1
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
2
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
3
|
Pan D, Xu L, Chen P, Miao L, Tian Y, Shi D, Guo M. Panax Quinquefolium Saponins enhances angiogenesis in rats with diabetes and myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117252. [PMID: 37777023 DOI: 10.1016/j.jep.2023.117252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xi Yang Shen (Panax quinquefolium L.) was originally recorded in "Ben Cao Cong Xin" edited by Wu Yiluo during the Qing Dynasty. Panax Quinquefolium Saponins (PQS) is the main component derived from Panax quinquefolium L, and has been wildly used in the treatment of coronary heart disease. AIM OF THE STUDY This study aims to explore the potential role and underlying mechanisms of PQS in promoting angiogenesis in rats with diabetes and myocardial infarction. MATERIALS AND METHODS Echocardiograms were used to assess cardiac function, while the heart weight to tibia length ratio was calculated to determine cardiac hypertrophy. Hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome staining were used to examine cardiac morphology, myocyte diameter, and myocardial fibrosis. Immunofluorescence staining was employed to evaluate arteriolar density. The transcriptomes were analyzed and bioinformatic analyses were conducted to predict the potential angiogenesis-promoting mechanism of PQS. In addition, RT-PCR and western blotting was utilized to examine the expression of genes and proteins influenced by PQS. RESULTS PQS improved blood glucose, ameliorated cardiac function, reduced cardiac hypertrophy, and enhanced myocardial morphology in diabetic rats with myocardial infarction. PQS was also found to decrease myocyte diameter, curtail myocardial fibrosis, and increase arteriolar density. However, the effects of PQS were abolished following the deletion of protein kinase C δ (PKCδ). Molecular docking predicted strong interactions between the major blood components of PQS and PKCδ. Transcriptomic and bioinformatic analyses indicated that PQS may bolster angiogenesis by activating the VEGF/PI3K-Akt/eNOS pathway in rats with diabetes and myocardial infarction. Finally, the study demonstrated that PQS could inhibit the expression of PKCδ and stimulate the activation of the VEGF/PI3K-Akt/eNOS pathway. CONCLUSIONS PQS improves blood glucose, enhances cardiac function, mitigates cardiac damage, and boosts arteriolar density. The angiogenic impact of PQS appears to be, at least partially, due to its modulation of the PKCδ-mediated VEGF/PI3K-Akt/eNOS signaling pathway in rats with diabetes and myocardial infarction.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Tian
- Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ming Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu W, Zhao M, Zhang X, Chi J, Yin X, Liu Y. Alcohol Intake Provoked Cardiomyocyte Apoptosis Via Activating Calcium-Sensing Receptor and Increasing Endoplasmic Reticulum Stress and Cytosolic [Ca2+]i. Cell Biochem Biophys 2023; 81:707-716. [PMID: 37639185 DOI: 10.1007/s12013-023-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cardiomyocyte apoptosis plays an important role in alcoholic cardiac injury. However, the association between calcium-sensing receptor (CaSR) and alcohol-induced cardiomyocyte apoptosis remain unclear. Therefore, we investigated the role and its moleculer mechanism of CaSR in rat cardiomyocyte apoptosis induced by alcohol. METHODS Alcohol-induced cardiomyocyte apoptosis in vivo and in vitro model of rats were applied in this study. The expression of CaSR, endoplasmic reticulum stress markers and apoptosis were tested by immunohistological staining, western blot, TUNEL and flow cytometry, respectively. [Ca2+]i were detected by confocal laser scanning microscopy. RESULTS Compared with the control group, alcohol intake (AI) led to abnormal arrangements of cardiomyocytes and obvious increase of myocardial apoptosis. Moreover, AI also significantly upregulated protein expression of CaSR, GRP94, caspase-12 and CHOP. Alcohol induced apoptosis of cultured cardiomyocytes of rats in a dose-dependent way. Activation of CaSR markedly enhanced cardiomyocyte apoptosis and ERS induced by alcohol, ERS inducer also significantly increased cardiomyocyte apoptosis without activating CaSR. Furthermore, GdCl3 augmented alcohol-induced increase of [Ca2+]i in cardiomyocytes, which was attenuated by NPS2390 but not 4-PBA pre-treatment. CONCLUSIONS Alcohol could induce cardiomyocyte apoptosis in rats in vivo and in vitro, which was mediated probably via activating CaSR, and then ERS and the increase of the cytosolic [Ca2+]i. This provides a potential target for preventing cardiomyocyte apoptosis and cardiomyopathy induced by alochol.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Meng Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Jinyu Chi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xinhua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| |
Collapse
|
5
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Zhang X, Wang X, Li Q, Chen Y, Zhang X, Wang P, Yuan M, Pei H. [Role of PNPT1 in cardiomyocyte apoptosis induced by oxygen-glucose deprivation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:584-590. [PMID: 35527495 DOI: 10.12122/j.issn.1673-4254.2022.04.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of inhibiting polyribonucleotide nucleotidyl-transferase 1 (PNPT1) on oxygen-glucose deprivation (OGD)-induced apoptosis of mouse atrial myocytes. METHODS Cultured mouse atrial myocytes (HL-1 cells) with or without OGD were transfected with PNPT1-siRNA or a negative control siRNA (NC-siRNA group), and the cell survival rate was detected using CCK-8 assay. The expression levels of ACTB and TUBA mRNA were detected with qPCR, and the protein expression of PNPT1 was detected with Western blotting. The apoptosis rate of the treated cells was determined with flow cytometry, the mitochondrial membrane potential was detected using JC-1 kit, and the mitochondrial morphology was observed using transmission electron microscope. RESULTS With the extension of OGD time, the protein expression levels of PNPT1 increased progressively in the cytoplasm of HL-1 cells (P < 0.05). Transfection with PNPT1-siRNA significantly reduced PNPT1 expression in HL-1 cells (P < 0.05). Exposure to OGD significantly enhanced degradation of ACTB and TUBA mRNA (P < 0.05) and markedly increased the apoptosis rate of HL-1 cells (P < 0.05), and these changes were significantly inhibited by transfection with PNPT1-siRNA (P < 0.05), which obviously increased mitochondrial membrane potential and improved mitochondrial morphology of HL-1 cells exposed to OGD. CONCLUSION Inhibition of PNPT1 improves mitochondrial damage and reduces degradation of apoptotic-associated mRNAs to alleviate OGD-induced apoptosis of mouse atrial myocyte.
Collapse
Affiliation(s)
- X Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 611756, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - X Wang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Q Li
- Second Ward of Cadres, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Y Chen
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - X Zhang
- Medical Information Data Office, General Hospital of Western Theater Command, Chengdu 610083, China
| | - P Wang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - M Yuan
- Medical Center, General Hospital of Western Theater Command, Chengdu 610083, China
| | - H Pei
- College of Medicine, Southwest Jiaotong University, Chengdu 611756, China.,Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
7
|
Liu M, Kang GJ, Dudley SC. Preventing unfolded protein response-induced ion channel dysregulation to treat arrhythmias. Trends Mol Med 2022; 28:443-451. [DOI: 10.1016/j.molmed.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
8
|
Dong F, Pu Y, Lv Y, Liu X, Cao Y. Protective effect of Pulsatilla saponin A on acute myocardial infarction via miR-24-3p/p16. Toxicol Mech Methods 2021; 32:27-36. [PMID: 34412561 DOI: 10.1080/15376516.2021.1963364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The effect of Pulsatilla saponin A (PsA) on acute myocardial infarction (AMI) was unknown. This study targeted to examine the roles of PsA on hypoxia-triggered toxicity to H9c2 cells and reveal the potential mechanism. H9c2 cells were maintained under a hypoxic environment for 12 h to construct the AMI cell model and the cells were pretreated by PsA. Hypoxia triggered toxicity to H9c2 cells and the anti-toxicity effect of PsA was evaluated by CCK8, TUNEL, and Western blot. The levels of miR-24-3p and p16 in H9c2 cells, AMI group tissues, and their respective controls were assessed using qRT-PCR. The dual-luciferase assay was applied to verify the targeting mechanism of miR-24-3p on p16. Then the effects of miR-24-3p inhibitor or/and si-p16 on H9c2 cells treated with PsA under hypoxia were detected by CCK8, TUNEL, and Western blot. Flow cytometry was executed to determine the cell cycle. Hypoxia decreased viability and proliferation and increased apoptosis of H9c2 cells, which were ameliorated by PsA pretreatment. The level of miR-24-3p was diminished, but p16 expression was elevated in hypoxia-treated cells and AMI group tissues. MiR-24-3p could sponge p16 in hypoxia-treated cells. Furthermore, the impact of applying miR-24-3p inhibitor on PsA and hypoxia-treated cells could be reversed by si-p16. PsA relieved hypoxia-triggered cell toxicity via miR-24-3p/p16 axis. These findings provided some fresh insights into the potential therapeutic effects of the application of PsA in AMI.
Collapse
Affiliation(s)
- Feng Dong
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yanhua Pu
- Department of General Family Medicine No.1, The Fourth Hospital of Jinan, Jinan City, China
| | - Yanfei Lv
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Xiujuan Liu
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, China
| | - Yimin Cao
- Department of Emergency, Jinan Traditional Chinese Medicine Hospital, Jinan City, China
| |
Collapse
|
9
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
10
|
Hu JN, Yang JY, Jiang S, Zhang J, Liu Z, Hou JG, Gong XJ, Wang YP, Wang Z, Li W. Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153446. [PMID: 33387967 DOI: 10.1016/j.phymed.2020.153446] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cisplatin is one of the most common chemotherapeutic drugs. Cisplatin-induced toxicity gives rise to gastrointestinal cell damage, subsequent diarrhea and vomiting, leading to the discontinuation of its clinical application in long-term cancer chemotherapy. Panax quinquefolium L., also known as American ginseng, has many pharmacological activities such as improving immunity, anti-tumor, anti-radiation and blood sugar lowering. PURPOSE Previously, our laboratory reported that American ginseng berry extract could alleviate chemotherapeutic agents-induced renal damage caused by cisplatin. Hence, this study further explored the protective effect of P. quinquefolium saponins (PQS) on cisplatin-induced intestinal injury in mice and the possible molecular mechanisms. METHODS Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze intestinal injury based on various molecular mechanisms. RESULTS We demonstrated the destruction of the intestinal barrier caused by cisplatin exposure by detecting the activity of diamine oxidase (DAO) and the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin. Meanwhile, cisplatin exposure changed SOD and MDA levels in the small intestine, causing oxidative damage to the intestinal mucosa. The inflammation associated-intestinal damage was further explored by the measurement of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and analysis of nuclear factor-kappa B (NF-κB) inflammatory pathway protein expression. Moreover, apoptotic cells labeled with TUNEL staining-positive cells and activated caspase family proteins suggest that cisplatin induces intestinal apoptosis. Interestingly, PQS pretreatment significantly reversed these situations. CONCLUSION These evidences clearly suggest that PQS can alleviate cisplatin-induced intestinal damage by inhibiting oxidative stress, reducing the occurrence of inflammation and apoptosis, and improving intestinal barrier function.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jia-Yu Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China
| | - Xiao-Jie Gong
- College of Life Science, Dalian Minzu University, Dalian 116600 China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
11
|
Panax quinquefolium saponin Optimizes Energy Homeostasis by Modulating AMPK-Activated Metabolic Pathways in Hypoxia-Reperfusion Induced Cardiomyocytes. Chin J Integr Med 2020; 27:613-620. [PMID: 32418176 DOI: 10.1007/s11655-020-3194-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of Panax quinquefolium saponin (PQS) on energy deficiency in hypoxia-reperfusion (H/R) induced cardiomyocytes. METHODS The H/R injury involved hypoxia for 3 h and then reperfusion for 2 h. Cardiomyocytes recruited from neonatal rat ventricular myocytes (NRVMs) were randomly divided into control, H/R, H/R+compound C (C.C), H/R+PQS, and H/R+C. C+PQS groups. BrdU assay, lactase dehydrogenase (LDH) leakage and early apoptosis rate were evaluated to assess cell damages. Contents of high energy phosphate compounds were conducted to detect the energy production. Protein expression levels of adenosine monophosphate-activated protein kinase a (AMPKα), glucose transporter 4 (GLUT4), phosphate fructose kinase 2 (PFK2), fatty acid translocase/cluster of differentiation 36 (FAT/CD36), and acetyl CoA carboxylase 2 (ACC2) in the regulatory pathways were measured by Western blotting. Immunofluorescence staining of GLUT4 and FAT/CD36 was used to observe the mobilization of metabolic transporters. RESULTS PQS (50 mg/L) pretreatment significantly alleviated H/R-induced inhibition of NRVMs viability, up-regulation of LDH leakage, acceleration of early apoptosis, and reduction of energy production (P<0.05). Compared with the H/R group, up-regulated expression of AMPKα, GLUT4, PFK2, FAT/CD36 and ACC2 were observed, and more GLUT4 and FAT/CD36 expressions were detected on the membrane in the H/R+PQS group (P<0.05). These effects of PQS on H/R-induced NRVMs were eliminated in the H/R+C.C+PQS group (P<0.05). CONCLUSION PQS has prominent advantages in protecting NRVMs from H/R-induced cell damages and energy metabolic disorders, by activation of AMPKα-mediated GLUT4-PFK2 and FAT/CD36-ACC2 pathways.
Collapse
|
12
|
Stoner MW, McTiernan CF, Scott I, Manning JR. Calreticulin expression in human cardiac myocytes induces ER stress-associated apoptosis. Physiol Rep 2020; 8:e14400. [PMID: 32323496 PMCID: PMC7177173 DOI: 10.14814/phy2.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
The global burden of heart failure following myocardial ischemia-reperfusion (IR) injury is a growing problem. One pathway that is key to understanding the progression of myocardial infarction and IR injury is the endoplasmic reticulum (ER) stress pathway, which contributes to apoptosis signaling and tissue death. The role of calreticulin in the progression of ER stress remains controversial. We hypothesized that calreticulin induction drives proapoptotic signaling in response to ER stress. We find here that calreticulin is upregulated in human ischemic heart failure cardiac tissue, as well as simulated hypoxia and reoxygenation (H/R) and thapsigargin-mediated ER stress. To test the impact of direct modulation of calreticulin expression on ER stress-induced apoptosis, human cardiac-derived AC16 cells with stable overexpression or silencing of calreticulin were subjected to thapsigargin treatment, and markers of apoptosis were evaluated. It was found that overexpression of calreticulin promotes apoptosis, while a partial knockdown protects against the expression of caspase 12, CHOP, and reduces thapsigargin-driven TUNEL staining. These data shed light on the role that calreticulin plays in apoptosis signaling during ER stress in cardiac cells.
Collapse
Affiliation(s)
- Michael W. Stoner
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Charles F. McTiernan
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Iain Scott
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Janet R. Manning
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| |
Collapse
|
13
|
Tao T, Wang J, Wang X, Wang Y, Mao H, Liu X. The PERK/Nrf2 pathway mediates endoplasmic reticulum stress-induced injury by upregulating endoplasmic reticulophagy in H9c2 cardiomyoblasts. Life Sci 2019; 237:116944. [DOI: 10.1016/j.lfs.2019.116944] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
14
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|
15
|
Regulation mechanism of aquaporin 9 gene on inflammatory response and cardiac function in rats with myocardial infarction through extracellular signal-regulated kinase1/2 pathway. Heart Vessels 2019; 34:2041-2051. [DOI: 10.1007/s00380-019-01452-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
|
16
|
Sun H, Ling S, Zhao D, Li Y, Zhong G, Guo M, Li Y, Yang L, Du J, Zhou Y, Li J, Liang S, Wang Y, Gao X, Zhang Y, Cao D, Liu C, Jin X, Liu Z, Sun W, Wu X, Song J, Li Y, Shi D. Panax quinquefolium saponin attenuates cardiac remodeling induced by simulated microgravity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:83-93. [PMID: 30668357 DOI: 10.1016/j.phymed.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cardiac atrophy and reduced cardiac distensibility have been reported following space flight. Cardiac function is correspondingly regulated in response to changes in loading conditions. Panax quinquefolium saponin (PQS) improves ventricular remodeling after acute myocardial infarction by alleviating endoplasmic reticulum stress and Ca2+overload. However, whether PQS can ameliorate cardiac atrophy following exposure to simulated microgravity remains unknown. PURPOSE To explore the protective role of PQS in cardiac remodeling under unloading conditions and its underlying mechanisms. METHODS Hindlimb unloading (HU) model was used to simulate unloading induced cardiac remodeling. Forty-eight male rats were randomly assigned to four groups, including control, PQS, HU and HU + PQS. At 8 weeks after the experiment, cardiac structure and function, serum levels of Creatine Kinase-MB (CK-MB), Cardiactroponin T (cTnT), ischemia modified albumin (IMA), and cardiomyocyte apoptosis were measured. Network pharmacology analysis was used to predict the targets of the six major constituents of PQS, and the signaling pathways they involved in were analyzed by bioinformatics methods. Changes in the key proteins involved in the protective effects of PQS were further confirmed by Western Blot. RESULTS Simulated microgravity led to increases in serum levels of CK-MB, cTnT and IMA, remodeling of cardiac structure, impairment of cardiac function, and increased cardiomyocyte apoptosis as compared with control. PQS treatment significantly reduced serum levels of CK-MB, cTnT and IMA, improved the impaired cardiac structure and function, and decreased cardiomyocyte apoptosis induced by unloading. The activation of AMPK and inhibition of Erk1/2 and CaMKII/HDAC4 were demonstrated in the cardiocytes of HU rats after PQS treatment. CONCLUSION PQS provides protection against cardiac remodeling induced by simulated microgravity, partly resulting from changes in the signaling pathways related to energy metabolism reduction, calcium overloading and cell apoptosis.
Collapse
Affiliation(s)
- Huiyuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; The Third Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Lin Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shuai Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yating Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaorui Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Salvanic acid B inhibits myocardial fibrosis through regulating TGF-β1/Smad signaling pathway. Biomed Pharmacother 2019; 110:685-691. [DOI: 10.1016/j.biopha.2018.11.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 11/25/2018] [Indexed: 12/18/2022] Open
|
18
|
Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol 2018; 96:859-868. [PMID: 29940129 DOI: 10.1139/cjpp-2018-0192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protection of the ischemic and reperfused myocardium represents a major therapeutic challenge. Translating results from animal studies to the clinical setting has been disappointing, yet the need for effective intervention, particularly to limit heart damage following infarction or surgical procedures such as coronary artery bypass grafting, is substantial. Among the many compounds touted as cardioprotective agents is ginseng, a medicinal herb belonging to the genus Panax, which has been used as a medicinal agent for thousands of years, particularly in Asian societies. The biological actions of ginseng are very complex and reflect composition of many bioactive components, although many of the biological and therapeutic effects of ginseng have been attributed to the presence of steroid-like saponins termed ginsenosides. Both ginseng and many ginsenosides have been shown to exert cardioprotective properties in experimental models. There is also clinical evidence that traditional Chinese medications containing ginseng exert cardioprotective properties, although such clinical evidence is less robust primarily owing to the paucity of large-scale clinical trials. Here, we discuss the experimental and clinical evidence for ginseng, ginsenosides, and ginseng-containing formulations as cardioprotective agents against ischemic and reperfusion injury. We further discuss potential mechanisms, particularly as these relate to antioxidant properties.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- University of Western Ontario, London, ON N6G 2X6, Canada.,University of Western Ontario, London, ON N6G 2X6, Canada
| | | |
Collapse
|
19
|
Choy KW, Murugan D, Mustafa MR. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol Res 2018; 132:119-129. [PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
Zhang QL, Wang W, Jiang Y, Zhang TZ, Lu ZJ, Jiang A. Protective effects of a composition of Chinese herbs-Gurigumu-13 on retinal ganglion cell apoptosis in DBA/2J glaucoma mouse model. Int J Ophthalmol 2018; 11:363-368. [PMID: 29600167 DOI: 10.18240/ijo.2018.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/15/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM) for glaucoma treatment. METHODS DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs). The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA) was examined by ELISA assay. RESULTS GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qiu-Li Zhang
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, the Inner Mongolia Autonomous Region, China
| | - Wei Wang
- Department of Ophthalmology, Tongliao Hospital, Tongliao 028000, the Inner Mongolia Autonomous Region, China
| | - Yan Jiang
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, the Inner Mongolia Autonomous Region, China
| | - Tian-Zi Zhang
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, the Inner Mongolia Autonomous Region, China
| | - Zhan-Jun Lu
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, the Inner Mongolia Autonomous Region, China
| | - Ao Jiang
- China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
21
|
Kou N, Xue M, Yang L, Zang MX, Qu H, Wang MM, Miao Y, Yang B, Shi DZ. Panax quinquefolius saponins combined with dual antiplatelet drug therapy alleviate gastric mucosal injury and thrombogenesis through the COX/PG pathway in a rat model of acute myocardial infarction. PLoS One 2018; 13:e0194082. [PMID: 29584740 PMCID: PMC5870954 DOI: 10.1371/journal.pone.0194082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 02/24/2018] [Indexed: 12/29/2022] Open
Abstract
Objectives Previous studies have found that Panax quinquefolius saponins (PQS) combined with dual antiplatelet therapy (DAPT) of aspirin and clopidogrel enhances antithrombotic effects while reducing gastric mucosal injury induced by DAPT. We investigated the effects of the combined drug therapy (PQS+DAPT) through the COX/PG pathways. Methods Acute myocardial infarction (AMI) was induced in Wistar rats by ligation of the left anterior descending (LAD) coronary artery, and the animals were randomly divided into Model, DAPT, and PQS+DAPT groups. Rats in the sham group did not undergo artery ligation. They were intragastrically treated for 14 days. Myocardial infarct size; myocardial pathology; platelet aggregation rate, CD62p activation, concentrations of thromboxane B2 (TXB2), 6-keto-PGF1α, tissue plasminogen activator (t-PA), and plasminogen activator inhibitor (PAI), the TXB2/6-keto-PGF1α ratio were measured. The ultrastructure of the gastric mucosa was observed by scanning electron microscopy. The expression of PGE2 and 6-keto-PGF1α in gastric mucosa was measured by radioimmunoassay, and levels of COX-1, COX-2, and VEGF in gastric mucosa were assessed using immunohistochemistry. Results The addition of Panax quinquefolius saponins (PQS+DAPT) to standard DAPT therapy significantly decreased the myocardial infarct area, degree of myocardial lesions, TXB2 and PAI levels, and the TXB2/6-keto-PGF1α ratio, while increasing 6-keto-PGF1α and t-PA levels and reducing the degree of gastric mucosal injury. Expression of PGE2, 6-keto-PGF1α, COX-2, and VEGF in the gastric mucosa was upregulated in the PQS+DAPT group compared with the standard DAPT group. Conclusion PQS increases the degree of DAPT inhibition of myocardial necrosis and antiplatelet effects in AMI rats, as well as reducing damage to the gastric mucosa caused by DAPT. The mechanism may be related to inhibition of TXB2 and PAI activity and elevation of 6-keto-PGF1α and t-PA levels in blood, and may be associated with upregulated expression of COX-2, PGE2, PGI2, and VEGF in gastric tissue.
Collapse
Affiliation(s)
- Na Kou
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, Clinical College, Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Mei Xue
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Yang
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming-Xuan Zang
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, Clinical College, Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Ming Wang
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Miao
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Da-Zhuo Shi
- Laboratory of Cardiology, Center of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiyuan Hospital, Clinical College, Graduate school, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Dou HC, Chen JY, Ran TF, Jiang WM. Panax quinquefolius saponin inhibits endoplasmic reticulum stress-mediated apoptosis and neurite injury and improves functional recovery in a rat spinal cord injury model. Biomed Pharmacother 2018; 102:212-220. [PMID: 29558718 DOI: 10.1016/j.biopha.2018.03.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment goal in spinal cord injury (SCI) is to repair neurites and suppress cell apoptosis. Panax quinquefolius saponin (PQS) is the major active ingredient of American ginseng and has been demonstrated to have anti-inflammatory and anti-apoptotic roles in various diseases. However, the potential effect of PQS on the pathological process of acute SCI remains unknown. This work tested the effects of PQS on acute SCI and clarified its potential mechanisms. PQS treatment ameliorated the damage to spinal tissue and improved the functional recovery after SCI. PQS treatment inhibited endoplasmic reticulum (ER) stress and the associated apoptosis after acute SCI. PQS further abolished the triglyceride (TG)-induced ER stress and associated apoptosis in neuronal cultures. PQS appears to inhibit the ER-stress-induced neurite injury in PC12 cells. Our results suggest that PQS is a novel therapeutic agent for acute central nervous system injury.
Collapse
Affiliation(s)
- Hai-Cheng Dou
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jun-Yu Chen
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Tang-Fei Ran
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Wei-Min Jiang
- Orthopedics Department, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
23
|
Liu M, Shi G, Zhou A, Rupert CE, Coulombe KLK, Dudley SC. Activation of the unfolded protein response downregulates cardiac ion channels in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 117:62-71. [PMID: 29474817 DOI: 10.1016/j.yjmcc.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
RATIONALE Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 μg/mL), GSK2606414 (GSK, 300 nmol/L), and 4μ8C (5 μmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Guangbin Shi
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Anyu Zhou
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Samuel C Dudley
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
24
|
Xie JJ, Chen J, Guo SK, Gu YT, Yan YZ, Guo WJ, Yao CL, Jin MY, Xie CL, Wang X, Wang XY, Chen L. Panax quinquefolium saponin inhibits endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and attenuates the progression of osteoarthritis in rat. Biomed Pharmacother 2017; 97:886-894. [PMID: 29136765 DOI: 10.1016/j.biopha.2017.10.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Treatments for osteoarthritis (OA) seek to restore chondrocyte function and inhibit cell apoptosis. Panax quinquefolium saponin (PQS) is the major active ingredient of Radix panacis quinquefolii (American ginseng), and has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in various diseases. However, any potential effect of PQS on the pathological process of OA remains unclear. This work aimed to explore the role of PQS in chondrocytes and to clarify its potential mechanisms. We showed that PQS treatment could protect chondrocytes against endoplasmic reticulum (ER) stress and associated apoptosis induced by interleukin (IL)-1β. Also, PQS further attenuated triglyceride (TG)-induced ER stress and associated apoptosis. Moreover, PQS may inhibit the ER stress-activated NF-κB pathway and associated inflammatory response in chondrocytes. Finally, PQS abolished rat cartilage degeneration in an in-vivo OA model of the knee joint. Our results indicate that PQS may be a potential novel treatment for OA.
Collapse
Affiliation(s)
- Jun-Jun Xie
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Shi-Kun Guo
- Department of Postgraduate Education, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Ying-Zhao Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Wei-Jun Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Cheng-Lun Yao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Meng-Yun Jin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Cheng-Long Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Xiang Wang
- North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China.
| | - Long Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
25
|
Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, Liao Y, Li M, Ni X, Hou Y, Qi Y, Chen Y. Hydrogen Sulfide Inhibits Cigarette Smoke-Induced Endoplasmic Reticulum Stress and Apoptosis in Bronchial Epithelial Cells. Front Pharmacol 2017; 8:675. [PMID: 29033840 PMCID: PMC5625329 DOI: 10.3389/fphar.2017.00675] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023] Open
Abstract
Background: Apoptosis of lung structural cells contributes to the process of lung damage and remodeling in chronic obstructive pulmonary disease (COPD). Our previous studies demonstrated that exogenous hydrogen sulfide (H2S) can reduce the lung tissue pathology score, anti-inflammation and anti-oxidation effects in COPD, but the effect of H2S in regulating cigarette smoke (CS) induced bronchial epithelial cell apoptosis and the underlying mechanisms are not clear. Objectives: To investigate the effect of H2S on CS induced endoplasmic reticulum stress (ERS) and bronchial epithelial cell apoptosis. Methods: Male Sprague–Dawley rats randomly divided into four groups for treatment: control, CS, NaHS + CS, and propargylglycine (PPG) + CS. The rats in the CS group were exposed to CS generated from 20 commercial unfiltered cigarettes for 4 h/day, 7 days/week for 4 months. Since the beginning of the third month, freshly prepared NaHS (14 μmol/kg) and PPG (37.5 mg/kg) were intraperitoneally administered 30 min before CS-exposure in the NaHS and PPG groups. 16HBE cells were pretreated with Taurine (10 mM), 5 mmol/L 4-phenylbutyric acid (4-PBA) or NaHS (100, 200, and 400 μM) for 30 min, and then cells were exposed to 40 μmol/L nicotine for 72 h. ERS markers (GRP94, GRP78) and ERS-mediated apoptosis markers 4-C/EBP homologous protein (CHOP), caspase-3 and caspase-12 were assessed in rat lung tissues and human bronchial epithelial cells. The apoptotic bronchial epithelial cells were detected by Hoechst staining in vitro and TUNEL staining in vivo. Results: In CS exposed rats, peritoneal injection of NaHS significantly inhibited CS induced overexpression ERS-mediated apoptosis markers and upregulation of apoptotic rate in rat lungs, and inhibiting the endogenous H2S production by peritoneal injection of PPG exacerbated these effects. In the nicotine-exposed bronchial epithelial cells, appropriate concentration of NaHS and ERS inhibitors taurine and 4-PBA inhibited nicotine-induced upregulation of apoptotic rate and overexpression of ERS-mediated apoptosis markers. Conclusion: H2S inhibited lung tissue damage by attenuating CS induced ERS in rat lung and exogenous H2S attenuated nicotine induced ERS-mediated apoptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Fan Lin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chengcheng Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Weiwei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yu Bai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yixuan Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Minxia Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xianqiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yuelong Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Jiang P, Lu Y, Chen D. Qualitative and quantitative analysis of multiple components for quality control of Deng-Zhan-Sheng-Mai capsules by ultra high performance liquid chromatography tandem mass spectrometry method coupled with chemometrics. J Sep Sci 2016; 40:612-624. [DOI: 10.1002/jssc.201600744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Pin Jiang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P.R. China
- Department of Pharmacognosy, School of Pharmacy; Fudan University; Shanghai P.R. China
| | - Yan Lu
- Department of Pharmacognosy, School of Pharmacy; Fudan University; Shanghai P.R. China
| | - Daofeng Chen
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P.R. China
- Department of Pharmacognosy, School of Pharmacy; Fudan University; Shanghai P.R. China
| |
Collapse
|
27
|
Liu M, Xu F, Tao T, Song D, Li D, Li Y, Guo Y, Liu X. Molecular Mechanisms of Stress-Induced Myocardial Injury in a Rat Model Simulating Posttraumatic Stress Disorder. Psychosom Med 2016; 78:888-895. [PMID: 27359173 PMCID: PMC5051518 DOI: 10.1097/psy.0000000000000353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Posttraumatic stress disorder (PTSD) is an independent risk factor for cardiovascular diseases. This study investigated the molecular mechanisms underlying myocardial injury induced by simulated PTSD. METHODS Sprague-Dawley rats were randomly divided into two groups: control group (n = 18) and PTSD group (n = 30). The PTSD model was replicated using the single prolonged stress (SPS) method. On the 14th day poststress, the apoptotic cells in myocardium were assessed using both TUNEL method and transmission electron microscopy; the protein levels of the endoplasmic reticulum stress (ERS) molecules were measured by using Western blotting analysis. RESULTS Exposure to SPS resulted in characteristic morphologic changes of apoptosis in cardiomyocytes assessed by transmission electron microscopy. Moreover, TUNEL staining was also indicative of the elevated apoptosis rate of cardiomyocytes from the SPS rats (30.69% versus 7.26%, p < .001). Simulated PTSD also induced ERS in myocardium, demonstrated by up-regulation of protein levels of glucose-regulated protein 78 (0.64 versus 0.26, p = .017), calreticulin (p = .040), and CCAAT/enhancer-binding protein-homologous protein (0.95 versus 0.43, p = .047), phosphorylation of protein kinase RNA-like ER kinase (p = .003), and caspase 12 activation (0.30 versus 0.06, p < .001) in myocardium from the SPS rats. The ratio of Bcl-2 to Bax decreased significantly in myocardium from the SPS rats (p = .005). CONCLUSIONS The ERS-related apoptosis mediated by the protein kinase RNA-like ER kinase/CCAAT/enhancer-binding protein-homologous protein and caspase 12 pathways may be associated with myocardial injury in a rat model simulating PTSD. This study may advance our understanding of how PTSD contributes to myocardial injury on a molecular level.
Collapse
Affiliation(s)
- Mi Liu
- From the Department of Pathophysiology (Liu, Xu, Tao, Song, Li D, Li Y, Guo, Liu), Chinese PLA General Hospital, Beijing, China; and State Key Laboratory of Kidney Disease (Xiuhua), Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie RJ, Han B, Yang T, Yang Q. Activation of Caspase12, a key molecule in endoplasmic reticulum stress related apoptosis pathway, induces apoptosis of hepatocytes in rats with hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:2470-2477. [DOI: 10.11569/wcjd.v24.i16.2470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the change of activity of Caspase12, a key signaling molecule in endoplasmic reticulum stress related apoptosis pathway, and to explore its role in the apoptosis of hepatocytes in rats with hepatic fibrosis.
METHODS: Wistar rats were randomly divided into a 4 wk control group, an 8 wk control group, a 4 wk hepatic fibrosis group and an 8 wk hepatic fibrosis group. Rats of hepatic fibrosis groups received subcutaneous injections of 40% CCl4 twice a week at doses of 0.3 mL/100 g. Expression of GRP78, GRP94 and Caspase12 genes in hepatic tissue was detected by RT-PCR. The expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was determined by Western blot. The apoptosis of hepatocytes was evaluated by TUNEL assay.
RESULTS: Expression of GRP78, GRP94 and Caspase12 mRNAs in the 4 wk hepatic fibrosis group was significantly higher than that in the 4 wk control group. In the 8 wk hepatic fibrosis group, expression of GRP78, GRP94 and Caspase12 mRNAs was also elevated obviously. Western blot analysis revealed that expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was increased obviously in the liver in the 4 wk hepatic group. Compared with the 8 wk control group, expression of GRP78, GRP94, procaspase12 and activated Caspase12 proteins was elevated obviously in the 8 wk hepatic group. The apoptosis of hepatocytes in the 4 wk and 8 wk hepatic fibrosis groups was significantly higher than that in the control groups.
CONCLUSION: Activation of Caspase12, a key signaling molecule in endoplasmic reticulum stress related apoptosis pathway, may mediate the apoptosis of hepatocytes in rats with hepatic fibrosis.
Collapse
|
29
|
Xu FF, Liu XH. Calreticulin translocation aggravates endoplasmic reticulum stress-associated apoptosis during cardiomyocyte hypoxia/reoxygenation. Chin Med J (Engl) 2015; 128:353-60. [PMID: 25635431 PMCID: PMC4837866 DOI: 10.4103/0366-6999.150103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Calreticulin (CRT) is major Ca2+-binding chaperone mainly resident in the endoplasmic reticulum (ER) lumen. Recently, it has been shown that non-ER CRT regulates a wide array of cellular responses. We previously found that CRT was up-regulated during hypoxia/reoxygenation (H/R) and this study was aimed to investigate whether CRT nuclear translocation aggravates ER stress (ERS)-associated apoptosis during H/R injury in neonatal rat cardiomyocytes. Methods: Apoptosis rate and lactate dehydrogenase (LDH) leakage in culture medium were measured as indices of cell injury. Immunofluorescence staining showed the morphological changes of ER and intracellular translocation of CRT. Western blotting or reverse transcription polymerase chain reaction was used to detect the expression of target molecules. Results: Compared with control, H/R increased apoptosis rate and LDH activity. The ER became condensed and bubbled, and CRT translocated to the nucleus. Western blotting showed up-regulation of CRT, Nrf2, activating transcription factor 4 (ATF4), CHOP and caspase-12 expression after H/R. Exogenous CRT overexpression induced by plasmid transfection before H/R increased cell apoptosis, LDH leakage, ER disorder, CRT nuclear translocation and the expression of ERS-associated molecules. However, administration of the ERS inhibitor, taurine, or CRT siRNA alleviated cell injury, ER disorder, and inhibited ERS-associated apoptosis. Conclusions: Our results indicated that during H/R stress, CRT translocation increases cell apoptosis and LDH leakage, aggravates ER disorder, up-regulates expression of nuclear transcription factors, Nrf2 and ATF4, and activates ERS-associated apoptosis.
Collapse
Affiliation(s)
| | - Xiu-Hua Liu
- Department of Pathophysiology; State Key Laboratory of Kidney Disease, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
30
|
Interaction of Panax quinquefolius Saponin and Dual Antiplatelets on Vascular Endothelial Function in Rats with Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:932751. [PMID: 26090462 PMCID: PMC4452292 DOI: 10.1155/2015/932751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
Abstract
The objective of this study is to investigate the interaction of Panax quinquefolius saponin (PQS) and dual antiplatelets (aspirin and clopidogrel) on antiplatelet activity and vascular endothelial function in rats with acute myocardial infarction (AMI). Forty-eight male SD rats were randomly designed into sham group, model group, dual antiplatelet group, and PQS plus dual antiplatelet group. AMI rats were induced by ligation of left anterior descending coronary artery (LAD) and dual antiplatelet agents and additional PQS to dual antiplatelets were intragastrically administered for 28 days, respectively. The ventricular cavity area and cardiac transverse area ratio in PQS + dual antiplatelet group showed a decreased tendency. PAgT(%) decreased significantly in both dual antiplatelet group and PQS + dual antiplatelet group. TXB2 concentration significantly decreased in dual antiplatelet and PQS + dual antiplatelet groups, whereas 6-keto-PGF1α concentration significantly increased in PQS + dual antiplatelet group. Rats in PQS + dual antiplatelet group demonstrated a significant decrease in plasma ET-1 concentration and an increase in serum NO concentration compared with dual antiplatelet group. The combination therapy of PQS and dual antiplatelets showed some beneficial effects on vascular endothelial function and ventricular remodeling in rats with AMI.
Collapse
|
31
|
Shen M, Wang L, Wang B, Wang T, Yang G, Shen L, Wang T, Guo X, Liu Y, Xia Y, Jia L, Wang X. Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt. Cell Death Dis 2014; 5:e1528. [PMID: 25412307 PMCID: PMC4260737 DOI: 10.1038/cddis.2014.479] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl(-) currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel by 4,4'-diisothiocya-natostilbene-2,2'-disulfonic acid (DIDS), a non-selective Cl(-) channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl(-) channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl(-) channel blockers against ER stress-associated cardiac anomalies.
Collapse
Affiliation(s)
- M Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, China
| | - L Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - B Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - T Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - G Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - L Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - T Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - X Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Y Liu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Y Xia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - L Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - X Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Shen M, Wang L, Yang G, Gao L, Wang B, Guo X, Zeng C, Xu Y, Shen L, Cheng K, Xia Y, Li X, Wang H, Fan L, Wang X. Baicalin protects the cardiomyocytes from ER stress-induced apoptosis: inhibition of CHOP through induction of endothelial nitric oxide synthase. PLoS One 2014; 9:e88389. [PMID: 24520378 PMCID: PMC3919764 DOI: 10.1371/journal.pone.0088389] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/12/2014] [Indexed: 12/18/2022] Open
Abstract
Baicalin, the main active ingredient of the Scutellaria root, exerts anti-oxidant and anti-apoptotic effects in cardiovascular diseases. However, the therapeutic mechanism of baicalin remains unknown. Cultured neonatal rat cardiomyocytes were pre-treated with baicalin (0–50 µM) for 24 h, and subsequently treated with tunicamycin (100 ng/ml). Cell viability was detected by MTT assay, and cell damage was determined by LDH release and TUNEL assay. The expression of CHOP, JNK, caspase-3, eNOS was analyzed by western blot. NO was measured by DAF-FM staining. As a result, treatment with baicalin significantly reduced apoptosis induced by ER stress inducer tunicamycin in cardiomyocytes. Molecularly, baicalin ameliorated tunicamycin-induced ER stress by downregulation of CHOP. In addition, baicalin inverted tunicamycin-induced decreases of eNOS mRNA and protein levels, phospho eNOS and NO production through CHOP pathway. However, the protective effects of baicalin were significantly decreased in cardiomyocytes treated with L-NAME, which suppressed activation of nitric oxide synthase. In conclusion, our results implicate that baicalin could protect cardiomyocytes from ER stress-induced apoptosis via CHOP/eNOS/NO pathway, and suggest the therapeutic values of baicalin against ER stress-associated cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Mingzhi Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Lei Gao
- Department of Urology, Wuhan General Hospital, Guangzhou Command, PLA, Wuhan, China
| | - Bo Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaowang Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Zeng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yong Xu
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Ke Cheng
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuesheng Xia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiumin Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (XMW); (LF); (HCW)
| | - Li Fan
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
- * E-mail: (XMW); (LF); (HCW)
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (XMW); (LF); (HCW)
| |
Collapse
|
33
|
What's new in Shock? October 2013. Shock 2013; 40:237-8. [PMID: 24045417 DOI: 10.1097/shk.0000000000000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|