy C, Messad N, Pantel A, Sotto A. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med 2013; 51:257-70. [DOI: 10.1515/cclm-2012-0291] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/15/2022]
|
16
|
Al Mohajer M, Darouiche RO. Sepsis syndrome, bloodstream infections, and device-related infections. Med Clin North Am 2012; 96:1203-23. [PMID: 23102485 DOI: 10.1016/j.mcna.2012.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The diagnosis of sepsis is challenging given the lack of appropriate diagnostic methods and the inaccuracy of diagnostic criteria. Early resuscitation, intravenous antibiotics, and source control are crucial in the management of septic patients. The treatment of catheter-related bloodstream infection (CRBSI) often comprises 1 to 2 weeks of intravenous antibiotics plus catheter removal. Infections related to surgical devices are more difficult to manage because they require longer duration of therapy and possibly multiple surgical procedures. This review represents an update on the diagnosis and management of sepsis, catheter-related blood stream infections and some clinically important device-related infections.
Collapse
Affiliation(s)
- Mayar Al Mohajer
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
17
|
Hocker JR, Drevets DA, Dillon MJ, Hanas JS. Discriminating experimental Listeria monocytogenes infections in mice using serum profiling. Appl Microbiol Biotechnol 2012; 96:1049-58. [PMID: 23053068 DOI: 10.1007/s00253-012-4392-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/23/2012] [Accepted: 08/26/2012] [Indexed: 12/31/2022]
Abstract
Serum profiling was used to distinguish mice infected with wild-type or mutant Listeria monocytogenes from noninfected control mice. Identifications of significant electrospray ionization mass spectrometry (ESI-MS) sera peak areas between Listeria-infected- and control mice were performed using t tests. ESI-MS cohort peak distributions differed from mice infected with wild-type or ∆actA Listeria versus control mice with p values of 0.00012 and 0.015, respectively. A "% wild-type Listeria peaks identified" assessment tool yielded values of 64 % for wild-type infection, 51 % for ∆actA infection, and 47 % for no infection. Receiver operator characteristic area discriminatory values were 0.97 (wild-type) and 0.82 (∆actA) versus controls. Predictive value measurements revealed overall test sensitivities of 88 % for wild-type infection and 63 % for ∆actA infection. These studies indicate that ESI-MS serum profiling holds promise for diagnosis of infection with intracellular pathogens such as Listeria and indicate that the technology could be useful in understanding the L. monocytogenes infection process.
Collapse
Affiliation(s)
- James R Hocker
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton Young Blvd, BSMB 939, Oklahoma City, OK 73014, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Schmerler D, Neugebauer S, Ludewig K, Bremer-Streck S, Brunkhorst FM, Kiehntopf M. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J Lipid Res 2012; 53:1369-75. [PMID: 22581935 DOI: 10.1194/jlr.p023309] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The occurrence of systemic inflammatory response syndrome (SIRS) remains a major problem in intensive care units with high morbidity and mortality. The differentiation between noninfectious and infectious etiologies of this disorder is challenging in routine clinical practice. Many biomarkers have been suggested for this purpose; however, sensitivity and specificity even of high-ranking biomarkers remain insufficient. Recently, metabolic profiling has attracted interest for biomarker discovery. The objective of this study was to identify metabolic biomarkers for differentiation of SIRS/sepsis. A total of 186 meta-bolites comprising six analyte classes were determined in 143 patients (74 SIRS, 69 sepsis) by LC-MS/MS. Two markers (C10:1 and PCaaC32:0) revealed significantly higher concentrations in sepsis. A classification model comprising these markers resulted in 80% and 70% correct classifications in a training set and a test set, respectively.This study demonstrates that acylcarnitines and glycerophosphatidylcholines may be helpful for differentiation of infectious from noninfectious systemic inflammation due to their significantly higher concentration in sepsis patients. Considering the well known pathophysiological relevance of lipid induction by bacterial components, metabolites as identified in this study are promising biomarker candidates in the differential diagnosis of SIRS and sepsis.
Collapse
Affiliation(s)
- Diana Schmerler
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | |
Collapse
|
20
|
García-Flores M, Juárez-Colunga S, Montero-Vargas JM, López-Arciniega JAI, Chagolla A, Tiessen A, Winkler R. Evaluating the physiological state of maize (Zea mays L.) plants by direct-injection electrospray mass spectrometry (DIESI-MS). MOLECULAR BIOSYSTEMS 2012; 8:1658-60. [PMID: 22513980 DOI: 10.1039/c2mb25056j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Climatic change is an increasing challenge for agriculture that is driving the development of suitable crops in order to ensure supply for both human nutrition and animal feed. In this context, it is increasingly important to understand the biochemical responses of cells to environmental cues at the whole system level, an aim that is being brought closer by advances in high throughput, cost-efficient plant metabolomics. To support molecular breeding activities, we have assessed the economic, technical and statistical feasibility of using direct mass spectrometry methods to evaluate the physiological state of maize (Zea mays L.) plants grown under different stress conditions.
Collapse
Affiliation(s)
- Martín García-Flores
- Department of Genetic Engineering, CINVESTAV Unidad Irapuato, Irapuato-León, Irapuato Gto., México
| | | | | | | | | | | | | |
Collapse
|