1
|
Guan H, Chen J, Kaur K, Amreen B, Lesseur C, Dolios G, Andra SS, Narasimhan S, Pulivarthi D, Midya V, De Witte LD, Bergink V, Rommel AS, Petrick LM. High-dimensional mediation analysis to elucidate the role of metabolites in the association between PFAS exposure and reduced SARS-CoV-2 IgG in pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179520. [PMID: 40311333 DOI: 10.1016/j.scitotenv.2025.179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
We previously found that per- and polyfluoroalkyl substances (PFAS) mixture exposure is inversely associated with SARS-CoV-2 IgG (IgG) antibody levels in pregnant individuals. Here, we aim to identify metabolites mediating this relationship to elucidate the underlying biological pathways. This cross-sectional study included 59 pregnant participants from a US-based pregnancy cohort. Untargeted metabolomic profiling was performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), and Weighted Quantile Sum (WQS) regression was applied to assess the PFAS and metabolites mixture effects on IgG. Metabolite indices positively or negatively associated with IgG levels were constructed separately and their mediation effects were examined independently and jointly. The PFAS-index was negatively associated with IgG levels (beta = -0.315, p < 0.001), with PFHpS and PFHxS as major contributors. Two metabolites-indices were constructed, one positively (beta = 1.249, p < 0.001) and one negatively (beta = -1.200, p < 0.001) associated with IgG. Key contributors for these indices included trigonelline, adipate, p-octopamine, and n-acetylproline. Analysis of a single mediator showed that 74.6 % (95 % CI: 45.9 %, 98.0 %) and 68.6 % (95 % CI: 41.8 %, 94.1 %) of the PFAS index-IgG total effect were mediated by the negative and positive metabolites-indices, respectively. Joint analysis of the metabolites-indices indicated a cumulative mediation effect of 83.8 % (95 % CI: 58.1 %, 98.7 %). Enriched pathways associated with these metabolites-indices were phenylalanine, tyrosine, and tryptophan biosynthesis and arginine metabolism. We observed significant mediation effects of plasma metabolites on the PFAS-IgG relationship, suggesting that PFAS is associated with alteration in the balance of plasma metabolites that contributes to reduced plasma IgG production.
Collapse
Affiliation(s)
- Haibin Guan
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Chen
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kirtan Kaur
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bushra Amreen
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Corina Lesseur
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Syam S Andra
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Srinivasan Narasimhan
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Pulivarthi
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna-Sophie Rommel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren M Petrick
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
2
|
Zhao Z, Wei TT, Zhang WX, Zhang SS, Wu R, Li F, Yang H, Zhang Q, Xi J, Zhou Y, Wang T, Du J, Lu QB, Ge Q. Association of homoarginine with arginine and disease severity in COVID-19 patients. Amino Acids 2025; 57:24. [PMID: 40332615 PMCID: PMC12058869 DOI: 10.1007/s00726-025-03453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
This study explored the relationship between the concentrations of homoarginine and arginine and between homoarginine concentration and laboratory parameters in coronavirus disease 2019 (COVID-19) patients with different severity to demonstrate the role of homoarginine in the progress of COVID-19. The laboratory-confirmed COVID-19 patients were included from Peking University Third Hospital during December 2022 to January 2023. Serum, urine, and stool samples were collected from the patients and detected by liquid chromatography-mass spectrometry. Totally 46 patients were recruited, including 18 in the mild group, 19 in the severe group, and 9 fatal. The concentration of homoarginine was positively correlated with the concentration of arginine in serum (r = 0.50), urine (r = 0.55), and stool samples (r = 0.39), respectively (all P < 0.001). The serum concentration and urine concentration of homoarginine were lower in severe patients than in mild patients (both P < 0.05). 13 indicators reflecting immunity and coagulation, including but not limited to T cell, white blood cell, natural killer cell, interleukin 6 (IL-6), and IL-8, had statistically significant correlations with both disease severity and the homoarginine concentration. Patients with hypertension were significantly associated with the decreased serum homoarginine (odds ratio 10.905, 95% confidence interval 1.454 - 137.144). Our results suggest that the homoarginine plays a role in the progress of COVID-19, which may be achieved by influencing arginine metabolism.
Collapse
Affiliation(s)
- Zhiling Zhao
- Department of Intensive Care Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Ting-Ting Wei
- Department of Laboratorial Science and Technology and Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Wan-Xue Zhang
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shan-Shan Zhang
- Department of Laboratorial Science and Technology and Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Rui Wu
- Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Fei Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Han Yang
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Qiang Zhang
- Department of Intensive Care Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Jingjing Xi
- Department of Intensive Care Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Yiguo Zhou
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Tiehua Wang
- Department of Intensive Care Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Juan Du
- Department of Laboratorial Science and Technology and Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology and Vaccine Research Center, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Disease and Policy Research and Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
- Center for Infectious Disease and Policy Research and Department of Laboratorial of Science and Technology, School of Public Health, Peking University, No 38 Xue-Yuan Rd, Haidian District, Beijing, 100191, China.
| | - Qinggang Ge
- Department of Intensive Care Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Xiong D, Geng H, Lv X, Wang S, Jia L. Inflammatory Response and Anti-Inflammatory Treatment in Persistent Inflammation-Immunosuppression-Catabolism Syndrome (PICS). J Inflamm Res 2025; 18:2267-2281. [PMID: 39968098 PMCID: PMC11834740 DOI: 10.2147/jir.s504694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness (CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 100,000 in individuals aged 75-79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss current therapies about inflammation and offer recommendations for managing patients with PICS.
Collapse
Affiliation(s)
- Dacheng Xiong
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huixian Geng
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xuechun Lv
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuqi Wang
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lijing Jia
- Department of Intensive Care Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Intensive Care Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
4
|
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP. Targeting Inflammation After Hemorrhagic Shock as a Molecular and Experimental Journey to Improve Outcomes: A Review. Cureus 2025; 17:e77776. [PMID: 39981454 PMCID: PMC11841828 DOI: 10.7759/cureus.77776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hemorrhagic shock continues to be a major contributor to trauma-related fatalities globally, posing a significant and intricate pathophysiological challenge. The condition is marked by injury and blood loss, which activate molecular cascades that can quickly become harmful. The inflammatory response exhibits a biphasic pattern, beginning with a hyper-inflammatory phase that transitions into immunosuppression, posing significant obstacles to effective therapeutic interventions. This review article explores the intricate molecular mechanisms driving inflammation in hemorrhagic shock, emphasizing cellular signaling pathways, endothelial dysfunction, and immune activation. We discuss the role of molecular biomarkers in tracking disease progression and stratifying risk, with a focus on markers of endothelial dysfunction and inflammatory mediators as potential prognostic tools. Additionally, we assess therapeutic strategies, spanning traditional approaches like hemostatic resuscitation to advanced immunomodulatory treatments. Despite promising advancements in molecular monitoring and targeted therapies, challenges persist in bridging experimental findings with clinical applications. Future efforts must prioritize understanding the dynamic progression of inflammatory pathways and refining the timing of interventions to improve outcomes in hemorrhagic shock management.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Astrid Ardon-Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado, Aurora, USA
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| |
Collapse
|
5
|
Guan H, Chen J, Kaur K, Amreen B, Lesseur C, Dolios G, Andra SS, Narasimhan S, Pulivarthi D, Midya V, De Witte LD, Bergink V, Rommel AS, Petrick LM. High-dimensional mediation analysis to elucidate the role of metabolites in the association between PFAS exposure and reduced SARS-CoV-2 IgG in pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628663. [PMID: 39763891 PMCID: PMC11702545 DOI: 10.1101/2024.12.16.628663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Objective We previously found that per- and polyfluoroalkyl substances (PFAS) mixture exposure is inversely associated with SARS-CoV-2 IgG (IgG) antibody levels in pregnant individuals. Here, we aim to identify metabolites mediating this relationship to elucidate the underlying biological pathways. Methods We included 59 pregnant participants from a US-based pregnancy cohort. Untargeted metabolomic profiling was performed using Liquid Chromatography-High Resolution Sass spectrometry (LC-HRMS), and weighted Quantile Sum (WQS) regression was applied to assess the PFAS and metabolites mixture effects on IgG. Metabolite indices positively or negatively associated with IgG levels were constructed separately and their mediation effects were examined independently and jointly. Results The PFAS-index was negatively associated with IgG levels (beta=-0.273, p=0.002), with PFHpS and PFHxS as major contributors. Two metabolite-indices were constructed, one positively (beta=1.260, p<0.001) and one negatively (beta=-0.997, p<0.001) associated with IgG. Key contributors for these indices included protoporphyrin, 5-hydroxytryptophan, n-acetylproline, and tyrosine. Analysis of single mediator showed that 48.9% (95%CI: 21.9%,125.0%) and 50.1% (95% CI: 8.1%, 90.1%) of the PFAS index-IgG total effect were mediated by the negative and positive metabolite-indices, respectively. Joint analysis of the metabolite-indices indicated a cumulative mediation effect of 73.6% (95%CI: 44.9%, 116.4%). Enriched pathways associated with these metabolites indices were phenylalanine, tyrosine, and tryptophan biosynthesis and arginine metabolism. Conclusions We observed significant mediation effects of plasma metabolites on the PFAS-IgG relationship, suggesting that PFAS disrupts the balance of plasma metabolites that contributes to reduced plasma IgG production.
Collapse
|
6
|
Zhang Y, Hua J, Chen L. Identifying the plasma metabolome responsible for mediating immune cell action in severe COVID-19: a Mendelian randomization investigation. Front Cell Infect Microbiol 2024; 14:1393432. [PMID: 39224704 PMCID: PMC11366714 DOI: 10.3389/fcimb.2024.1393432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The immune response regulates the severity of COVID-19 (sCOVID-19). This study examined the cause-and-effect relationship between immune cell traits (ICTs) and the risk of severe COVID-19. Additionally, we discovered the potential role of plasma metabolome in modulating this risk. Methods Employing data from a genome-wide association study (GWAS), we conducted a two-sample Mendelian randomization (MR) assessment of 731 genetic ICTs and sCOVID-19 (5,101 cases, 1,383,241 controls) incidence. The MR analysis was utilized to further quantitate the degree of plasma metabolome-mediated regulation of immune traits in sCOVID-19. Results The inverse variance weighted method recognized 2 plasma metabolites (PMs) responsible for casual associations between immune cells and sCOVID-19 risk. These included Tridecenedioate (C13:1-DC) which regulated the association between CD27 on IgD- CD38br (OR 0.804, 95% CI 0.699-0.925, p = 0.002) and sCOVID-19 risk (mediated proportion: 18.7%); arginine to citrulline ratio which controlled the relationship of CD39 on monocyte (OR 1.053, 95% CI 1.013-1.094, p = 0.009) with sCOVID-19 risk (mediated proportion: -7.11%). No strong evidence that genetically predicted sCOVID-19 influenced the aforementioned immune traits. Conclusion In this study, we have successfully identified a cause-and-effect relationship between certain ICTs, PMs, and the likelihood of contracting severe COVID-19. Our findings can potentially improve the accuracy of COVID-19 prognostic evaluation and provide valuable insights into the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Yixia Zhang
- Department of Hematology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Jiangsu Province People’s Hospital, Nanjing, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Rousseau AF, Martindale R. Nutritional and metabolic modulation of inflammation in critically ill patients: a narrative review of rationale, evidence and grey areas. Ann Intensive Care 2024; 14:121. [PMID: 39088114 PMCID: PMC11294317 DOI: 10.1186/s13613-024-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Inflammation is the hallmark of critical illness and triggers the neuro-endocrine stress response and an oxidative stress. Acute inflammation is initially essential for patient's survival. However, ongoing or exaggerated inflammation, due to persistent organ dysfunction, immune dysfunction or poor inflammation resolution, is associated to subsequent hypermetabolism and hypercatabolism that severely impact short and long-term functional status, autonomy, as well as health-related costs. Modulation of inflammation is thus tempting, with the goal to improve the short- and long-term outcomes of critically ill patients. FINDINGS Inflammation can be modulated by nutritional strategies (including the timing of enteral nutrition initiation, the provision of some specific macronutrients or micronutrients, the use of probiotics) and metabolic treatments. The most interesting strategies seem to be n-3 polyunsaturated fatty acids, vitamin D, antioxidant micronutrients and propranolol, given their safety, their accessibility for clinical use, and their benefits in clinical studies in the specific context of critical care. However, the optimal doses, timing and route of administration are still unknown for most of them. Furthermore, their use in the recovery phase is not well studied and defined. CONCLUSION The rationale to use strategies of inflammation modulation is obvious, based on critical illness pathophysiology and based on the increasingly described effects of some nutritional and pharmacological strategies. Regretfully, there isn't always substantial proof from clinical research regarding the positive impacts directly brought about by inflammation modulation. Some arguments come from studies performed in severe burn patients, but such results should be transposed to non-burn patients with caution. Further studies are needed to explore how the modulation of inflammation can improve the long-term outcomes after a critical illness.
Collapse
Affiliation(s)
- Anne-Françoise Rousseau
- Intensive Care Department, University Hospital of Liège, University of Liège, Avenue de l'Hôpital, 1/B35, Liège, B-4000, Belgium.
- GIGA-I3 Thematic Unit, Inflammation and Enhanced Rehabilitation Laboratory (Intensive Care), GIGA-Research, University of Liège, Liège, Belgium.
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
8
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
9
|
Chen W, Song J, Gong S. Advances in nutritional metabolic therapy to impede the progression of critical illness. Front Nutr 2024; 11:1416910. [PMID: 39036495 PMCID: PMC11259093 DOI: 10.3389/fnut.2024.1416910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
With the advancement of medical care and the continuous improvement of organ support technologies, some critically ill patients survive the acute phase of their illness but still experience persistent organ dysfunction, necessitating long-term reliance on intensive care and organ support, known as chronic critical illness. Chronic critical illness is characterized by prolonged hospital stays, high mortality rates, and significant resource consumption. Patients with chronic critical illness often suffer from malnutrition, compromised immune function, and poor baseline health, which, combined with factors like shock or trauma, can lead to intestinal mucosal damage. Therefore, effective nutritional intervention for patients with chronic critical illness remains a key research focus. Nutritional therapy has emerged as one of the essential components of the overall treatment strategy for chronic critical illness. This paper aims to provide a comprehensive review of the latest research progress in nutritional support therapy for patients with chronic critical illness.
Collapse
Affiliation(s)
- Wenwei Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Song
- Zhejiang Hospital, Hangzhou, China
| | | |
Collapse
|
10
|
Walsh M, Martindale R. A review of perioperative immune-modulating and metabolic-modulating nutrition strategies for bowel resection surgery. JPEN J Parenter Enteral Nutr 2024; 48:538-545. [PMID: 38689534 DOI: 10.1002/jpen.2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Focused perioperative nutrition strategies have proven benefits on the outcomes for patients undergoing major abdominal surgery. In this brief article, we will review these strategies and the evidence to support them with a focus on gastrointestinal anastomotic healing. We will elaborate the risks and benefits of enteral feeds, immune- and metabolic-modulating formulas, prebiotics and probiotics, and prehabilitation in preparation for surgery. Additionally, we will discuss the role of fish oils (eicosapentaenoic acid and docosahexaenoic acid) in the surgical patient and new data on specialized proresolving mediators in inflammation resolution. Finally, this article will consider the harmful impact surgical trauma has on the microbiome and the potential for perioperative dietary modulation to attenuate these negative effects.
Collapse
Affiliation(s)
- Maura Walsh
- Department of Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, Oregon, USA
| |
Collapse
|
11
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
12
|
Chadda KR, Puthucheary Z. Persistent inflammation, immunosuppression, and catabolism syndrome (PICS): a review of definitions, potential therapies, and research priorities. Br J Anaesth 2024; 132:507-518. [PMID: 38177003 PMCID: PMC10870139 DOI: 10.1016/j.bja.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024] Open
Abstract
Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) is a clinical endotype of chronic critical illness. PICS consists of a self-perpetuating cycle of ongoing organ dysfunction, inflammation, and catabolism resulting in sarcopenia, immunosuppression leading to recurrent infections, metabolic derangements, and changes in bone marrow function. There is heterogeneity regarding the definition of PICS. Currently, there are no licensed treatments specifically for PICS. However, findings can be extrapolated from studies in other conditions with similar features to repurpose drugs, and in animal models. Drugs that can restore immune homeostasis by stimulating lymphocyte production could have potential efficacy. Another treatment could be modifying myeloid-derived suppressor cell (MDSC) activation after day 14 when they are immunosuppressive. Drugs such as interleukin (IL)-1 and IL-6 receptor antagonists might reduce persistent inflammation, although they need to be given at specific time points to avoid adverse effects. Antioxidants could treat the oxidative stress caused by mitochondrial dysfunction in PICS. Possible anti-catabolic agents include testosterone, oxandrolone, IGF-1 (insulin-like growth factor-1), bortezomib, and MURF1 (muscle RING-finger protein-1) inhibitors. Nutritional support strategies that could slow PICS progression include ketogenic feeding and probiotics. The field would benefit from a consensus definition of PICS using biologically based cut-off values. Future research should focus on expanding knowledge on underlying pathophysiological mechanisms of PICS to identify and validate other potential endotypes of chronic critical illness and subsequent treatable traits. There is unlikely to be a universal treatment for PICS, and a multimodal, timely, and personalised therapeutic strategy will be needed to improve outcomes for this growing cohort of patients.
Collapse
Affiliation(s)
- Karan R Chadda
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Homerton College, University of Cambridge, Cambridge, UK; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
13
|
Zhou J, Zhang M, Ju X, Wang H, Xiao H, Zhai Z, Zhong X, Hong J. Increased monocytic myeloid-derived suppressor cells in type 2 diabetes correlate with hyperglycemic and was a risk factor of infection and tumor occurrence. Sci Rep 2024; 14:4384. [PMID: 38388535 PMCID: PMC10883972 DOI: 10.1038/s41598-024-54496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
To investigate the frequency of monocytic myeloid-derived suppressor cells (M-MDSCs) in type 2 diabetes mellitus (T2DM) patients and explore the potential associations between M-MDSCs, glycemic control, and the occurrence of infections and tumor. 102 healthy and 77 T2DM individuals were enrolled. We assessed the M-MDSCs frequency, levels of fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), and other relevant indicators. Each patient underwent a follow-up of at least 6 months after M-MDSCs detection. The M-MDSCs frequency was significantly higher in patients with poor glycemic control (PGC) compared to the healthy population (P < 0.001), whereas there was no significant difference between patients with good glycemic control and the healthy (P > 0.05). There was a positive correlation between the M-MDSCs frequency and FPG, HbA1c (R = 0.517 and 0.315, P < 0.001, respectively). T2DM patients with abnormally increased M-MDSCs have a higher incidence of infection and tumor (48.57% and 11.43% respectively). Our results shed new light on the pathogenesis of T2DM, help to understand why T2DM patients are susceptible to infection and tumor and providing novel insights for future prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjie Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
- Department of Endocrinology, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Xiaodi Ju
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huiping Wang
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hao Xiao
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhimin Zhai
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China.
- Nursing International Collaboration Research Center of Anhui Province, Hefei, 230601, Anhui, China.
| |
Collapse
|
14
|
Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B, He Y. Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant 2023; 23:1359-1374. [PMID: 37225089 DOI: 10.1016/j.ajt.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Rapamycin is an immunosuppressive drug that is widely used in the postsurgery management of transplantation. To date, the mechanism by which rapamycin reduces posttransplant neovascularization has not been fully understood. Given the original avascularity and immune privilege of the cornea, corneal transplantation is considered as an ideal model to investigate neovascularization and its effects on allograft rejection. Previously, we found that myeloid-derived suppressor cells (MDSC) prolong corneal allograft survival through suppression of angiogenesis and lymphangiogenesis. Here, we show that depletion of MDSC abolished rapamycin-mediated suppression of neovascularization and elongation of corneal allograft survival. RNA-sequencing analysis revealed that rapamycin dramatically enhanced the expression of arginase 1 (Arg1). Furthermore, an Arg1 inhibitor also completely abolished the rapamycin-mediated beneficial effects after corneal transplantation. Taken together, these findings indicate that MDSC and elevated Arg1 activity are essential for the immunosuppressive and antiangiogenic functions of rapamycin.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Lingling Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yumin Huang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Xinqi Zhu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
15
|
Casirati A, Da Prat V, Bettiga A, Aretano L, Trevisani F, Cereda E, Briganti A, Colombo E, Preziati G, De Simeis F, Salonia A, Montorsi F, Caccialanza R, Naspro R. Immunonutrition in Radical Cystectomy: State of the Art and Perspectives. Cancers (Basel) 2023; 15:3747. [PMID: 37509408 PMCID: PMC10378592 DOI: 10.3390/cancers15143747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Preoperative nutritional status is a pivotal aspect to consider in patients with cancer undergoing radical cystectomy (RC), as those at risk of malnutrition or already malnourished are more prone to post-surgical complications. The loss of muscle mass is a major consequence of cancer-related malnutrition. It is associated with increased risk of hospital readmission, longer hospitalization, and higher mortality. Nowadays, the close relationship between nutritional and immunological aspects under stressful conditions, such as surgery, represents an emerging scientific and clinical issue. Indeed, the synergistic action of reduced food intake and systemic inflammation generates metabolic derangements with tissue catabolism, including skeletal muscle breakdown, which is, in turn, associated with immune system dysfunction. In order to offer an additional immune-nutritional boost to the post-surgical phase, particularly in malnourished patients, nutritional support may include oral nutritional supplements and/or enteral formulas enriched with specific nutrients such as omega-3 fatty acids, arginine, glutamine, and nucleotides, with acknowledged immune-modulating effects. In the present narrative review, we addressed the state of the art of the available scientific literature on the benefit of immunonutrition in patients undergoing RC for cancer and suggest possible future perspectives to be explored. Although the role of immunonutrition was found to be little explored in the context of urologic oncology, the preliminary available data on radical cystectomy, summarized in the present paper, are promising and suggest that it may improve postoperative outcomes through immunomodulation, regardless of nutritional status before surgery.
Collapse
Affiliation(s)
- Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Valentina Da Prat
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Arianna Bettiga
- Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Lucia Aretano
- Urology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Trevisani
- Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alberto Briganti
- Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Colombo
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giorgia Preziati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca De Simeis
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Salonia
- Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Montorsi
- Department of Urology and Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Richard Naspro
- Urology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
16
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
17
|
Ogilvie J, Mittal R, Sangster W, Parker J, Lim K, Kyriakakis R, Luchtefeld M. Preoperative Immuno-Nutrition and Complications After Colorectal Surgery: Results of a 2-Year Prospective Study. J Surg Res 2023; 289:182-189. [PMID: 37121044 DOI: 10.1016/j.jss.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Preoperative immuno-nutrition has been associated with reductions in infectious complications and length of stay, but remains unstudied in the setting of an enhanced recovery protocol. The objective was to evaluate outcomes after elective colorectal surgery with the addition of a preoperative immuno-nutrition supplement. METHODS In October 2017, all major colorectal surgeries were given an arginine-based supplement prior to surgery. The control group consisted of cases within the same enhanced recovery protocol from three years prior. The primary outcome was a composite of overall morbidity. Secondary outcomes were infectious complications and length of stay with subgroup analysis based on degrees of malnutrition. RESULTS Of 826 patients, 514 were given immuno-nutrition prospectively and no differences in complication rates (21.5% versus 23.9%, P = 0.416) or surgical site infections (SSIs) (6.4% versus 6.9%, P = 0.801) were observed. Hospitalization was slightly shorter in the immuno-nutrition cohort (5.0 [3.0, 7.0], versus 5.5 days [3.6, 7.9], P = 0.002). There was a clinically insignificant difference in prognostic nutrition index scores between cohorts (35.2 ± 5.6 versus 36.1 ± 5.0, P = 0.021); however, subgroup analysis (< 33, 34-38 and > 38) failed to demonstrate an association with complications (P = 0.275) or SSIs (P = 0.640) and immuno-nutrition use. CONCLUSIONS Complication rates and SSIs were unchanged with the addition of immuno-nutrition before elective colorectal surgery. The association with length of stay is small and without clinical significance; therefore, the routine use of immuno-nutrition in this setting is of questionable benefit.
Collapse
Affiliation(s)
- James Ogilvie
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan.
| | - Rohin Mittal
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| | - William Sangster
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| | - Jessica Parker
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| | - Kelvin Lim
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| | - Roxanne Kyriakakis
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| | - Martin Luchtefeld
- Michigan State University-affiliated hospitals, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
18
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Tang WF, Ye HY, Tang X, Su JW, Xu KM, Zhong WZ, Liang Y. Adjuvant immunotherapy in early-stage resectable non-small cell lung cancer: A new milestone. Front Oncol 2023; 13:1063183. [PMID: 36776323 PMCID: PMC9909200 DOI: 10.3389/fonc.2023.1063183] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Currently, chemotherapy is the standard adjuvant treatment for early-stage non-small cell lung cancer (NSCLC). However, adjuvant cisplatin-based chemotherapy after surgery has been shown to improve 5-year survival rates by only 4-5%. Immunotherapy using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced NSCLC, there is a growing interest in the role of immunotherapy in early-stage NSCLC. Here, we summarize the rationale for adjuvant immunotherapy, including the postoperative immunosuppressive environment and immunological effects of platinum chemotherapy. Many ongoing clinical trials and the related progress in adjuvant immunotherapy in early-stage resectable NSCLC are discussed. Furthermore, we highlight several unresolved challenges, including markers predictive of treatment benefit, the efficacy of treatment for some oncogene-addicted tumors, the optimal combination therapy, the duration of adjuvant immunotherapy, and optimal selection between neoadjuvant and adjuvant immunotherapy. Early findings in some clinical trials are promising, and updated overall survival results will be useful for validating the current role of adjuvant immunotherapy, particularly in the context of perioperative strategy.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Hong-Yu Ye
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xuan Tang
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Jian-Wei Su
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Kang-Mei Xu
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Liang
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
20
|
Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023; 12:cells12020262. [PMID: 36672197 PMCID: PMC9856332 DOI: 10.3390/cells12020262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, rapidly spread worldwide, causing an ongoing global pandemic. While the respiratory system is the most common site of infection, a significant number of reported cases indicate gastrointestinal (GI) involvement. GI symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea. Although the mechanisms of GI pathogenesis are still being examined, viral components isolated from stool samples of infected patients suggest a potential fecal-oral transmission route. In addition, viral RNA has been detected in blood samples of infected patients, making hematologic dissemination of the virus a proposed route for GI involvement. Angiotensin-converting enzyme 2 (ACE2) receptors serve as the cellular entry mechanism for the virus, and these receptors are particularly abundant throughout the GI tract, making the intestine, liver, and pancreas potential extrapulmonary sites for infection and reservoirs sites for developing mutations and new variants that contribute to the uncontrolled spread of the disease and resistance to treatments. This transmission mechanism and the dysregulation of the immune system play a significant role in the profound inflammatory and coagulative cascades that contribute to the increased severity and risk of death in several COVID-19 patients. This article reviews various potential mechanisms of gastrointestinal, liver, and pancreatic injury.
Collapse
Affiliation(s)
- Zaid Khreefa
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Mallory T. Barbier
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gordon Love
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
21
|
Vanzant E, Frayman R, Hensley S, Rosenthal M. Should Anabolic Agents be Used for Resolving Catabolism in Post-ICU Recovery? CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Adeyemi DH, Odetayo AF, Hamed MA, Akhigbe RE. Impact of COVID 19 on erectile function. Aging Male 2022; 25:202-216. [PMID: 35924485 DOI: 10.1080/13685538.2022.2104833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Purpose: COVID-19, a novel infection, presented with several complications, including socioeconomical and reproductive health challenges such as erectile dysfunction (ED). The present review summarizes the available shreds of evidence on the impact of COVID-19 on ED.Materials and methods: All published peer-reviewed articles from the onset of the COVID-19 outbreak to date, relating to ED, were reviewed. Results: Available pieces of evidence that ED is a consequence of COVID-19 are convincing. COVID-19 and ED share common risk factors such as disruption of vascular integrity, cardiovascular disease (CVD), cytokine storm, diabetes, obesity, and chronic kidney disease (CKD). COVID-19 also induces impaired pulmonary haemodynamics, increased ang II, testicular damage and low serum testosterone, and reduced arginine-dependent NO bioavailability that promotes reactive oxygen species (ROS) generation and endothelial dysfunction, resulting in ED. In addition, COVID-19 triggers psychological/mental stress and suppresses testosterone-dependent dopamine concentration, which contributes to incident ED.Conclusions: In conclusion, COVID-19 exerts a detrimental effect on male reproductive function, including erectile function. This involves a cascade of events from multiple pathways. As the pandemic dwindles, identifying the long-term effects of COVID-19-induced ED, and proffering adequate and effective measures in militating against COVID-19-induced ED remains pertinent.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Nigeria
| | - A F Odetayo
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- The Brainwill Laboratories, Osogbo, Nigeria
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
23
|
Chai H, Gu Q, Robertson DL, Hughes J. Defining the characteristics of interferon-alpha-stimulated human genes: insight from expression data and machine learning. Gigascience 2022; 11:giac103. [PMID: 36399061 PMCID: PMC9673497 DOI: 10.1093/gigascience/giac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associated with the stimulation of human genes in response to IFN-α. RESULTS We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction. Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs. CONCLUSIONS ISGs have some unique properties that make them different from the non-ISGs. The representation of some properties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in machine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the prediction.
Collapse
Affiliation(s)
- Haiting Chai
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
24
|
Inflammatory Response, Immunosuppression and Arginase Activity after Cardiac Surgery Using Cardiopulmonary Bypass. J Clin Med 2022; 11:jcm11144187. [PMID: 35887950 PMCID: PMC9324329 DOI: 10.3390/jcm11144187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Major surgeries suppress patients’ cellular immunity for several days, but the mechanisms underlying this T-cell dysfunction are not well understood. A decreased L-Arginine (L-Arg) level may inhibit T-cell function. Arginase 1 (Arg 1) is induced after traumatic injury, leading to molecular changes in T cells, including decreased expression of cell surface T-cell receptors (TCRs) and a loss in CD3ζ chain expression. In this study, we examined the temporal patterns of CD3ζ expression and Arg 1 activity in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Methods: We determined the CD3ζ chain expression; the Arg 1 activity; and the leukocyte, neutrophil and lymphocyte levels of patients on the day before surgery and at 24, 48 and 72 h after surgery. Results: Fifty adult patients scheduled for elective cardiac surgery with CPB were eligible for enrolment. Arginase activity was significantly increased between the day before surgery and at 24, 48 and 72 h after surgery (p < 0.01), and CD3ζ expression was significantly decreased between the day before surgery and at 24, 48 and 72 h after surgery (p < 0.001). We observed significant leukocytosis, neutrophilia and lymphopenia after surgery. Conclusions: The decreased CD3ζ chain expression could be due to the increased Arg 1 activity secondary to the activation of neutrophils in cardiac surgery under CPB. These findings could explain the limited immune-system-mediated organ damage resulting from systemic inflammatory response to major cardiac surgery with CPB.
Collapse
|
25
|
Zhang J, Luo W, Miao C, Zhong J. Hypercatabolism and Anti-catabolic Therapies in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Nutr 2022; 9:941097. [PMID: 35911117 PMCID: PMC9326442 DOI: 10.3389/fnut.2022.941097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/06/2022] Open
Abstract
Owing to the development of intensive care units, many patients survive their initial insults but progress to chronic critical illness (CCI). Patients with CCI are characterized by prolonged hospitalization, poor outcomes, and significant long-term mortality. Some of these patients get into a state of persistent low-grade inflammation, suppressed immunity, and ongoing catabolism, which was defined as persistent inflammation, immunosuppression, and catabolism syndrome (PICS) in 2012. Over the past few years, some progress has been made in the treatment of PICS. However, most of the existing studies are about the role of persistent inflammation and suppressed immunity in PICS. As one of the hallmarks of PICS, hypercatabolism has received little research attention. In this review, we explore the potential pathophysiological changes and molecular mechanisms of hypercatabolism and its role in PICS. In addition, we summarize current therapies for improving the hypercatabolic status and recommendations for patients with PICS.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wenchen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, China
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- *Correspondence: Jing Zhong,
| |
Collapse
|
26
|
Dietary modification of myeloid-derived suppressor cells (MDSC) activity in sepsis. Proc Natl Acad Sci U S A 2022; 119:e2201396119. [PMID: 35290112 PMCID: PMC8944247 DOI: 10.1073/pnas.2201396119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction. Proc Natl Acad Sci U S A 2022; 119:2115139119. [PMID: 35173051 PMCID: PMC8872724 DOI: 10.1073/pnas.2115139119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Since sepsis induces a sustained immunosuppression responsible for secondary infections acquisition and late mortality, restoring immune function would result in a better outcome. Given the role of arginine deficiency in T cell dysfunction, the evaluation of restoring arginine availability in sepsis has to be explored. Using an animal model of sepsis, we demonstrated that increasing arginine availability enhanced mitochondrial T cell function and decreased sepsis-induced immunosuppression. Severe sepsis induces a sustained immune dysfunction associated with poor clinical behavior. In particular, lymphopenia along with increased lymphocyte apoptosis and decreased lymphocyte proliferation, enhanced circulating regulatory T cells (Treg), and the emergence of myeloid-derived suppressor cells (MDSCs) have all been associated with persistent organ dysfunction, secondary infections, and late mortality. The mechanisms involved in MDSC-mediated T cell dysfunction during sepsis share some features with those described in malignancies such as arginine deprivation. We hypothesized that increasing arginine availability would restore T cell function and decrease sepsis-induced immunosuppression. Using a mouse model of sepsis based on cecal ligation and puncture and secondary pneumonia triggered by methicillin-resistant Staphylococcus aureus inoculation, we demonstrated that citrulline administration was more efficient than arginine in increasing arginine plasma levels and restoring T cell mitochondrial function and proliferation while reducing sepsis-induced Treg and MDSC expansion. Because there is no specific therapeutic strategy to restore immune function after sepsis, we believe that our study provides evidence for developing citrulline-based clinical studies in sepsis.
Collapse
|
28
|
Vantucci CE, Guyer T, Leguineche K, Chatterjee P, Lin A, Nash KE, Hastings MA, Fulton T, Smith CT, Maniar D, Frey Rubio DA, Peterson K, Harrer JA, Willett NJ, Roy K, Guldberg RE. Systemic Immune Modulation Alters Local Bone Regeneration in a Delayed Treatment Composite Model of Non-Union Extremity Trauma. Front Surg 2022; 9:934773. [PMID: 35874126 PMCID: PMC9300902 DOI: 10.3389/fsurg.2022.934773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.
Collapse
Affiliation(s)
- Casey E Vantucci
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Tyler Guyer
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Kelly Leguineche
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Paramita Chatterjee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America.,Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Angela Lin
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Kylie E Nash
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Molly Ann Hastings
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Travis Fulton
- The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, United States of America.,Department of Orthopaedics, Emory University, Atlanta, GA, United States of America
| | - Clinton T Smith
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - David A Frey Rubio
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Kaya Peterson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Julia Andraca Harrer
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Nick J Willett
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America.,The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, United States of America.,Department of Orthopaedics, Emory University, Atlanta, GA, United States of America
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Robert E Guldberg
- Knight Campus or Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
29
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:3951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
Affiliation(s)
- Ayobami Adebayo
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.A.); (F.V.); (S.W.); (J.G.); (M.E.); (S.S.J.); (K.D.); (U.K.); (P.M.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University and International Translational Research and Medical Education (ITME) Consortium, 80100 Naples, Italy
| |
Collapse
|
30
|
Li X, Liu J, Xing Z, Tang J, Sun H, Zhang X, Lv S, Chen Z, Shi M, Chen M, Zuo S, Lyu X, He Y. Polymorphonuclear myeloid-derived suppressor cells link inflammation and damage response after trauma. J Leukoc Biol 2021; 110:1143-1161. [PMID: 34636072 DOI: 10.1002/jlb.3ma0821-029r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Elimination of the posttraumatic inflammatory response and recovery of homeostasis are crucial for the positive prognosis of trauma patients. Myeloid-derived suppressor cells (MDSCs) are known to play a regulatory role in the posttraumatic immune response in mice, but their induction source and involved potential mechanism are poorly understood. Here, we report that polymorphonuclear MDSCs (PMN-MDSCs) are activated after trauma and are closely associated with the progression of the posttraumatic inflammatory response. In humans, lectin-type oxidized LDL receptor 1 (LOX1) was used to specifically characterize LOX1+ PMN-MDSCs. Trauma patients showed high intracellular reactive oxygen species (ROS) production, as well as activation of LOX1+ PMN-MDSCs. These MDSCs contribute to the anti-inflammatory immune response by regulating the Treg/Th17 and Th2/Th1 balances after trauma, increasing the levels of anti-inflammatory factors, and decreasing the levels of proinflammatory factors. The number of LOX1+ PMN-MDSCs was positively correlated with the positive clinical prognosis of trauma patients with infection. Activation of LOX1+ PMN-MDSCs is mediated by NF-κB signal, and TGF-β1 may be as an important inducer for LOX1+ PMN-MDSCs in the posttraumatic cytokine environment. In a pseudofracture trauma mouse model, we also observed the activation of PMN-MDSCs, accompanying high levels of intracellular ROS production, NF-κB phosphorylation, and changes in the inflammatory environment, in particularly by regulating the Treg/Th17 and Th2/Th1 balance. And more significantly, posttraumatic inflammation was alleviated in mice after transferring trauma-derived PMN-MDSCs, but aggravated after injecting with Gr1 agonistic antibody. These findings provide evidence for the specific role of PMN-MDSCs in the regulation of posttraumatic inflammation.
Collapse
Affiliation(s)
- Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaijun Lv
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengyu Shi
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Alsyouf M, Djaladat H, Daneshmand S. An emerging role for immuno-nutrition in patients undergoing radical cystectomy. Nat Rev Urol 2021; 19:1-2. [PMID: 34611338 DOI: 10.1038/s41585-021-00529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhannad Alsyouf
- USC Department of Urology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Hooman Djaladat
- USC Department of Urology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Siamak Daneshmand
- USC Department of Urology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Li Y, Zou L, Chu L, Ye L, Ni J, Chu X, Guo T, Yang X, Zhu Z. Identification and Integrated Analysis of circRNA and miRNA of Radiation-Induced Lung Injury in a Mouse Model. J Inflamm Res 2021; 14:4421-4431. [PMID: 34511976 PMCID: PMC8422032 DOI: 10.2147/jir.s322736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation-induced lung injury (RILI) is a main threat to patients who received thoracic radiotherapy. Thus, understanding the molecular mechanism of RILI is of great importance. Circular RNAs (circRNAs) have been found to act as a regulator of multiple biological processes, and the circRNA-microRNA (miRNA)-mRNA axis could play an important role in the signaling pathway of many human diseases including radiation injury. Methods First, the circRNA and miRNA of RILI in a mouse model were investigated. The mice received 12 Gy of thoracic irradiation, and the irradiated lung tissues at 48 hours after irradiation were analyzed by RNA sequencing (RNA-seq) compared with normal lung tissues. Then, Gene Ontology analysis of the target mRNAs of the significantly differently expressed circRNAs was performed. Results In the irradiated group, inflammatory changes in lungs were observed; 21 significantly up-regulated and 33 down-regulated significantly miRNAs were identified (p < 0.05). Among 27 differentially expressed circRNAs, 10 were down-regulated and 17 were up-regulated in the irradiated group [log2 (fold change) > 1 or < −1, p<0.05]. These differentially expressed miRNAs took part in a series of cellular processes, such as positive regulation of alpha-beta T-cell proliferation, interstitial matrix, collagen fibril organization, chemokine receptor activity, cellular defense response, and B-cell receptor signaling pathway. The differentially expressed circRNAs were related to Th1 and Th2 differentiation pathways, and the predicted mRNAs were verified. Conclusion This study revealed immune-related molecular pathways play an important role in the early response after radiotherapy. In the future, research on the target mechanism and early intervention of circRNAs with associated miRNAs such as circRNA5229, circRNA544, and circRNA3340, could benefit the treatment of RILI.
Collapse
Affiliation(s)
- Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
33
|
Chronic Critical Illness and PICS Nutritional Strategies. J Clin Med 2021; 10:jcm10112294. [PMID: 34070395 PMCID: PMC8197535 DOI: 10.3390/jcm10112294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
The nutritional hallmark of chronic critical illness (CCI) after sepsis is persistent inflammation, immunosuppression, and catabolism syndrome (PICS), which results in global resistance to the anabolic effect of nutritional supplements. This ultimately leaves these patients in a downward phenotypic spiral characterized by cachexia with profound weakness, decreased capacity for rehabilitation, and immunosuppression with the propensity for sepsis recidivism. The persistent catabolism is driven by a pathologic low-grade inflammation with the inability to return to homeostasis and by ongoing increased energy expenditure. Better critical care support systems and advances in technology have led to increased intensive care unit (ICU) survival, but CCI due to PICS with poor long-term outcomes has emerged as a frequent phenotype among ICU sepsis survivors. Unfortunately, therapies to mitigate or reverse PICS-CCI are limited, and recent evidence supports that these patients fail to respond to early ICU evidence-based nutrition protocols. A lack of randomized controlled trials has limited strong recommendations for nutrition adjuncts in these patients. However, based on experience in other conditions characterized by a similar phenotype, immunonutrients aimed at counteracting inflammation, immunosuppression, and catabolism may be important for improving outcomes in PICS-CCI patients. This manuscript intends to review several immunonutrients as adjunctive therapies in treating PICS-CCI.
Collapse
|
34
|
Do-Nguyen CC, Stevens RM, Ochoa Gautier JB, Throckmorton A, Mulinari L. Invited commentary for asymmetric dimethylarginine (ADMA): Is it a risk factor in the repair of aortic coarctation? J Card Surg 2021; 36:2741-2742. [PMID: 33993544 DOI: 10.1111/jocs.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Chi C Do-Nguyen
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Randy M Stevens
- Department of Pediatric Cardiac Surgery, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Juan B Ochoa Gautier
- Intensive Care Unit, Hunterdon Medical Center, Raritan Township, New Jersey, USA
| | - Amy Throckmorton
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Leonardo Mulinari
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard Miller School of Medicine, Holtz Children's Hospital, Jackson Memorial Hospital, Miami, Florida, USA
| |
Collapse
|
35
|
Azhar N, Namas RA, Almahmoud K, Zaaqoq A, Malak OA, Barclay D, Yin J, El-Dehaibi F, Abboud A, Simmons RL, Zamora R, Billiar TR, Vodovotz Y. A putative "chemokine switch" that regulates systemic acute inflammation in humans. Sci Rep 2021; 11:9703. [PMID: 33958628 PMCID: PMC8102583 DOI: 10.1038/s41598-021-88936-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic inflammation is complex and likely drives clinical outcomes in critical illness such as that which ensues following severe injury. We obtained time course data on multiple inflammatory mediators in the blood of blunt trauma patients. Using dynamic network analyses, we inferred a novel control architecture for systemic inflammation: a three-way switch comprising the chemokines MCP-1/CCL2, MIG/CXCL9, and IP-10/CXCL10. To test this hypothesis, we created a logical model comprising this putative architecture. This model predicted key qualitative features of systemic inflammation in patient sub-groups, as well as the different patterns of hospital discharge of moderately vs. severely injured patients. Thus, a rational transition from data to data-driven models to mechanistic models suggests a novel, chemokine-based mechanism for control of acute inflammation in humans and points to the potential utility of this workflow in defining novel features in other complex diseases.
Collapse
Affiliation(s)
- Nabil Azhar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Rami A Namas
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Akram Zaaqoq
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Othman A Malak
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Richard L Simmons
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, W944 Starzl Biomedical Sciences Tower, 200 Lothrop St, Pittsburgh, PA, 15213, USA. .,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
36
|
Fenner BP, Darden DB, Kelly LS, Rincon J, Brakenridge SC, Larson SD, Moore FA, Efron PA, Moldawer LL. Immunological Endotyping of Chronic Critical Illness After Severe Sepsis. Front Med (Lausanne) 2021; 7:616694. [PMID: 33659259 PMCID: PMC7917137 DOI: 10.3389/fmed.2020.616694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death. This syndrome of chronic critical illness (CCI) includes sepsis patients who survive the early "cytokine or genomic storm," but fail to fully recover, and progress into a persistent state of manageable organ injury requiring prolonged intensive care. These patients are commonly discharged to long-term care facilities where sepsis recidivism is high. As many as 33% of sepsis survivors develop CCI. CCI is the result, at least in part, of a maladaptive host response to chronic pattern-recognition receptor (PRR)-mediated processes. This maladaptive response results in dysregulated myelopoiesis, chronic inflammation, T-cell atrophy, T-cell exhaustion, and the expansion of suppressor cell functions. We have defined this panoply of host responses as a persistent inflammatory, immune suppressive and protein catabolic syndrome (PICS). Why is this important? We propose that PICS in survivors of critical illness is its own common, unique immunological endotype driven by the constant release of organ injury-associated, endogenous alarmins, and microbial products from secondary infections. While this syndrome can develop as a result of a diverse set of pathologies, it represents a shared outcome with a unique underlying pathobiological mechanism. Despite being a common outcome, there are no therapeutic interventions other than supportive therapies for this common disorder. Only through an improved understanding of the immunological endotype of PICS can rational therapeutic interventions be designed.
Collapse
Affiliation(s)
- Brittany P Fenner
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - D B Darden
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lauren S Kelly
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar Rincon
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
37
|
Association between disease-related malnutrition and innate immunity gene expression in critically ill patients at intensive care unit admission. Cent Eur J Immunol 2021; 45:414-424. [PMID: 33658890 PMCID: PMC7882404 DOI: 10.5114/ceji.2020.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to analyse the relationship between nutritional disorders and the expression of innate antibacterial response genes in patients admitted to the intensive care unit (ICU). In 46 patients with severe malnutrition and life-threatening surgical complications, nutritional status tests were performed on the basis of the NRS 2002 (Nutritional Risk Screening) scale, cytokine, albumin, C-reactive protein concentrations, anthropometric tests, and body composition analysis. Concurrently, the expression of Toll-like receptor 2, NOD1, TRAF6, and HMGB1 genes was determined in peripheral blood leukocytes at the mRNA level using real-time polymerase chain reaction. It was found that both the nutritional status and the gene expression changed depending on the group of patients studied (including the group of survivors vs. non-survivors). Significant correlations were found between the results of routine tests used in the diagnostics of malnutrition (including NRS 2002, resistance, reactance, phase angle, excess of extracellular water) and the expression of the studied genes. Moreover, the expression of TRAF6 and HMGB1 genes correlated with the Acute Physiology and Chronic Health Evaluation II scale and the age of the patients. The results of the research suggest that the expression of innate antibacterial response genes may be a new diagnostic tool complementing the assessment of nutritional disorders in surgical patients admitted to the ICU. These tests may be helpful in providing more accurate diagnostics of the genetic effects of malnutrition and in the monitoring of patients for whom nutritional treatment is planned to support the functions of the immune system, thereby increasing the effectiveness of this type of treatment in the ICU.
Collapse
|
38
|
Vantucci CE, Ahn H, Fulton T, Schenker ML, Pradhan P, Wood LB, Guldberg RE, Roy K, Willett NJ. Development of systemic immune dysregulation in a rat trauma model of biomaterial-associated infection. Biomaterials 2021; 264:120405. [PMID: 33069135 PMCID: PMC8117743 DOI: 10.1016/j.biomaterials.2020.120405] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Orthopedic biomaterial-associated infections remain a major clinical challenge, with Staphylococcus aureus being the most common pathogen. S. aureus biofilm formation enhances immune evasion and antibiotic resistance, resulting in a local, indolent infection that can persist long-term without symptoms before eventual hardware failure, bone non-union, or sepsis. Immune modulation is an emerging strategy to combat host immune evasion by S. aureus. However, most immune modulation strategies are focused on local immune responses at the site of infection, with little emphasis on understanding the infection-induced and orthopedic-related systemic immune responses of the host, and their role in local infection clearance and tissue regeneration. This study utilized a rat bone defect model to investigate how implant-associated infection affects the systemic immune response. Long-term systemic immune dysregulation was observed with a significant systemic decrease in T cells and a concomitant increase in immunosuppressive myeloid-derived suppressor cells (MDSCs) compared to non-infected controls. Further, the control group exhibited a regulated and coordinated systemic cytokine response, which was absent in the infection group. Multivariate analysis revealed high levels of MDSCs to be most correlated with the infection group, while high levels of T cells were most correlated with the control group. Locally, the infection group had attenuated macrophage infiltration and increased levels of MDSCs in the local soft tissue compared to non-infected controls. These data reveal the widespread impacts of an orthopedic infection on both the local and the systemic immune responses, uncovering promising targets for diagnostics and immunotherapies that could optimize treatment strategies and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Casey E Vantucci
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyunhee Ahn
- The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Travis Fulton
- The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Mara L Schenker
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; Grady Memorial Hospital, Atlanta, GA, USA
| | - Pallab Pradhan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nick J Willett
- The Atlanta Veterans Affairs Medical Center Atlanta, Decatur, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
39
|
Lipid Metabolism in Tumor-Associated Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:71-85. [PMID: 33740244 DOI: 10.1007/978-981-33-6785-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulative data demonstrate that during the initiation and progression of tumors, several types of cellular components in tumor microenvironment, including tumor cells and immune cells, exhibit malfunctions in cellular energy metabolism. For instance, lipid metabolism impairments in immune cells are crucial in coordinating immunosuppression and tumor immune escape. In particular, excessive lipids have been shown to exhibit negative effects on innate immunity. Previous studies on lipid metabolism in immune cells are mainly focused on macrophages and T lymphocytes. Although natural killer (NK) cells are major players in the innate elimination of virus, bacteria, and tumor cells, available literature reports related with lipid metabolism in NK cells and tumor-associated NK (TANK) cells are very sparse. Despite these, the importance and clinical relevance of the crosstalk among lipid metabolism, NK/TANK cells, and tumors have been clearly indicated. In this chapter, following a general description of NK and TANK cells, our knowledge on the regulation of lipid metabolism in NK cells is reviewed, with an emphasis on the roles of mTOR and SREBP signaling. Then the interactions between lipid metabolism and NK/TANK cells under pathological conditions, e.g., obesity and cancer, were carefully introduced. As there is an urgent need to reveal more regulators and to clarify detailed molecular mechanisms by which lipid metabolism interacts with NK/TANK cells, several categories of potential regulators/pathways, as well as the challenges and perspectives in this emerging field, are discussed.
Collapse
|
40
|
High-Dimensional Analysis of Immune Cell Composition Predicts Periprosthetic Joint Infections and Dissects Its Pathophysiology. Biomedicines 2020; 8:biomedicines8090358. [PMID: 32957521 PMCID: PMC7554968 DOI: 10.3390/biomedicines8090358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate diagnosis of periprosthetic joint infections (PJI) is one of the most widely researched areas in modern orthopedic endoprosthesis. However, our understanding of the immunological basis of this severe complication is still limited. In this study, we developed a flow cytometric approach to precisely characterize the immune cell composition in periprosthetic joints. Using high-dimensional multi-parametric data, we defined, for the first time, the local immune cell populations of artificial joints. We identified significant differences in the cellular distribution between infected and non-infected samples, and revealed that myeloid-derived suppressor cells (MDSCs) act as potential regulators of infiltrating immune cells in PJI. Further, we developed an algorithm to predict septic and aseptic samples with high sensitivity and specificity, that may serve as an indispensable addition to the current criteria of the Musculoskeletal Infection Society. This study describes a novel approach to flow cytometrically analyze the immune cell infiltrate of joint fluid that not only improves our understanding of the pathophysiology of PJI, but also enables the development of a novel screening tool to predict infection status. Our data further suggest that pharmacological targeting of MDSCs represents a novel strategy for addressing PJI.
Collapse
|
41
|
Myeloid-derived suppressor cells shift Th17/Treg ratio and promote systemic lupus erythematosus progression through arginase-1/miR-322-5p/TGF-β pathway. Clin Sci (Lond) 2020; 134:2209-2222. [PMID: 32808653 DOI: 10.1042/cs20200799] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Abstract
Immune cells play important roles in systemic lupus erythematosus (SLE). We previously found that myeloid-derived suppressor cell (MDSC)-derived arginase-1 (Arg-1) promoted Th17 cell differentiation in SLE. In the present study, we performed RNA-chip to identify the microRNA regulation network between MDSCs and Th17 cells. miR-542-5p in humans, as the homologous gene of miR-322-5p in mice was significantly up-regulated in the Th17+MDSC group compared with Th17 cells cultured alone and down-regulated in the Th17+MDSC+Arg-1 inhibitor group compared with the Th17+MDSC group. We further evaluated the miR-322-5p and Th17/Treg balance in mice and found that the proportions of both Th17 cells and Tregs were elevated and that miR-322-5p overexpression activated the transforming growth factor-β pathway. Moreover, although miR-322-5p expression was higher in SLE mice, it decreased after treatment with an Arg-1 inhibitor. The proportion of Th17 cells and Th17/Treg ratio correlated with miR-322-5p levels. In conclusion, MDSC-derived Arg-1 and mmu-miR-322-5p not only promote Th17 cell and Treg differentiation, but also shift the Th17/Treg ratio in SLE. The Arg-1/miR-322-5p axis may serve as a novel treatment target for SLE.
Collapse
|
42
|
Blears E, Sommerhalder C, Toliver-Kinsky T, Finnerty CC, Herndon DN. Current problems in burn immunology. Curr Probl Surg 2020; 57:100779. [PMID: 32507131 DOI: 10.1016/j.cpsurg.2020.100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Elizabeth Blears
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | | | - Tracy Toliver-Kinsky
- Department of Anesthesiology, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX.
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX; Shriners Hospitals for Children, Galveston, TX
| | | |
Collapse
|
43
|
Ou X, Lv W. Metabolic changes and interaction of tumor cell, myeloid-derived suppressor cell and T cell in hypoxic microenvironment. Future Oncol 2020; 16:383-393. [PMID: 32067476 DOI: 10.2217/fon-2019-0692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is universally acknowledged that a large number of immune cells, as well as inflammatory factors, regulatory factors and metabolites, accumulate in the tumor microenvironment to jointly promote tumor escape, development and metastasis. Hypoxia is one of the characteristics in tumor microenvironment and is a common phenomenon in all solid tumors. In tumor hypoxia response, there is a key regulator called HIF-1a, which is a key transcriptional regulatory protein that regulates many critical genes. In this paper, the effects of hypoxia on glucose metabolism of tumor cells, myeloid-derived suppressor cells and T cells in tumor microenvironment were reviewed, and the interaction among the three was also described.
Collapse
Affiliation(s)
- Xiantu Ou
- Clinical laboratory of Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province 528308, PR China
| | - Weibiao Lv
- Clinical laboratory of Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province 528308, PR China
| |
Collapse
|
44
|
Wu J, Lin M. Effects of specific nutrients on immune modulation in patients with gastrectomy. Ann Gastroenterol Surg 2020; 4:14-20. [PMID: 32021954 PMCID: PMC6992678 DOI: 10.1002/ags3.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent and lethal malignant neoplasms worldwide. The main treatment for GC is gastrectomy, which generally causes considerable metabolic stress to patients. To modulate cell function, maintain homeostasis of the immune response, reduce postoperative complications, and obtain favorable outcomes, physicians prescribe specific nutrients with immunomodulatory properties as supplementation to enteral or parenteral formulas, indicating immunonutrition. In the formulas, among the immunonutrients, glutamine, arginine, and n-3 polyunsaturated fatty acids are the most commonly used either alone or in combination. The present review summarizes and focuses on the evidence obtained from clinical trials and animal studies supporting the role of immunonutrients supplemented enterally or parenterally in total or subtotal gastrectomy. In addition, this review describes the possible molecular mechanisms underlying the protective action of these immunonutrients, which may contribute to therapeutic approaches to improve postoperative outcomes of gastrectomy. Combination of conventional therapy with immunonutrition seems to be a useful strategy to achieve synergistic effects in the treatment of GC patients.
Collapse
Affiliation(s)
- Jin‐Ming Wu
- Department of SurgeryNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ming‐Tsan Lin
- Department of SurgeryNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| |
Collapse
|
45
|
Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin Transl Med 2020; 10:199-223. [PMID: 32508035 PMCID: PMC7240866 DOI: 10.1002/ctm2.24] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Surgical resection remains the mainstay treatment for solid cancers, especially for localized disease. However, the postoperative immunosuppression provides a window for cancer cell proliferation and awakening dormant cancer cells, leading to rapid recurrences or metastases. This immunosuppressive status after surgery is associated with the severity of surgical trauma since immunosuppression induced by minimally invasive surgery is less than that of an extensive open surgery. The systemic response to tissue damages caused by surgical operations and the subsequent wound healing induced a cascade alteration in cellular immunity. After surgery, patients have a high level of circulating damage-associated molecular patterns (DAMPs), triggering a local and systemic inflammation. The inflammatory metrics in the immediate postoperative period was associated with the prognosis of cancer patients. Neutrophils provide the first response to surgical trauma, and the production of neutrophil extracellular traps (NETs) promotes cancer progression. Activated macrophage during wound healing presents a tumor-associated phenotype that cancers can exploit for their survival advantage. In addition, the amplification and activation of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) or the elevated programmed death ligand-1 and vascular endothelial growth factor expression under surgical trauma, exacerbate the immunosuppression and favor of the formation of the premetastatic niche. Therapeutic strategies to reduce the cellular immunity impairment after surgery include anti-DAMPs, anti-postoperative inflammation or inflammatory/pyroptosis signal, combined immunotherapy with surgery, antiangiogenesis and targeted therapies for neutrophils, macrophages, MDSCs, and Tregs. Further, the application of enhanced recovery after surgery also has a feasible outcome for postoperative immunity restoration. Overall, current therapies to improve the cellular immunity under the special condition after surgery are relatively lacking. Further understanding the underlying mechanisms of surgical trauma-related immunity dysfunction, phenotyping the immunosuppressive cells, and developing the related therapeutic intervention should be explored.
Collapse
Affiliation(s)
- Fan Tang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yan Tie
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanPeople's Republic of China
| | - Chongqi Tu
- Department of OrthopeadicsWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
46
|
Niavarani SR, Lawson C, Bakos O, Boudaud M, Batenchuk C, Rouleau S, Tai LH. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 2019; 19:823. [PMID: 31429730 PMCID: PMC6701111 DOI: 10.1186/s12885-019-6045-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Natural killer (NK) cell dysfunction following cancer surgery has been shown to promote metastases. Recent studies demonstrate an emerging role for lipids in the modulation of NK cell innate responses. However, the mechanisms involved in lipid modulation of NK cell postoperative anti-tumor function are unknown. This current study will determine whether the lipid accumulation via scavenger receptors on NK cells is responsible for the increase in postoperative metastasis. METHODS Lipid content in mouse and human NK cells was evaluated by flow cytometry. NK cell scavenger receptor (SR) expression was measured by microarray analysis, validated by qRT-PCR and flow cytometry. NK cell ex vivo and in vivo tumor killing was measured by chromium-release and adoptive transfer assays, respectively. The mediating role of surgery-expanded granulocytic myeloid derived suppressor cells (gMDSC) in SR induction on NK cells was evaluated using co-culture assays. RESULTS NK cells in surgery-treated mice demonstrated increased lipid accumulation, which occurred via up-regulation of MSR1, CD36 and CD68. NK cells with high lipid content had diminished ability to lyse tumor targets ex vivo. Adoptive transfer of lipid-laden NK cells into NK cell-deficient mice were unable to protect against a lung tumor challenge. Granulocytic MDSC from surgery-treated mice increased SR expression on NK cells. Colorectal cancer surgical patients showed increased NK cell lipid content, higher CD36 expression, decreased granzyme B and perforin production in addition to reduced cytotoxicity in the postoperative period. CONCLUSIONS Postoperative lipid accumulation promotes the formation of metastases by impairing NK cell function in both preclinical surgical models and human surgical colorectal cancer patient samples. Understanding and targeting the mechanisms underlying lipid accumulation in innate immune NK cells can improve prognosis in cancer surgical patients.
Collapse
Affiliation(s)
- Seyedeh Raheleh Niavarani
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Pavillon sur la Recherche Appliqué du Cancer at 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Christine Lawson
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Pavillon sur la Recherche Appliqué du Cancer at 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Orneala Bakos
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Pavillon sur la Recherche Appliqué du Cancer at 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Marie Boudaud
- Department of Pediatrics, Division of Immunology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cory Batenchuk
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Samuel Rouleau
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Pavillon sur la Recherche Appliqué du Cancer at 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Lee-Hwa Tai
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Pavillon sur la Recherche Appliqué du Cancer at 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada. .,Centre de Recherche Clinique de Centre Hospitalier de l'Universite de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
47
|
|
48
|
Abstract
Arginine is derived from dietary intake, body protein breakdown, or endogenous de novo arginine production. Arginine methylation of non-histone proteins is used in transcriptional regulation. Protein-arginine methylation is used for regulation of transcriptional and various physiological pathological processes. Protein methylation may affect protein-protein, protein-DNA, or protein-RNA interaction. Arginine has an effect on the DNA-binding activity of NF-κB, a dominant transcriptional factor in inflammation. Adduct formation results in increased secretion of messenger molecules such as cytokines and chemokines that mediate communication among cells and promote inflammation. Arginine and lysine amino acid-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Lysine and arginine-rich histones in nucleosomes on modification by environmental agents form histone-DNA adducts, making it immunogenic. Alteration of DNA resulting from photomodification could lead to the development of antibodies or mutations to modified DNA. Therefore, the DNA-arginine photoadduct and modified photoadduct could have important implications in various pathophysiological conditions such as toxicology, carcinogenesis, and autoimmune phenomena. Abbreviations: Arg: Arginine; SLE: systemic lupus erythematosus; UV: ultraviolet; Tm: thermal melting temperature; NO: nitric oxide; O2.-: superoxide anion.
Collapse
Affiliation(s)
- Haseeb Ahsan
- a Department of Biochemistry, Faculty of Dentistry , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
49
|
Oberle AD, West JM, Tobert CM, Conley GL, Nepple KG. Optimizing Nutrition Prior to Radical Cystectomy. Curr Urol Rep 2018; 19:99. [PMID: 30338466 DOI: 10.1007/s11934-018-0854-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Malnutrition in a prevalent problem in patients undergoing radical cystectomy. Preoperative malnutrition has been shown to contribute to increased rates of postoperative complications. Given the significant morbidity and mortality of the procedure of radical cystectomy, there is potential for improvement in patient outcomes by nutritional intervention. RECENT FINDINGS Prospective studies have demonstrated a reduction in postoperative infection rates in patients who receive supplemental immunonutrition prior to major surgery including radical cystectomy. These initial evaluations of nutritional optimization show significant potential for improved outcomes. Additionally, several studies using enhanced recovery after surgery protocols, which include a preoperative nutritional component, have shown a benefit in reducing length of stay. Emerging literature has shown the benefits of preoperative immunonutrition in improving postoperative outcomes of radical cystectomy. However, further work is needed to determine the best mechanism to optimize nutrition prior to radical cystectomy.
Collapse
Affiliation(s)
- Anthony D Oberle
- Department of Urology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 3RCP, Iowa City, IA, 52243-1089, USA
| | - Jeremy M West
- Department of Urology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 3RCP, Iowa City, IA, 52243-1089, USA
| | - Conrad M Tobert
- Department of Urology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 3RCP, Iowa City, IA, 52243-1089, USA
| | - Gabriel L Conley
- Department of Urology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 3RCP, Iowa City, IA, 52243-1089, USA
| | - Kenneth G Nepple
- Department of Urology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 3RCP, Iowa City, IA, 52243-1089, USA.
| |
Collapse
|
50
|
Bakos O, Lawson C, Rouleau S, Tai LH. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J Immunother Cancer 2018; 6:86. [PMID: 30176921 PMCID: PMC6122574 DOI: 10.1186/s40425-018-0398-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background Cancer surgery is necessary and life-saving. However, the majority of patients develop postoperative recurrence and metastasis, which are the main causes of cancer-related deaths. The postoperative stress response encompasses a broad set of physiological changes that have evolved to safeguard the host following major tissue trauma. These stress responses, however, intersect with cellular mediators and signaling pathways that contribute to cancer proliferation. Main Previous descriptive and emerging mechanistic studies suggest that the surgery-induced prometastatic effect is linked to impairment of both innate and adaptive immunity. Existing studies that combine surgery and immunotherapies have revealed that this combination strategy is not straightforward and patients have experienced both therapeutic benefit and drawbacks. This review will specifically assess the immunological pathways that are disrupted by oncologic surgical stress and provide suggestions for rationally combining cancer surgery with immunotherapies to improve immune and treatment outcomes. Short conclusion Given the prevalence of surgery as frontline therapy for solid cancers, the emerging data on postoperative immunosuppression and the rapid development of immunotherapy for oncologic treatment, we believe that future targeted studies of perioperative immunotherapy are warranted.
Collapse
Affiliation(s)
- Orneala Bakos
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lawson
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Samuel Rouleau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Centre de Recherche Clinique de Centre Hospitalier de l'Université de Sherbrooke (CHUS), Room 4853, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|