1
|
Li K, Feng J, Han L, Wu Y. Association of the 'Life's Essential 8' with FeNO and all-cause mortality: a population-based study in U.S. adults. Acta Cardiol 2025; 80:245-253. [PMID: 40126104 DOI: 10.1080/00015385.2025.2480960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The 'Life's Essential 8' (LE8), a recent framework introduced by the American Heart Association (AHA), refines and expands the concept of wellness, with a particular emphasis on promoting cardiovascular health. The fractional exhaled nitric oxide (FeNO) score, a non-invasive and easily obtainable biomarker, offers a convenient method for evaluating respiratory conditions such as asthma. While both LE8 and FeNO represent emerging and widely recognised indicators of health, research exploring their interrelationship remains limited. This study aims to examine the associations between LE8, FeNO, and all-cause mortality. METHODS A total of 14,293 eligible participants, aged ≥18 years, were enrolled from the National Health and Nutrition Examination Survey (NHANES) database spanning 2007-2012. This observational cohort study integrated baseline NHANES data with mortality records from the U.S. National Death Index through 2021. To assess the association between LE8 and FeNO, we employed multiple linear regression models, both with and without adjustments for demographic factors and health-related practices. Additionally, these data were utilised to explore the relationships between various health determinants and all-cause mortality. RESULTS In this observational analysis, we found that an increase in the LE8 score was positively associated with elevated FeNO levels, a marker implicated in immune responses to respiratory diseases. Furthermore, higher LE8 scores were inversely associated with survival risk in the population, suggesting a potential protective effect on survival in the studied population. CONCLUSIONS Our findings suggest that primary and tertiary prevention efforts to promote cardiovascular health should be strengthened, especially those targeting unhealthy factors and behaviours to improve cardiorespiratory fitness and reduce survival risk.
Collapse
Affiliation(s)
- Kai Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jie Feng
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
de Assis Ramos MM, Ricardo-da-Silva FY, Macedo LDO, Correia CJ, Moreira LFP, Löbenberg R, Breithaupt-Faloppa AC, Bou-Chacra N. A review on lipid and polymeric nano-based 17-β-estradiol delivery systems: advances and challenges. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13633. [PMID: 39619127 PMCID: PMC11604423 DOI: 10.3389/jpps.2024.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
17β-estradiol (E2) is an endogenous steroid hormone pivotal for the development of female secondary sexual characteristics and the maintenance of the female reproductive system. Its roles extend beyond these physiological functions, as E2 is employed in hormone replacement therapy to alleviate symptoms associated with menopause. Furthermore, E2 exhibits therapeutic potential in the management of osteoporosis, breast cancer, and various neurological and cardiovascular conditions, partly due to its anti-inflammatory effects via modulation of the MAPK/NFκB signaling pathway. Notwithstanding, the hydrophobic nature of E2 significantly hinders the formulation of efficacious delivery systems for its clinical deployment. Recent advances have highlighted nano-based delivery systems for E2 as a promising solution to this solubility challenge. This review critically examines contemporary nano-delivery strategies for E2, particularly emphasizing lipid and polymeric nanoparticle-based systems. These nanostructures are designed to enhance stability, biocompatibility, controlled release, and targeted delivery of E2, yet the selectivity of E2 delivery for therapeutic purposes remains an ongoing challenge. The novelty of this review lies in its focus on the advances in nano-based E2 delivery systems over the past decade, a topic not extensively covered in prior literature. We present a comprehensive analysis of the encapsulation of E2 within polymeric and lipid nanoparticles, underscoring the untapped potential of these strategies. This review identifies a significant research gap, advocating for intensified experimental investigations that could pave the way for the translation of nano-based E2 therapies from bench to bedside.
Collapse
Affiliation(s)
- Mayara Munhoz de Assis Ramos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiza de Oliveira Macedo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano Jesus Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raimar Löbenberg
- Division of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
de Sousa MN, da Anunciação LF, de Freitas PLZ, Ricardo-da-Silva FY, Moreira LFP, Correia CJ, Breithaupt-Faloppa AC. Evaluation of the therapeutic effects of oestradiol on the systemic inflammatory response and on lung injury caused by the occlusion of the proximal descending aorta in male rats. Eur J Cardiothorac Surg 2023; 64:ezad253. [PMID: 37410160 DOI: 10.1093/ejcts/ezad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVES Ischaemia and reperfusion-induced microvascular dysfunction is a serious problem encountered during a variety surgical procedures, leading to systemic inflammation and affecting remote organs, specially the lungs. 17β-Oestradiol reduces pulmonary repercussions from various acute lung injury forms. Here, we focused on the 17β-oestradiol therapeutic effects after aortic ischaemia and reperfusion (I/R) by evaluating lung inflammation. METHODS Twenty-four Wistar rats were submitted to I/R by insufflation of a 2-F catheter in thoracic aorta for 20 min. Reperfusion took 4 h and 17β-oestradiol (280 µg/kg, i.v.) was administered after 1 h of reperfusion. Sham-operated rats were controls. Bronchoalveolar lavage was performed and lung samples were prepared for histopathological analysis and tissue culture (explant). Interleukin (IL)-1β, IL-10 and tumour necrosis factor-α were quantified. RESULTS After I/R, higher number of leukocytes in bronchoalveolar lavage were reduced by 17β-oestradiol. The treatment also decreased leukocytes in lung tissue. I/R increased lung myeloperoxidase expression, with reduction by 17β-oestradiol. Serum cytokine-induced neutrophil chemoattractant 1 and IL-1β increased after I/R and 17β-oestradiol decreased cytokine-induced neutrophil chemoattractant 1. I/R increased IL-1β and IL-10 in lung explants, reduced by 17β-oestradiol. CONCLUSIONS Our results showed that 17β-oestradiol treatment performed in the period of reperfusion, modulated the systemic response and the lung repercussions of I/R by thoracic aortic occlusion. Thus, we can suggest that 17β-oestradiol might be a supplementary approach leading the lung deterioration after aortic clamping in surgical procedures.
Collapse
Affiliation(s)
- Marcelo Nunes de Sousa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pedro Luiz Zonta de Freitas
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (INCOR), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Sikiric P, Skrtic A, Gojkovic S, Krezic I, Zizek H, Lovric E, Sikiric S, Knezevic M, Strbe S, Milavic M, Kokot A, Blagaic AB, Seiwerth S. Cytoprotective gastric pentadecapeptide BPC 157 resolves major vessel occlusion disturbances, ischemia-reperfusion injury following Pringle maneuver, and Budd-Chiari syndrome. World J Gastroenterol 2022; 28:23-46. [PMID: 35125818 PMCID: PMC8793015 DOI: 10.3748/wjg.v28.i1.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
The stable gastric pentadecapeptide BPC 157 counteracts various venous occlusion-induced syndromes. Summarized are all these arguments, in the Robert's cytoprotection concept, to substantiate the resolution of different major vessel occlusion disturbances, in particular ischemia-reperfusion injury following the Pringle maneuver and Budd-Chiari syndrome, which was obtained by BPC 157 therapy. Conceptually, there is a new point, namely, endothelium maintenance to epithelium maintenance (the recruitment of collateral blood vessels to compensate for vessel occlusion and reestablish blood flow or bypass the occluded or ruptured vessel). In this paper, we summarize the evidence of the native cytoprotective gastric pentadecapeptide BPC 157, which is stable in the human gastric juice, is a membrane stabilizer and counteracts gut-leaky syndrome. As a particular target, it is distinctive from the standard peptide growth factors, involving particular molecular pathways and controlling VEGF and NO pathways. In the early 1990s, BPC 157 appeared as a late outbreak of the Robert's and Szabo's cytoprotection-organoprotection concept, like the previous theoretical/practical breakthrough in the 1980s and the brain-gut axis and gut-brain axis. As the time went on, with its reported effects, it is likely most useful theory practical implementation and justification. Meantime, several reviews suggest that BPC 157, which does not have a lethal dose, has profound cytoprotective activity, used to be demonstrated in ulcerative colitis and multiple sclerosis trials. Likely, it may bring the theory to practical application, starting with the initial argument, no degradation in human gastric juice for more than 24 h, and thereby, the therapeutic effectiveness (including via a therapeutic per-oral regimen) and pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine Osijek, J.J.Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
5
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, Vranes H, Knezevic T, Barisic I, Horvat Pavlov K, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Kocman I, Lovric E, Milavic M, Sikiric S, Tvrdeic A, Patrlj L, Strbe S, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Occlusion of the Superior Mesenteric Artery in Rats Reversed by Collateral Pathways Activation: Gastric Pentadecapeptide BPC 157 Therapy Counteracts Multiple Organ Dysfunction Syndrome; Intracranial, Portal, and Caval Hypertension; and Aortal Hypotension. Biomedicines 2021; 9:609. [PMID: 34073625 PMCID: PMC8229949 DOI: 10.3390/biomedicines9060609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pentadecapeptide BPC 157 therapy counteracts multiple organ dysfunction syndrome in rats, which have permanent occlusion of the superior mesenteric artery close to the abdominal aorta. Previously, when confronted with major vessel occlusion, its effect would rapidly activate collateral vessel pathways and resolve major venous occlusion syndromes (Pringle maneuver ischemia, reperfusion, Budd-Chiari syndrome) in rats. This would overwhelm superior mesenteric artery permanent occlusion, and result in local, peripheral, and central disturbances. Methods: Assessments, for 30 min (gross recording, angiography, ECG, pressure, microscopy, biochemistry, and oxidative stress), included the portal hypertension, caval hypertension, and aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis; ECG disturbances; MDA-tissue increase; and multiple organ lesions and disturbances, including the heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus). BPC 157 therapy (/kg, abdominal bath) (10 µg, 10 ng) was given for a 1-min ligation time. Results: BPC 157 rapidly recruits collateral vessels (inferior anterior pancreaticoduodenal artery and inferior mesenteric artery) that circumvent occlusion and ascertains blood flow distant from the occlusion in the superior mesenteric artery. Portal and caval hypertension, aortal hypotension, and, centrally, superior sagittal sinus hypertension were attenuated or eliminated, and ECG disturbances markedly mitigated. BPC 157 therapy almost annihilated venous and arterial thrombosis. Multiple organ lesions and disturbances (i.e., heart, lung, liver, and gastrointestinal tract, in particular, as well as brain) were largely attenuated. Conclusions: Rats with superior mesenteric artery occlusion may additionally undergo BPC 157 therapy as full counteraction of vascular occlusion-induced multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| |
Collapse
|
6
|
Wu M, Rowe JM, Fleming SD. Complement Initiation Varies by Sex in Intestinal Ischemia Reperfusion Injury. Front Immunol 2021; 12:649882. [PMID: 33868287 PMCID: PMC8047102 DOI: 10.3389/fimmu.2021.649882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
Intestinal ischemia reperfusion (IR)-induced tissue injury represents an acute inflammatory response with significant morbidity and mortality. The mechanism of IR-induced injury is not fully elucidated, but recent studies suggest a critical role for complement activation and for differences between sexes. To test the hypothesis that complement initiation differs by sex in intestinal IR, we performed intestinal IR on male and female WT C57B6L/, C1q-/-, MBL-/-, or properdin (P)-/- mice. Intestinal injury, C3b and C5a production and ex vivo secretions were analyzed. Initial studies demonstrated a difference in complement mRNA and protein in male and female WT mice. In response to IR, male C1q-, MBL- and P-deficient mice sustained less injury than male WT mice. In contrast, only female MBL-/- mice sustained significantly less injury than female wildtype mice. Importantly, wildtype, C1q-/- and P-/- female mice sustained significant less injury than the corresponding male mice. In addition, both C1q and MBL expression and deposition increased in WT male mice, while only elevated MBL expression and deposition occurred in WT female mice. These data suggested that males use both C1q and MBL pathways, while females tend to depend on lectin pathway during intestinal IR. Females produced significantly less serum C5a in MBL-/- and P-/- mice. Our findings suggested that complement activation plays a critical role in intestinal IR in a sex-dependent manner.
Collapse
Affiliation(s)
- Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jennifer M. Rowe
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Ricardo-da-Silva FY, Armstrong R, Vidal-Dos-Santos M, Correia CDJ, Coutinho E Silva RDS, da Anunciação LF, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. 17β-Estradiol Treatment Protects Lungs Against Brain Death Effects in Female Rat Donor. Transplantation 2021; 105:775-784. [PMID: 33031230 DOI: 10.1097/tp.0000000000003467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high-lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17β-estradiol (E2) treatment on the lungs of female brain dead rats. METHODS Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false operated), E2-T0 (treated with E2 immediately after BD; 50 μg/mL, 2 mL/h), and E2-T3 (treated with E2 after 3 h of BD; 50 μg/mL, 2 mL/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated, and analysis of NO synthase gene and protein expression was performed using real-time PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs was analyzed. RESULTS BD increased leukocyte infiltration, as shown by intravital microscopy (P = 0.017), bronchoalveolar lavage cell count (P = 0.016), the release of inflammatory mediators (P = 0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of matrix metalloproteinase-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and matrix metalloproteinase activity in the lungs. CONCLUSIONS E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raphael Dos Santos Coutinho E Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Estrogen Enhances The Microvascular Reactivity Through Rhoa-Rock Pathway In Female Mice During Hemorrhagic Shock. Shock 2021; 56:611-620. [PMID: 33756501 DOI: 10.1097/shk.0000000000001776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Vascular hypo-reactivity plays a critical role inducing organ injury during hemorrhagic shock. 17β-estradiol (E2) can induce vasodilation to increase blood flow in various vascular beds. This study observed whether E2 can restore vascular hypo-reactivity induced by hemorrhagic shock, and whether E2 effects are associated with RhoA - Rho kinase (ROCK)- myosin light chain kinase phosphatase (MLCP) pathway. The hemorrhagic shock model (40 ± 2 mmHg for 1 h, resuscitation for 4 h) was established in ovary intact sham operation (OVI), ovariectomized (OVX) and OVX plus E2 supplement female mice. Intestinal microvascular loop was used to assess blood flow in vivo, mRNA expression and vascular reactivity in vitro. Hemorrhagic shock significantly reduced norepinephrine microvascular reactivity. Decreased microvascular reactivity was exacerbated by OVX and reversed by E2 supplement. U-46619 (RhoA agonist) increased microvascular reactivity, and C3 transferase (an ADP ribosyl transferase that selectively induces RhoA ribosylation) or Y-27632 (ROCK inhibitor) inhibited sham mice microvascular reactivity. Similarly, U-46619 increased microvascular reactivity in OVI and OVX mice following hemorrhagic shock, which was abolished by Y-27632 or concomitant incubation of okadaic acid (OA) (MLCP inhibitor) and Y-27632. In OVX plus E2 supplement mice with hemorrhagic shock, Y-27632 inhibited microvascular reactivity, which was abolished by concomitant U-46619 application. Lastly, hemorrhagic shock remarkably decreased intestinal loop blood flow, RhoA and ROCK mRNA expressions in vascular tissues in OVX females, but not in OVI females, which were reversed by E2 supplement. These results indicate that estrogen improves microvascular reactivity during hemorrhagic shock, and RhoA-ROCK signaling pathway may mediate E2 effects.
Collapse
|
9
|
Intestinal ischemic reperfusion injury: Recommended rats model and comprehensive review for protective strategies. Biomed Pharmacother 2021; 138:111482. [PMID: 33740527 DOI: 10.1016/j.biopha.2021.111482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022] Open
Abstract
Intestinal ischemic reperfusion injury (IIRI) is a life-threatening condition with high morbidity and mortality in the clinic. IIRI was induced by intestinal ischemic diseases such as, small bowel transplantation, aortic aneurysm surgery, and strangulated hernias. Although related mechanisms have not been fully elucidated, during the last decade, researches have demonstrated that many factors are crucial in the pathological process, including oxidative stress (OS), epithelial barrier function disorder, and so on. Rats model, as the most applied animal IIRI model, provides specific targets for researches and therapeutic strategies. Moreover, various treatment strategies such as, anti-oxidative stress, anti-apoptosis, and anti-inflammation, have shown promising effects in alleviating IIRI. However, current researches cannot solve the clinical problems of IIRI, and specific treatment strategies are still needed to be exploited. This review focuses on a recommended experimental IIRI rat model and understanding of the involved mechanisms such as, OS, gut bacteria translocation, apoptosis, and necroptosis, aim at providing novel ideas for therapeutic strategies of IIRI.
Collapse
|
10
|
Santana FPR, Ricardo-da-Silva FY, Fantozzi ET, Pinheiro NM, Tibério IFLC, Moreira LFP, Prado MAM, Prado VF, Tavares-de-Lima W, Prado CM, Breithaupt-Faloppa AC. Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice. Inflammation 2021; 44:1553-1564. [PMID: 33715111 DOI: 10.1007/s10753-021-01440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Acute lung injury induced by intestinal ischemia/reperfusion (I/R) is a relevant clinical condition. Acetylcholine (ACh) and the α7 nicotinic ACh receptor (nAChRα-7) are involved in the control of inflammation. Mice with reduced levels of the vesicular ACh transporter (VAChT), a protein responsible for controlling ACh release, were used to test the involvement of cholinergic signaling in lung inflammation due to intestinal I/R. Female mice with reduced levels of VAChT (VAChT-KDHOM) or wild-type littermate controls (WT) were submitted to intestinal I/R followed by 2 h of reperfusion. Mortality, vascular permeability, and recruitment of inflammatory cells into the lung were investigated. Parts of mice were submitted to ovariectomy (OVx) to study the effect of sex hormones or treated with PNU-282,987 (nAChRα-7 agonist). A total of 43.4% of VAChT-KDHOM-I/R mice died in the reperfusion period compared to 5.2% of WT I/R mice. The I/R increased lung inflammation in both genotypes. In VAChT-KDHOM mice, I/R increased vascular permeability and decreased the release of cytokines in the lung compared to WT I/R mice. Ovariectomy reduced lung inflammation and permeability compared to non-OVx, but it did not avoid mortality in VAChT-KDHOM-I/R mice. PNU treatment reduced lung permeability, increased the release of proinflammatory cytokines and the myeloperoxidase activity in the lungs, and prevented the increased mortality observed in VAChT-KDHOM mice. Cholinergic signaling is an important component of the lung protector response against intestinal I/R injury. Decreased cholinergic signaling seems to increase pulmonary edema and dysfunctional cytokine release that increased mortality, which can be prevented by increasing activation of nAChRα-7.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, Brazil
| | - Fernanda Y Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Evelyn T Fantozzi
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Nathália M Pinheiro
- Department of Bioscience, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136 - Vila Mathias, Santos, SP, Brazil
- Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Iolanda F L C Tibério
- Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antônio M Prado
- Robarts Research Institute, Department of Physiology & Pharmacology, The University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Canada
| | - Vânia F Prado
- Robarts Research Institute, Department of Physiology & Pharmacology, The University of Western Ontario, London, Canada
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Canada
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carla Máximo Prado
- Department of Biological Science, Federal University of São Paulo, Diadema, Brazil.
- Department of Bioscience, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136 - Vila Mathias, Santos, SP, Brazil.
- Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Ricardo-da-Silva FY, Fantozzi ET, Rodrigues-Garbin S, Domingos HV, Oliveira-Filho RM, Vargaftig BB, Riffo-Vasquez Y, Breithaupt-Faloppa AC, Tavares-de-Lima W. Estradiol prevented intestinal ischemia and reperfusion-induced changes in intestinal permeability and motility in male rats. Clinics (Sao Paulo) 2021; 76:e2683. [PMID: 33909827 PMCID: PMC8050597 DOI: 10.6061/clinics/2021/e2683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Ischemia and reperfusion (I/R) in the intestine could lead to severe endothelial injury, compromising intestinal motility. Reportedly, estradiol can control local and systemic inflammation induced by I/R injury. Thus, we investigated the effects of estradiol treatment on local repercussions in an intestinal I/R model. METHODS Rats were subjected to ischemia via the occlusion of the superior mesenteric artery (45 min) followed by reperfusion (2h). Thirty minutes after ischemia induction (E30), 17β-estradiol (E2) was administered as a single dose (280 μg/kg, intravenous). Sham-operated animals were used as controls. RESULTS I/R injury decreased intestinal motility and increased intestinal permeability, accompanied by reduced mesenteric endothelial nitric oxide synthase (eNOS) and endothelin (ET) protein expression. Additionally, the levels of serum injury markers and inflammatory mediators were elevated. Estradiol treatment improved intestinal motility, reduced intestinal permeability, and increased eNOS and ET expression. Levels of injury markers and inflammatory mediators were also reduced following estradiol treatment. CONCLUSION Collectively, our findings indicate that estradiol treatment can modulate the deleterious intestinal effects of I/R injury. Thus, estradiol mediates the improvement in gut barrier functions and prevents intestinal dysfunction, which may reduce the systemic inflammatory response.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Evelyn Thaís Fantozzi
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Sara Rodrigues-Garbin
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Helori Vanni Domingos
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Bernardo Boris Vargaftig
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Wothan Tavares-de-Lima
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
12
|
Ricardo-da-Silva FY, Armstrong-Jr R, Vidal-dos-Santos M, Correia CDJ, Coutinho e Silva RDS, da Anunciação LF, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Long-term lung inflammation is reduced by estradiol treatment in brain dead female rats. Clinics (Sao Paulo) 2021; 76:e3042. [PMID: 34406272 PMCID: PMC8341046 DOI: 10.6061/clinics/2021/e3042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Lung transplantation is limited by the systemic repercussions of brain death (BD). Studies have shown the potential protective role of 17β-estradiol on the lungs. Here, we aimed to investigate the effect of estradiol on the long-lasting lung inflammatory state to understand a possible therapeutic application in lung donors with BD. METHODS Female Wistar rats were separated into 3 groups: BD, subjected to brain death (6h); E2-T0, treated with 17β-estradiol (50 μg/mL, 2 mL/h) immediately after brain death; and E2-T3, treated with 17β-estradiol (50 μg/ml, 2 ml/h) after 3h of BD. Complement system activity and macrophage presence were analyzed. TNF-α, IL-1β, IL-10, and IL-6 gene expression (RT-PCR) and levels in 24h lung culture medium were quantified. Finally, analysis of caspase-3 gene and protein expression in the lung was performed. RESULTS Estradiol reduced complement C3 protein and gene expression. The presence of lung macrophages was not modified by estradiol, but the release of inflammatory mediators was reduced and TNF-α and IL-1β gene expression were reduced in the E2-T3 group. In addition, caspase-3 protein expression was reduced by estradiol in the same group. CONCLUSIONS Brain death-induced lung inflammation in females is modulated by estradiol treatment. Study data suggest that estradiol can control the inflammatory response by modulating the release of mediators after brain death in the long term. These results strengthen the idea of estradiol as a therapy for donor lungs and improving transplant outcomes.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marina Vidal-dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Raphael dos Santos Coutinho e Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| |
Collapse
|
13
|
17β-Estradiol as a New Therapy to Preserve Microcirculatory Perfusion in Small Bowel Donors. Transplantation 2020; 104:1862-1868. [PMID: 32345867 DOI: 10.1097/tp.0000000000003280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intestine graft viability compromises retrieval in most brain-dead donors. Small bowel transplantation is a complex procedure with worse outcomes than transplantation of other abdominal organs. The hormone 17β-estradiol (E2) has shown vascular protective effects in lung tissue of brain death (BD) male rats. Thus, estradiol might be a treatment option to improve the quality of intestinal grafts. METHODS Male Wistar rats were divided into 3 groups (n = 10/group): rats that were trepanned only (sham-operated), rats subjected to rapid-onset BD, and brain-dead rats treated with E2 (280 µg/kg, intravenous) (BD-E2). Experiments performed for 180 minutes thereafter are included: (a) laser-Doppler flowmetry and intravital microscopy to evaluate mesenteric perfusion; (b) histopathological analysis; (c) real-time polymerase chain reaction of endothelial nitric oxide synthase (eNOS) and endothelin-1; (d) immunohistochemistry of eNOS, endothelin-1, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 expression; and (e) ELISA for cytokines and chemokines measurement. RESULTS 17β-Estradiol improved microcirculatory perfusion and reduced intestinal edema and hemorrhage after BD. The proportions of perfused small vessels were (mean ± scanning electron microscope) BD rats (40% ± 6%), sham-operated rats (75% ± 8%), and BD-E2 rats (67% ± 5%) (P = 0.011). 17β-Estradiol treatment was associated with 2-fold increase in eNOS protein (P < 0.0001) and gene (P = 0.0009) expression, with no differences in endothelin-1 expression. BD-E2 rats exhibited a reduction in vascular cell adhesion molecule 1 expression and reduced cytokine-induced neutrophil chemoattractant 1 and interleukina-10 serum levels. CONCLUSIONS 17β-Estradiol was effective in improving mesenteric perfusion and reducing intestinal edema and hemorrhage associated with BD. The suggestion is that E2 might be considered a therapy to mitigate, at least in part, the deleterious effects of BD in small bowel donors.
Collapse
|
14
|
Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020; 34:14103-14119. [PMID: 32965736 PMCID: PMC7537138 DOI: 10.1096/fj.202001394rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has provoked major stresses on the health-care systems of several countries, and caused the death of more than a quarter of a million people globally, mainly in the elderly population with preexisting pathologies. Previous studies with coronavirus (SARS-CoV) point to gender differences in infection and disease progression with increased susceptibility in male patients, indicating that estrogens may be associated with physiological protection against the coronavirus. Therefore, the objectives of this work are threefold. First, we aim to summarize the SARS-CoV-2 infection pathway and the roles both the virus and patient play in COVID-19 (Coronavirus disease 2019) progression, clinical symptomatology, and mortality. Second, we detail the effect estrogen has on viral infection and host infection response, including its role in both the regulation of key viral receptor expression and the mediation of inflammatory activity. Finally, we describe how ERs (estrogen receptors) and RAGE (receptor for advanced glycation end-products) play a critical role in metabolic pathways, which we envisage could maintain a close interplay with SARS-CoV and COVID-19 mortality rates, despite a current lack of research directly determining how. Taken together, we present the current state of the field regarding SARS-CoV-2 research and illuminate where research is needed to better define the role both estrogen and metabolic comorbidities have in the COVID-19 disease state, which can be key in screening potential therapeutic options as the search for effective treatments continue.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Michelle Sayuri Nishino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.,Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Carla Maximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, Brazil.,Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Eicosanoid production varies by sex in mesenteric ischemia reperfusion injury. Clin Immunol 2020; 220:108596. [PMID: 32961332 DOI: 10.1016/j.clim.2020.108596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023]
Abstract
Intestinal ischemia/reperfusion (I/R)-induced injury is an inflammatory response with significant morbidity and mortality. The early inflammatory response includes neutrophil infiltration. However, the majority of rodent studies utilize male mice despite a sexual dimorphism in intestinal I/R-related diseases. We hypothesized that sex may alter inflammation by changing neutrophil infiltration and eicosanoid production. To test this hypothesis, male and female C57Bl/6 mice were subjected to sham treatment or 30 min intestinal ischemia followed by a time course of reperfusion. We demonstrate that compared to male mice, females sustain significantly less intestinal I/R-induced tissue damage and produced significant LTB4 concentrations. Male mice release PGE2. Finally, treatment with a COX-2 specific inhibitor, NS-398, attenuated I/R-induced injury, total peroxidase level, and PGE2 production in males, but not in similarly treated female mice. Thus, I/R-induced eicosanoid production and neutrophil infiltration varies between sexes suggesting that distinct therapeutic intervention may be needed in clinical ischemic diseases.
Collapse
|
16
|
Breithaupt-Faloppa AC, Correia CDJ, Prado CM, Stilhano RS, Ureshino RP, Moreira LFP. 17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection. Clinics (Sao Paulo) 2020; 75:e1980. [PMID: 32490931 PMCID: PMC7233687 DOI: 10.6061/clinics/2020/e1980] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
Considering that female sexual hormones may modulate the inflammatory response and also exhibit direct effects on the cells of the immune system, herein, we intend to discuss the sex differences and the role of estradiol in modulating the lung and systemic inflammatory response, focusing on its possible application as a treatment modality for SARS-CoV-2 patients. COVID-19 patients develop severe hypoxemia early in the course of the disease, which is silent most of the time. Small fibrinous thrombi in pulmonary arterioles and a tumefaction of endothelial were observed in the autopsies of fatal COVID-19 cases. Studies showed that the viral infection induces a vascular process in the lung, which included vasodilation and endothelial dysfunction. Further, the proportions of CD4+ T and CD8+ T lymphocytes were strongly reduced in patients with severe SARS-CoV-2 infection. Estradiol is connected with CD4+ T cell numbers and increases T-reg cell populations, affecting immune responses to infection. It is known that estradiol exerts a protective effect on endothelial function, activating the generation of nitric oxide (NO) via endothelial nitric oxide synthase. Estrogen attenuates the vasoconstrictor response to various stimuli and induces vasodilation in the pulmonary vasculature during stress situations like hypoxia. It exerts a variety of rapid actions, which are initiated after its coupling with membrane receptors, which in turn, may positively modulate vascular responses in pulmonary disease and help to maintain microvascular flow. Direct and indirect mechanisms underlying the effects of estradiol were investigated, and the results point to a possible protective effect of estradiol against COVID-19, indicating that it may be considered as an adjuvant therapeutic element for the treatment of patients affected by the novel coronavirus.
Collapse
Affiliation(s)
- Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Carla Máximo Prado
- Instituto de Saude e Sociedade (ISS), Universidade Federal de Sao Paulo (UNIFESP), Santos, SP, BR
| | | | - Rodrigo Portes Ureshino
- Departamento de Ciencias Biologicas, Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP, BR
- Laboratorio de Endocrinologia Molecular e Translacional, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulacao (LIM-11), Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
17
|
Bonnano Abib ALDO, Correia CDJ, Armstrong-Jr R, Ricardo-da-Silva FY, Ferreira SG, Vidal-dos-Santos M, Moreira LFP, Riffo‐Vasquez Y, Breithaupt‐Faloppa AC. The influence of female sex hormones on lung inflammation after brain death ‐ an experimental study. Transpl Int 2019; 33:279-287. [DOI: 10.1111/tri.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 11/03/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Ana Luisa de Oliveira Bonnano Abib
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Sueli Gomes Ferreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Marina Vidal-dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| | - Yanira Riffo‐Vasquez
- Sackler Institute of Pulmonary Pharmacology Institute of Pharmaceutical Sciences King's College London London UK
| | - Ana Cristina Breithaupt‐Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM‐11) Faculdade de Medicina da Universidade de São Paulo Instituto do Coração (InCor) São Paulo Brazil
| |
Collapse
|
18
|
Activation of G protein-coupled estrogen receptor protects intestine from ischemia/reperfusion injury in mice by protecting the crypt cell proliferation. Clin Sci (Lond) 2019; 133:449-464. [PMID: 30705108 DOI: 10.1042/cs20180919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
The intestinal ischemia/reperfusion (I/R) injury is a common clinical event related with high mortality in patients undergoing surgery or trauma. Estrogen exerts salutary effect on intestinal I/R injury, but the receptor type is not totally understood. We aimed to identify whether the G protein-coupled estrogen receptor (GPER) could protect the intestine against I/R injury and explored the mechanism. Adult male C57BL/6 mice were subjected to intestinal I/R injury by clamping (45 min) of the superior mesenteric artery followed by 4 h of intestinal reperfusion. Our results revealed that the selective GPER blocker abolished the protective effect of estrogen on intestinal I/R injury. Selective GPER agonist G-1 significantly alleviated I/R-induced intestinal mucosal damage, neutrophil infiltration, up-regulation of TNF-α and cyclooxygenase-2 (Cox-2) expression, and restored impaired intestinal barrier function. G-1 could ameliorate the impaired crypt cell proliferation ability induced by I/R and restore the decrease in villus height and crypt depth. The up-regulation of inducible nitric oxide synthase (iNOS) expression after I/R treatment was attenuated by G-1 administration. Moreover, selective iNOS inhibitor had a similar effect with G-1 on promoting the proliferation of crypt cells in the intestinal I/R model. Both GPER and iNOS were expressed in leucine-rich repeat containing G-protein coupled receptor 5 (Lgr5) positive stem cells in crypt. Together, these findings demonstrate that GPER activation can prompt epithelial cell repair following intestinal injury, which occurred at least in part by inhibiting the iNOS expression in intestinal stem cells (ISCs). GPER may be a novel therapeutic target for intestinal I/R injury.
Collapse
|
19
|
Li P, Zhou Y, Goodwin AJ, Cook JA, Halushka PV, Zhang XK, Wilson CL, Schnapp LM, Zingarelli B, Fan H. Fli-1 Governs Pericyte Dysfunction in a Murine Model of Sepsis. J Infect Dis 2018; 218:1995-2005. [PMID: 30053030 PMCID: PMC6217724 DOI: 10.1093/infdis/jiy451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022] Open
Abstract
Background Pericytes are vascular mural cells and are embedded in the basement membrane of the microvasculature. Recent studies suggest a role for pericytes in lipopolysaccharide (LPS)-induced microvascular dysfunction and mortality, but the mechanisms of pericyte loss in sepsis are largely unknown. Methods By using a cecal ligation and puncture (CLP)-induced murine model of sepsis, we observed that CLP led to lung and renal pericyte loss and reduced lung pericyte density and pericyte/endothelial cell (EC) coverage. Results Up-regulated Friend leukemia virus integration 1 (Fli-1) messenger ribonucleic acid (RNA) and protein levels were found in lung pericytes from CLP mice in vivo and in LPS-stimulated lung pericytes in vitro. Knockout of Fli-1 in Foxd1-derived pericytes prevented CLP-induced pericyte loss, vascular leak, and improved survival. Disrupted Fli-1 expression by small interfering RNA inhibited LPS-induced inflammatory cytokines and chemokines in cultured lung pericytes. Furthermore, CLP-induced pericyte pyroptosis was mitigated in pericyte Fli-1 knockout mice. Conclusions Our findings suggest that Fli-1 is a potential therapeutic target in sepsis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston
| | - Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston
- Department of Biopharmaceutics, College of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Andrew J Goodwin
- Divisions of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston
- Department of Pharmacology, Medical University of South Carolina, Charleston
| | - Xian K Zhang
- Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston
| | - Carole L Wilson
- Divisions of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston
| | - Lynn M Schnapp
- Divisions of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Ohio
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston
| |
Collapse
|
20
|
Vieira RF, Breithaupt-Faloppa AC, Matsubara BC, Rodrigues G, Sanches MP, Armstrong-Jr R, Ferreira SG, Correia CDJ, Moreira LFP, Sannomiya P. 17β-Estradiol protects against lung injuries after brain death in male rats. J Heart Lung Transplant 2018; 37:1381-1387. [PMID: 30139547 DOI: 10.1016/j.healun.2018.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17β-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats. METHODS Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17β-estradiol (280 μg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7). Experiments were performed 180 minutes thereafter. Histopathological changes in the lung were evaluated by histomorphometry. Gene expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and endothelin-1 was measured by real-time polymerase chain reaction. Protein expression of NO synthases, endothelin-1, platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), BCL-2, and caspase 3 was assessed by immunohistochemistry. Cytokines were quantified by enzyme-linked immunosorbent assay. RESULTS Treatment with 17β-estradiol after brain death decreased lung edema and hemorrhage (p < 0.0001), and serum levels of cytokine-induced neutrophil chemoattractant-1 (CINC-1; p = 0.0020). iNOS (p < 0.0001) and VCAM-1 (p < 0.0001) also diminished at protein levels, while eNOS accumulated (p = 0.0002). However, gene expression of iNOS, eNOS, and endothelin-1 was comparable among groups, as was protein expression of endothelin-1, ICAM-1, BCL-2, and caspase 3. CONCLUSIONS 17β-Estradiol effectively reduces lung injury in brain-dead rats mainly due to its ability to regulate NO synthases. Thus, the drug may improve lung viability for transplantation.
Collapse
Affiliation(s)
- Roberta Figueiredo Vieira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Carvalho Matsubara
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geovana Rodrigues
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Petrof Sanches
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong-Jr
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sueli Gomes Ferreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe P Moreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulina Sannomiya
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Nie X, Xie R, Tuo B. Effects of Estrogen on the Gastrointestinal Tract. Dig Dis Sci 2018; 63:583-596. [PMID: 29387989 DOI: 10.1007/s10620-018-4939-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023]
Abstract
Estrogen is a kind of steroid compound that has extensive biologic activities. The effect of estrogen is pleiotropic, affecting multiple systems in the body. There is accumulating evidence that estrogen has important effects on the gastrointestinal tract. Longer exposure to estrogen may decrease the risk of gastric cancer. Use of the anti-estrogen drug tamoxifen might increase the risk of gastric adenocarcinoma. Estrogen receptor β may serve as a target for colorectal cancer prevention. In addition, estrogen has been reported to be closely related to the mucosal barrier, gastrointestinal function and intestinal inflammation. However, the role of estrogen in the gastrointestinal tract has not been systematically summarized. In this review, we aim to provide an overview of the role of estrogen in the gastrointestinal tract and evaluate it from various aspects, including estrogen receptors, the mucosal barrier, intestinal inflammation and gastrointestinal tract tumors, which may provide the basis for the development of therapeutic strategies to manage gastrointestinal diseases.
Collapse
Affiliation(s)
- Xubiao Nie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi, 563003, China.
| |
Collapse
|
22
|
17β-Estradiol Accelerated Renal Tubule Regeneration in Male Rats After Ischemia/Reperfusion-Induced Acute Kidney Injury. Shock 2018; 46:158-63. [PMID: 26849629 DOI: 10.1097/shk.0000000000000586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ischemic/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI). Murine studies report that pretreatment with 17β-estradiol protects against AKI using multiple mechanisms, but how 17β-estradiol is involved in regenerating tubular cells is unknown. To visualize the kidney injury and repair, we used 17β-estradiol to treat rats with postischemic acute kidney injury. AKI was induced by clamping the renal pedicle for 90 minutes 2 weeks after a unilateral nephrectomy. Rats were treated with an intravenous injection of 17β-estradiol or vehicle immediately after reperfusion. Kidney injury was assessed by measuring biochemical and histopathological changes. Immunohistochemical staining of vimentin, proliferating cell nuclear antigen (PCNA), and E-cadherin were used to assess dedifferentiation, proliferation, and redifferentiation. Rats treated with 17β-estradiol had less kidney injury than did vehicle-treated rats post-IRI day 1. The number of PCNA-positive (PCNA) cells was significantly higher in post-IRI kidneys on day 1 in 17β-estradiol-treated rats. Moreover, vimentin and E-cadherin cells, which were interpreted as regeneration markers, were expressed earlier and significantly more copiously in 17β-estradiol-treated rats. We hypothesize that 17β-estradiol attenuates IRI-induced AKI by reducing inflammation and accelerating injured tubular cell regeneration.
Collapse
|
23
|
Estradiol mediates the long-lasting lung inflammation induced by intestinal ischemia and reperfusion. J Surg Res 2018; 221:1-7. [DOI: 10.1016/j.jss.2017.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
|
24
|
Huang Y, Ye M, Wang C, Wang Z, Zhou W. Protective effect of CDDO-imidazolide against intestinal ischemia/reperfusion injury in mice. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218802681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) is life-threatening and challenging in clinical practice. CDDO-imidazolide (CDDO-Im) is therapeutic in alleviating I/R injury. Nevertheless, there is a lack of investigation on the effects of CDDO-Im on intestinal I/R. Mice were randomly divided into four groups: (a) the sham group, (b) the CDDO-Im group, (c) the I/R group, and (d) the I/R + CDDO-Im group. Intestinal I/R was performed by clamping arteria mesenteric anterior for 45 min, followed by 24 h reperfusion. In addition, Kaplan–Meier method and the log-rank test were used to compare the survival rates among groups by observing for 24 h. Intestinal I/R in model group demonstrated severe injury of the intestinal mucosa, lung, kidney, and liver. The intestinal mucosal damage and intestinal barrier dysfunction were obviously attenuated in CDDO-Im-treated group compared with the model group. Also, preconditioning with CDDO-Im reduced pulmonary, hepatic and renal damage, and decreased oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD), and NO) and pro-inflammatory responses (tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6)) following I/R injury. Furthermore, we also observed that these protective properties of CDDO-Im were accomplished by the activation of nuclear factor E2-related factor 2 (Nrf2) signaling pathway and upregulation of its downstream antioxidant genes, including heme oxygenase (HO-1), NQO-1, and glutamate–cysteine ligase regulatory subunit (GCLM). Our data suggest that CDDO-Im exerts a beneficial effect on intestinal I/R-associated mucosal barrier dysfunction and distant organ injuries.
Collapse
Affiliation(s)
- Youqun Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, P.R. China
| | - Mulin Ye
- Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, P.R. China
| | - Chunlin Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, P.R. China
| | - Zhenfen Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, P.R. China
| | - Weiping Zhou
- Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, P.R. China
| |
Collapse
|
25
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
26
|
Simão RR, Ferreira SG, Kudo GK, Armstrong Junior R, Silva LFFD, Sannomiya P, Breithaupt-Faloppa AC, Moreira LFP. Sex differences on solid organ histological characteristics after brain death1. Acta Cir Bras 2017; 31:278-85. [PMID: 27168541 DOI: 10.1590/s0102-865020160040000009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate gender differences in the evolution of the inflammatory process in rats subjected to brain death (BD). METHODS Adult Wistar rats were divided into three groups: female; ovariectomized female; and male rats. BD was induced using intracranial balloon inflation and confirmed by maximal pupil dilatation, apnea, absence of reflex, and drop of mean arterial pressure. Six hours after BD, histological evaluation was performed in lungs, heart, liver and kidneys, and levels of inflammatory proteins, estrogen, progesterone, and corticosterone were determined in plasma. RESULTS In the lungs, females presented more leukocyte infiltration compared to males (p<0.01). Ovariectomized female rat lungs were more hemorrhagic compared to other groups (p<0.001). In the heart, females had higher leukocyte infiltration and tissue edema compared to males (p<0.05). In the liver and kidneys, there were no differences among groups. In female group estradiol and progesterone were sharply reduced 6 hours after BD (p<0.001) to values observed in ovariectomized females and males. Corticosterone levels were similar. CONCLUSIONS Sex hormones influence the development of inflammation and the status of organs. The increased inflammation in lungs and heart of female rats might be associated with the acute reduction in female hormones triggered by BD.
Collapse
|
27
|
Jin Z, Suen KC, Ma D. Perioperative "remote" acute lung injury: recent update. J Biomed Res 2017; 31:197-212. [PMID: 28808222 PMCID: PMC5460608 DOI: 10.7555/jbr.31.20160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/16/2016] [Indexed: 01/21/2023] Open
Abstract
Perioperative acute lung injury (ALI) is a syndrome characterised by hypoxia and chest radiograph changes. It is a serious post-operative complication, associated with considerable mortality and morbidity. In addition to mechanical ventilation, remote organ insult could also trigger systemic responses which induce ALI. Currently, there are limited treatment options available beyond conservative respiratory support. However, increasing understanding of the pathophysiology of ALI and the biochemical pathways involved will aid the development of novel treatments and help to improve patient outcome as well as to reduce cost to the health service. In this review we will discuss the epidemiology of peri-operative ALI; the cellular and molecular mechanisms involved on the pathological process; the clinical considerations in preventing and managing perioperative ALI and the potential future treatment options.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
28
|
Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice. Sci Rep 2016; 6:22044. [PMID: 26902261 PMCID: PMC4763198 DOI: 10.1038/srep22044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/04/2016] [Indexed: 11/08/2022] Open
Abstract
This experiment was conducted to evaluate whether pretreatment with fenofibrate could mitigate acute lung injury (ALI) in a mice model of intestinal ischemia/reperfusion (I/R). Male C57BL/6 mice were randomly assigned into three groups (n = 6): sham, intestinal I/R + vehicle, and intestinal I/R + fenofibrate. Intestinal I/R was achieved by clamping the superior mesenteric artery. Fenofibrate (100 mg/kg) or equal volume of vehicle was injected intraperitoneally 60 minutes before the ischemia. At the end of experiment, measurement of pathohistological score, inflammatory mediators and other markers were performed. In addition, a 24-hour survival experiment was conducted in intestinal I/R mice treated with fenofibrate or vehicle. The chief results were as anticipated. Pathohistological evaluation indicated that fenofibrate ameliorated the local intestine damage and distant lung injury. Pretreatment with fenofibrate significantly decreased inflammatory factors in both the intestine and the lung. Consistently, renal creatine levels and hepatic ALT levels were significantly decreased in the fenofibrate group. Moreover, serum systemic inflammatory response indicators were significantly alleviated in the fenofibrate group. In addition, fenofibrate administration significantly improved the survival rate. Collectively, our data indicated that pretreatment with fenofibrate prior to ischemia attenuated intestinal I/R injury and ALI.
Collapse
|
29
|
Breithaupt-Faloppa AC, Ferreira SG, Kudo GK, Armstrong R, Tavares-de-Lima W, da Silva LFF, Sannomiya P, Moreira LFP. Sex-related differences in lung inflammation after brain death. J Surg Res 2016; 200:714-21. [DOI: 10.1016/j.jss.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
30
|
Uppalapati A, Gogineni S, Espiritu JR. Association between Body Mass Index (BMI) and fraction of exhaled nitric oxide (FeNO) levels in the National Health and Nutrition Examination Survey (NHANES) 2007-2010. Obes Res Clin Pract 2016; 10:652-658. [PMID: 26774499 DOI: 10.1016/j.orcp.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Obesity is characterised by chronic, low-grade systemic inflammation. Elevated FeNO levels reflect airway inflammation in various lung diseases including asthma. METHODS This is a cross-sectional analysis of data from NHANES 2007-2010. Participants younger than 20 years old with history of cough/cold symptoms in the past 7 days, smoking, exercise in the previous hour, consumption of nitric oxide rich meats/vegetables, or use of inhaled corticosteroids during the previous 2 days were excluded. BMI (in kg/m2) was divided in to 4 categories: underweight (UW) (0-18.5), Normal (N) (≥18.5 to <25), Overweight (OW) (≥25 and <30) and Obese (O) ≥30. RESULTS There were a total of 149,629,652 weighted participants: UW (22,235,218), N (45,021,536), OW (5,1670,522) and O (50,199,974); 50.36% were men and 49.63% were women. The mean age increased with BMI category [p<.0001]. Mean FeNO levels (in ppb) increased with increasing BMI category: UW (12.52±1.05) N (16.25±0.64), OW (16.62±0.34), and O (16.78±0.39) [p=0.0035]. FEV1/FVC (%) decreased with increasing BMI category: UW (80.68) compared to N (78.51), OW (77.67) and O (78.72) [p=0.0014]. There is a weak yet statistically significant correlation between FeNO levels and both age, BMI. Multivariate analysis predicting FeNO based on BMI category, adjusting for age, gender, race and airway obstruction found age less than 60 years, male gender, certain races and UW BMI category were associated with statistically significantly lower FeNO levels. CONCLUSIONS Older age and male gender are associated with increased FeNO levels. Controlling for age, gender, and race, obese individuals have a statistically significantly higher FENO than underweight individuals.
Collapse
Affiliation(s)
- Aditya Uppalapati
- Division of Pulmonary and Critical Care Medicine, Houston Methodist Hospital, Houston, TX, USA.
| | - Sindhura Gogineni
- Division of Endocrinology and Metabolism, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Joseph R Espiritu
- Division of Pulmonary, Critical Care and Sleep Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
31
|
Weniger M, D'Haese JG, Angele MK, Chaudry IH. Potential therapeutic targets for sepsis in women. Expert Opin Ther Targets 2015; 19:1531-43. [PMID: 26083575 DOI: 10.1517/14728222.2015.1057570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Gender is increasingly recognized as a key factor in trauma and sepsis. Multiple clinical and experimental studies on sepsis have shown a distinct advantage of females in the proestrus cycle to survive sepsis compared with age-matched males. In addition, estrogen treatment is beneficial in non-proestrus cycles and also in ovarectomized females. In this manuscript, the effects of gender and sex hormones in sepsis are summarized and potential gender-specific therapeutic strategies in women are evaluated. AREAS COVERED This review comprises current clinical studies on the effect of gender in sepsis and gives an overview on gender and sex hormone-related effects on immune cells and organ function. Based on clinical and experimental data, potential therapeutic targets are presented. EXPERT OPINION Estrogens and estrogen-receptor agonists have been extensively shown to be beneficial in the setting of sepsis. Clinical data, however, do not clearly support their therapeutic use. This discrepancy appears to be mainly due to insufficient study design in clinical trials conducted up to now. Therefore, improved study protocols with exact analysis of the patients' hormonal status are needed to clarify the role of gender and sex hormones in trauma and sepsis.
Collapse
Affiliation(s)
- Maximilian Weniger
- a 1 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Jan G D'Haese
- b 2 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Martin K Angele
- c 3 Ludwig Maximilians-University, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Campus Grosshadern , Munich, Germany
| | - Irshad H Chaudry
- d 4 University of Alabama at Birmingham, Center for Surgical Research and Department of Surgery , G094 Volker Hall, 1670 University Boulevard, Birmingham, AL 35294, USA +1 205 975 2195 ; +1 205 975 9719 ;
| |
Collapse
|
32
|
Luo C, Yuan D, Zhao W, Chen H, Luo G, Su G, Hei Z. Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress. Mol Med Rep 2015; 12:1082-90. [PMID: 25815524 PMCID: PMC4438974 DOI: 10.3892/mmr.2015.3527] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Preconditioning with sevoflurane (SEV) can protect against ischemia-reperfusion injury in several organs, however, the benefits of SEV against acute lung injury (ALI), induced by intestinal ischemia-reperfusion (IIR), and the underlying mechanisms remain to be elucidated. The present study was designed to investigate the effects of SEV preconditioning on IIR-mediated ALI and the associated mechanisms in a rat model. Female Sprague-Dawley rats treated with 2.3% SEV or apocynin (AP), an inhibitor of NADPH oxidase, were subjected to 75 min superior mesenteric artery occlusion followed by 2 h reperfusion in the presence or absence of the mast cell degranulator compound 48/80 (CP). SEV and AP were observed to downregulate the protein expression levels of p47phox and gp91phox in the lungs of normal rats. IIR resulted in severe lung injury, characterized by significant increases in pathological injury scores, lung wet/dry weight ratio, protein expression levels of p47phox, gp91phox and ICAM-1, the presence of hydrogen peroxide, malondydehyde and interleukin-6, and the activity of myeloperoxidase. In addition, significant reductions were observed in the expression of prosurfactant protein C, accompanied by an increase in MC degranulation, demonstrated by significant elevations in the number of mast cells, expression levels of tryptase and the concentration of β-hexosaminidase. These changes were further augmented in the presence of CP. In addition, SEV and AP preconditioning significantly alleviated the above alterations induced by IIR alone or in combination with CP. These findings suggested that SEV and AP attenuated IIR-induced ALI by inhibiting NADPH oxidase and the synergistic action between oxidative stress and mast cell activation.
Collapse
Affiliation(s)
- Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Weicheng Zhao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Huixin Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guangjie Su
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
33
|
17β-estradiol suppresses lipopolysaccharide-induced acute lung injury through PI3K/Akt/SGK1 mediated up-regulation of epithelial sodium channel (ENaC) in vivo and in vitro. Respir Res 2014; 15:159. [PMID: 25551628 PMCID: PMC4299800 DOI: 10.1186/s12931-014-0159-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/04/2014] [Indexed: 01/11/2023] Open
Abstract
Background 17β-estradiol can suppress acute lung injury (ALI) and regulate alveolar epithelial sodium channel (ENaC). However the relationship between these two functions remains unclear. This study is conducted to assess the role of ENaC and the PI3K/Akt/SGK1 signaling pathway in 17β-estradiol therapy in attenuating LPS-induced ALI. Methods ALI was induced in C57BL/J male mice by intratracheal administration of lipopolysaccharide (LPS). Concurrent with LPS administration, 17β-estradiol or sterile saline was administered to ALI model with or without the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. The lung histological changes, inflammatory mediators in bronchoalveolar lavage fluid (BALF), wet/dry weight ratio (W/D) and alveolar fluid clearance (AFC) were measured 4 hours after LPS challenge in vivo. For in vitro studies, LPS-challenged MLE-12 cells were pre-incubated with or without wortmannin for 30 minutes prior to 17β-estradiol treatment. Expression of ENaC subunits was assessed by reverse transcriptase PCR, western blot, cell surface biotinylation, and immunohistochemistry. The levels of phosphorylated Akt and SGK1 in lung tissue and lung cell lines were investigated by western blot. Results 17β-estradiol suppressed LPS-mediated ALI in mice by diminishing inflammatory mediators and enhancing AFC. 17β-estradiol promoted the expression and surface abundance of α-ENaC, and increased the levels of phosphorylated-Akt and phosphorylated-SGK1 following LPS challenge. This induction was abolished by the PI3K inhibitor wortmannin in vivo and in vitro. Conclusion 17β-estradiol attenuates LPS-induced ALI not only by repressing inflammation, but also by reducing pulmonary edema via elevation of α-ENaC expression and membrane abundance. These effects were mediated, at least partially, via activation of the PI3K/Akt/SGK1 signaling pathway.
Collapse
|
34
|
Breithaupt-Faloppa AC, Thais Fantozzi E, Romero DC, Rodrigues ADS, de Sousa PTR, Lino Dos Santos Franco A, Oliveira-Filho RM, Boris Vargaftig B, Tavares de Lima W. Acute effects of estradiol on lung inflammation due to intestinal ischemic insult in male rats. Shock 2014; 41:208-13. [PMID: 24220282 DOI: 10.1097/shk.0000000000000092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intestinal ischemia and reperfusion (intestinal I/R) causes acute lung inflammation that is characterized by leukocyte migration, increased lung microvascular permeability, and, in severe forms, noncardiogenic pulmonary edema and acute respiratory distress syndrome. Female sex hormones interfere with immune response, and experimental and clinical evidence shows that females are more resistant than males to organ injury caused by gut trauma. To reduce the lung inflammation caused by intestinal I/R, we have acutely treated male rats with estradiol. Intestinal I/R was performed by the clamping (45 min) of the superior mesenteric artery (SMA), followed by 2 h of intestinal reperfusion (unclamping SMA). Groups of rats received 17β estradiol (E2, 280 µg/kg, i.v., single dose) 30 min after the SMA occlusion (ischemia period) or 1 h after the unclamping of SMA (reperfusion period). Leukocytes influx into the lung and microvascular leakage were assessed by lung myeloperoxidase activity and Evans blue dye extravasation, respectively. The lung expression of adhesion molecules (intercellular adhesion molecule 1, platelet endothelial cell adhesion molecule 1, and vascular cell adhesion molecule [VCAM]) was evaluated by immunohistochemistry. Interleukin 1β (IL-1β), IL-10, and NOx concentrations were quantified in supernatants of cultured lung tissue. We have found that intestinal I/R increased the lung myeloperoxidase activity and Evans blue dye extravasation, which were reduced by treatment of rats with E2. Intestinal I/R increased ICAM-1 expression only, and it was decreased by E2 treatment. However, E2 treatment reduced the basal expression of platelet endothelial cell adhesion molecule 1. E2 treatment during intestinal ischemia was effective to reduce the levels of IL-10 and IL-1β in explant supernatant, but only IL-10 levels were reduced by E2 at reperfusion phase. The treatment with E2 did not affect NOx concentration. Taken together, our data suggest that estradiol modulates the lung inflammatory response induced by lung injury, likely by acute effects. Thus, acute estradiol treatment could be considered as a potential therapeutic agent in ischemic events.
Collapse
Affiliation(s)
- Ana Cristina Breithaupt-Faloppa
- *Laboratory of Cardiovascular Surgery and Physiopathology of Circulation (LIM-11), Heart Institute (InCor), Medicine School, †Department of Pharmacology, Institute of Biomedical Sciences, and ‡Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fan H, Goodwin AJ, Chang E, Zingarelli B, Borg K, Guan S, Halushka PV, Cook JA. Endothelial progenitor cells and a stromal cell-derived factor-1α analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med 2014; 189:1509-19. [PMID: 24707934 PMCID: PMC4226015 DOI: 10.1164/rccm.201312-2163oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/03/2014] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Endothelial progenitor cells (EPCs) have been associated with human sepsis but their role is incompletely understood. Stromal cell-derived factor (SDF)-1α facilitates EPC recruitment and is elevated in murine sepsis models. Previous studies have demonstrated that the SDF-1α analog CTCE-0214 (CTCE) is beneficial in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. OBJECTIVES We hypothesized that exogenously administered EPCs are also beneficial in CLP sepsis and that CTCE provides synergistic benefit. METHODS Mice were subjected to CLP and administered EPCs at varying doses, CTCE, or a combination of the two. Mouse survival, plasma miRNA expression, IL-10 production, and lung vascular leakage were determined. The in vitro effect of CTCE on miRNA expression and EPC function were determined. MEASUREMENTS AND MAIN RESULTS Survival was improved with EPC therapy at a threshold of 10(6) cells. In coculture studies, EPCs augmented LPS-induced macrophage IL-10 production. In vivo EPC administration in sepsis increased plasma IL-10, suppressed lung vascular leakage, attenuated liver and kidney injury, and augmented miR-126 and -125b expression, which regulate endothelial cell function and/or inflammation. When subthreshold numbers of EPCs were coadministered with CTCE in CLP mice they synergistically improved survival. We demonstrated that CTCE recruits endogenous EPCs in septic mice. In in vitro analysis, CTCE enhanced EPC proliferation, angiogenesis, and prosurvival signaling while inhibiting EPC senescence. These cellular effects were, in part, explained by the effect of CTCE on miR-126, -125b, -34a, and -155 expression in EPCs. CONCLUSIONS EPCs and CTCE represent important potential therapeutic strategies in sepsis.
Collapse
Affiliation(s)
| | | | | | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati
Children's Hospital Medical Center, Cincinnati, Ohio; and
| | | | - Shuwen Guan
- Department of Neurosciences
- College of Life Science, Jilin University,
Changchun, China
| | - Perry V. Halushka
- Department of Medicine, and
- Department of Pharmacology, Medical University
of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
36
|
Zhu M, Chen J, Yin H, Jiang H, Wen M, Miao C. Propofol protects human umbilical vein endothelial cells from cisplatin-induced injury. Vascul Pharmacol 2014; 61:72-9. [DOI: 10.1016/j.vph.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
|
37
|
Tőkés T, Tuboly E, Varga G, Major L, Ghyczy M, Kaszaki J, Boros M. Protective effects of L-alpha-glycerylphosphorylcholine on ischaemia-reperfusion-induced inflammatory reactions. Eur J Nutr 2014; 54:109-18. [PMID: 24682350 DOI: 10.1007/s00394-014-0691-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Choline-containing dietary phospholipids, including phosphatidylcholine (PC), may function as anti-inflammatory substances, but the mechanism remains largely unknown. We investigated the effects of L-alpha-glycerylphosphorylcholine (GPC), a deacylated PC derivative, in a rodent model of small intestinal ischaemia-reperfusion (IR) injury. METHODS Anaesthetized Sprague-Dawley rats were divided into control, mesenteric IR (45 min mesenteric artery occlusion, followed by 180 min reperfusion), IR with GPC pretreatment (16.56 mg kg⁻¹ GPC i.v., 5 min prior to ischaemia) or IR with GPC post-treatment (16.56 mg kg⁻¹ GPC i.v., 5 min prior to reperfusion) groups. Macrohaemodynamics and microhaemodynamic parameters were measured; intestinal inflammatory markers (xanthine oxidoreductase activity, superoxide and nitrotyrosine levels) and liver ATP contents were determined. RESULTS The IR challenge reduced the intestinal intramural red blood cell velocity, increased the mesenteric vascular resistance, the tissue xanthine oxidoreductase activity, the superoxide production, and the nitrotyrosine levels, and the ATP content of the liver was decreased. Exogenous GPC attenuated the macro- and microcirculatory dysfunction and provided significant protection against the radical production resulting from the IR stress. The GPC pretreatment alleviated the hepatic ATP depletion, the reductions in the mean arterial pressure and superior mesenteric artery flow, and similarly to the post-treatments with GPC, also decreased the xanthine oxidoreductase activity, the intestinal superoxide production, the nitrotyrosine level, and normalized the microcirculatory dysfunction. CONCLUSIONS These data demonstrate the effectiveness of GPC therapies and provide indirect evidence that the anti-inflammatory effects of PC could be linked to a reaction involving the polar part of the molecule.
Collapse
Affiliation(s)
- Tünde Tőkés
- Institute of Surgical Research, University of Szeged, Pécsi u. 6., Szeged, 6720, Hungary
| | | | | | | | | | | | | |
Collapse
|
38
|
Protective Effect of Estradiol on Acute Lung Inflammation Induced by an Intestinal Ischemic Insult is Dependent on Nitric Oxide. Shock 2013. [DOI: 10.1097/01.shk.0000436775.19120.8d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
What's new in Shock? September 2013. Shock 2013; 40:163-5. [PMID: 23949390 DOI: 10.1097/shk.0b013e3182a3d400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|