1
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
2
|
Heide F, Koch M, Stetefeld J. Heparin Mimetics and Their Impact on Extracellular Matrix Protein Assemblies. Pharmaceuticals (Basel) 2023; 16:ph16030471. [PMID: 36986571 PMCID: PMC10059586 DOI: 10.3390/ph16030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Heparan sulfate is a crucial extracellular matrix component that organizes structural features and functional protein processes. This occurs through the formation of protein-heparan sulfate assemblies around cell surfaces, which allow for the deliberate local and temporal control of cellular signaling. As such, heparin-mimicking drugs can directly affect these processes by competing with naturally occurring heparan sulfate and heparin chains that then disturb protein assemblies and decrease regulatory capacities. The high number of heparan-sulfate-binding proteins that are present in the extracellular matrix can cause obscure pathological effects that should be considered and examined in more detail, especially when developing novel mimetics for clinical use. The objective of this article is to investigate recent studies that present heparan-sulfate-mediated protein assemblies and the impact of heparin mimetics on the assembly and function of these protein complexes.
Collapse
Affiliation(s)
- Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Manuel Koch
- Institute for Experimental Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Aiyede M, Lim XY, Russell AAM, Patel RP, Gueven N, Howells DW, Bye N. A Systematic Review and Meta-Analysis on the Therapeutic Efficacy of Heparin and Low Molecular Weight Heparins in Animal Studies of Traumatic Brain Injury. J Neurotrauma 2023; 40:4-21. [PMID: 35880422 DOI: 10.1089/neu.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification of effective pharmacotherapies for traumatic brain injury (TBI) remains a major challenge. Treatment with heparin and its derivatives is associated with neuroprotective effects after experimental TBI; however, the optimal dosage and method of administration, modes of action, and effects on hemorrhage remain unclear. Therefore, this review aimed to systematically evaluate, analyze, and summarize the available literature on the use of heparin and low molecular weight heparins (LMWHs) as treatment options for experimental TBI. We searched two online databases (PubMed and ISI Web of Science) to identify relevant studies. Data pertaining to TBI paradigm, animal subjects, drug administration, and all pathological and behavior outcomes were extracted. Eleven studies met our pre-specified inclusion criteria, and for outcomes with sufficient numbers, data from seven publications were analyzed in a weighted mean difference meta-analysis using a random-effects model. Study quality and risk of bias were also determined. Meta-analysis revealed that heparin and its derivatives decreased brain edema, leukocyte rolling, and vascular permeability, and improved neurological function. Further, treatment did not aggravate hemorrhage. These findings must be interpreted with caution, however, because they were determined from a limited number of studies with substantial heterogeneity. Also, overall study quality was low based on absences of data reporting, and potential publication bias was identified. Importantly, we found that there are insufficient data to evaluate the variables we had hoped to investigate. The beneficial effects of heparin and LMWHs, however, suggest that further pre-clinical studies are warranted.
Collapse
Affiliation(s)
- Mimieveshiofuo Aiyede
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ash A M Russell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - David W Howells
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Yang R, Chen M, Zheng J, Li X, Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol 2022; 12:754141. [PMID: 34992593 PMCID: PMC8724024 DOI: 10.3389/fimmu.2021.754141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.
Collapse
Affiliation(s)
- Rui Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Hinson HE, Li P, Myers L, Agarwal C, Pollock J, McWeeney S. Incorporating Immunoproteins in the Development of Classification Models of Progression of Intracranial Hemorrhage After Traumatic Brain Injury. J Head Trauma Rehabil 2021; 36:E322-E328. [PMID: 33656476 PMCID: PMC8380269 DOI: 10.1097/htr.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To define clinical, radiographic, and blood-based biomarker features to be incorporated into a classification model of progression of intracranial hemorrhage (PICH), and to provide a pilot assessment of those models. METHODS Patients with hemorrhage on admission head computed tomography were identified from a prospectively enrolled cohort of subjects with traumatic brain injury. Initial and follow-up images were interpreted both by 2 independent readers, and disagreements adjudicated. Admission plasma samples were analyzed and principal components (PCs) composed of the immune proteins (IPs) significantly associated with the outcome of interest were selected for further evaluation. A series of logistic regression models were constructed based on (1) clinical variables (CV) and (2) clinical variables + immune proteins (CV+IP). Error rates of these models for correct classification of PICH were estimated; significance was set at P < .05. RESULTS We identified 106 patients, 36% had PICH. Dichotomized admission Glasgow Coma Scale (P = .004), Marshall score (P = .004), and 3 PCs were significantly associated with PICH. For the CV only model, sensitivity was 1.0 and specificity was 0.29 (95% CI, 0.07-0.67). The CV+IP model performed significantly better, with a sensitivity of 0.93 (95% CI, 0.64-0.99) and a specificity of 1.0 (P = .008). Adjustments to refine the definition of PICH and better define radiographic predictors of PICH did not significantly improve the models' performance. CONCLUSIONS In this pilot investigation, we observed that composites of IPs may improve PICH classification models when combined with CVs. However, overall model performance must be further optimized; results will inform feature inclusion included in follow-up models.
Collapse
Affiliation(s)
- H E Hinson
- Departments of Neurology (Drs Hinson and Agarwal and Mr Myers) and Radiology (Drs Li and Pollock), and Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiology (Dr McWeeney), Oregon Health & Sciences University, Portland
| | | | | | | | | | | |
Collapse
|
7
|
ElSaadani M, Ahmed SM, Jacovides C, Lopez A, Johnson VE, Kaplan LJ, Smith DH, Pascual JL. Post-traumatic brain injury antithrombin III recovers Morris water maze cognitive performance, improving cued and spatial learning. J Trauma Acute Care Surg 2021; 91:108-113. [PMID: 33605694 PMCID: PMC8528176 DOI: 10.1097/ta.0000000000003112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuroinflammation and cerebral edema development following severe traumatic brain injury (TBI) affect subsequent cognitive recovery. Independent of its anticoagulant effects, antithrombin III (AT-III) has been shown to block neurovascular inflammation after severe TBI, reduce cerebral endothelial-leukocyte interactions, and decrease blood-brain barrier permeability. We hypothesized that AT-III administration after TBI would improve post-TBI cognitive recovery, specifically enhancing learning, and memory. METHODS Fifteen CD1 male mice were randomized to undergo severe TBI (controlled cortical impact [CCI]: velocity, 6 m/s; depth, 1 mm; diameter, 3 mm) or sham craniotomy and received either intravenous AT-III (250 IU/kg) or vehicle (VEH/saline) 15 minutes and 24 hours post-TBI. Animals underwent Morris water maze testing from 6 to 14 days postinjury consisting of cued learning trials (platform visible), spatial learning trials (platform invisible, spatial cues present), and probe (memory) trials (platform removed, spatial cues present). Intergroup differences were assessed by the Kruskal-Wallis test (p < 0.05). RESULTS Morris water maze testing demonstrated that cumulative cued learning (overall mean time in seconds to reach the platform on days 6-8) was worst in CCI-VEH animals (26.1 ± 2.4 seconds) compared with CCI-AT-III counterparts (20.3 ± 2.1 seconds, p < 0.01). Cumulative noncued spatial learning was also worst in the CCI-VEH group (23.4 ± 1.8 seconds) but improved with AT-III (17.6 ± 1.5 seconds, p < 0.01). In probe trials, AT-III failed to significantly improve memory ability. Animals that underwent sham craniotomy demonstrated preserved learning and memory compared with all CCI counterparts (p < 0.05). CONCLUSION Antithrombin III improves neurocognitive recovery weeks after TBI. This improvement is particularly related to improvement in learning but not memory function. Pharmacologic support of enhanced learning may support new skill acquisition or relearning to improve outcomes after TBI. LEVEL OF EVIDENCE Therapeutic/care management, level II.
Collapse
Affiliation(s)
- Mohamed ElSaadani
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Syed M. Ahmed
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christina Jacovides
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alfonso Lopez
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Victoria E. Johnson
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lewis J. Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Douglas H. Smith
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jose L. Pascual
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Center for Brain Injury, and Repair at the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Farkhondeh T, Samarghandian S, Roshanravan B, Peivasteh-Roudsari L. Impact of Curcumin on Traumatic Brain Injury and Involved Molecular Signaling Pathways. Recent Pat Food Nutr Agric 2021; 11:137-144. [PMID: 31288732 DOI: 10.2174/2212798410666190617161523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury (TBI) is one of the main causes of mortality and morbidity worldwide with no suitable treatment. The present study was designed to review the present literature about the protective effects of curcumin and the underlying mechanism against TBI. All published English language papers from beginning to 2019 were selected in this study. The findings indicate that curcumin may be effective against TBI outcomes by modulating the molecular signaling pathways involved in oxidative stress, inflammation, apoptosis, and autophagy. However, more experimental studies should be done to identify all mechanisms involved in the pathogenesis of TBI. Patents for Curcumin and chronic inflammation and traumatic brain injury management (WO2017097805A1 and US9101580B2) were published. In conclusion, the present study confirmed the potential therapeutic impact of curcumin for treating TBI.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Peivasteh-Roudsari
- Devision of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Belykh E, Zhao X, Ngo B, Farhadi DS, Kindelin A, Ahmad S, Martirosyan NL, Lawton MT, Preul MC. Visualization of brain microvasculature and blood flow in vivo: Feasibility study using confocal laser endomicroscopy. Microcirculation 2021; 28:e12678. [PMID: 33426724 DOI: 10.1111/micc.12678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Qualitative and quantitative analyses of blood flow in normal and pathologic brain and spinal cord microvasculature were performed using confocal laser endomicroscopy (CLE). METHODS Blood flow in cortical, dural, and spinal cord microvasculature was assessed in vivo in swine. We assessed microvasculature under normal conditions and after vessel occlusion, brain injury due to cold or surgical trauma, and cardiac arrest. Tumor-associated microvasculature was assessed in vivo and ex vivo in 20 patients with gliomas. RESULTS We observed erythrocyte flow in vessels 5-500 µm in diameter. Thrombosis, flow arrest and redistribution, flow velocity changes, agglutination, and cells rolling were assessed in normal and injured brain tissue. Microvasculature in in vivo CLE images of gliomas was classified as normal in 68% and abnormal in 32% of vessels on the basis of morphological appearance. Dural lymphatic channels were discriminated from blood vessels. Microvasculature CLE imaging was possible for up to 30 minutes after a 1 mg/kg intravenous dose of fluorescein. CONCLUSIONS CLE imaging allows assessment of cerebral and tumor microvasculature and blood flow alterations with subcellular resolution intraoperative imaging demonstrating precise details of real-time cell movements. Research and clinical scenarios may benefit from this novel intraoperative in vivo microscopic fluorescence imaging modality.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Brandon Ngo
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Dara S Farhadi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Adam Kindelin
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Saif Ahmad
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nikolay L Martirosyan
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael T Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
10
|
Efficacy and Safety of Heparinization before Deployment of Endograft for Blunt Traumatic Aortic Injury in Severely Injured Patients. Ann Vasc Surg 2021; 75:341-348. [PMID: 33556520 DOI: 10.1016/j.avsg.2021.01.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The administration of unfractionated heparin (UFH) during endovascular repair of blunt traumatic aortic injury (BTAI) is controversial. The aim of the study is to report the early outcomes of patients undergoing thoracic endovascular aortic repair (TEVAR) for BTAI, and to assess the individualized intraoperative use and dose of UFH. METHODS This is a retrospective analysis including consecutive patients treated with TEVAR for BTAI of the descending aorta between January 1st, 2005 and December 31st, 2018. Intraoperative use and doses of UFH were analyzed. Primary outcome included a reintervention because of new onset bleeding and/or thromboembolic complication and 30-day mortality. Technical success, injury severity score (ISS), timing of treatment, and neurologic deterioration were secondary outcome. RESULTS Thirty-six patients with a mean age of 47 ± 18 years, 30 males (83%), were included. Intraoperative administration of UFH was recorded in 30/36 patients (83%) with a mean dose of 4750 ± 2180 IU. Two patients had no UFH because of extensive intracranial hemorrhage or suspected relevant liver laceration, respectively; 1 died in theatre, 1 was already anticoagulated having a mechanical aortic valve, and in 2 no information about heparin use was found. During 30 days of follow-up, 3 patients died (8%; 3/36): 1 patient with completely transected aorta died on-table and 2 on the fifth postoperative day, 1 from trauma-associated brain injury and 1 with multi organ failure. No bleeding or thromboembolic complication requiring reintervention occurred in any patient during 30 days follow-up. In 3 patients partial unintentional coverage of the left common carotid artery occurred, resulting in technical success of 89% (32/36). Mean ISS was 43 ± 15. Thirty-five patients (97%) were severely injured having an ISS ≥ 25. Twenty-nine patients (81%) were treated within 24 hr and 6 patients (17%) within 1 week. No stroke or spinal cord ischemia was observed. CONCLUSIONS Systemic heparinization in different doses during TEVAR for BTAI can be safe with no intraoperative bleeding or thromboembolic complications in early postoperative period.
Collapse
|
11
|
ElSaadani M, Ahmed SM, Jacovides C, Lopez A, Johnson VE, Kaplan LJ, Schwab CW, Smith DH, Pascual JL. Antithrombin III ameliorates post-traumatic brain injury cerebral leukocyte mobilization enhancing recovery of blood brain barrier integrity. J Trauma Acute Care Surg 2021; 90:274-280. [PMID: 33093292 PMCID: PMC8878290 DOI: 10.1097/ta.0000000000003000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute traumatic coagulopathy often accompanies traumatic brain injury (TBI) and may impair cognitive recovery. Antithrombin III (AT-III) reduces the hypercoagulability of TBI. Antithrombin III and heparinoids such as enoxaparin (ENX) demonstrate potent anti-inflammatory activity, reducing organ injury and modulating leukocyte (LEU) activation, independent of their anticoagulant effect. It is unknown what impact AT-III exerts on cerebral LEU activation and blood-brain barrier (BBB) permeability after TBI. We hypothesized that AT-III reduces live microcirculatory LEU-endothelial cell (EC) interactions and leakage at the BBB following TBI. METHODS CD1 mice (n = 71) underwent either severe TBI (controlled cortical impact (CCI), 6-m/s velocity, 1-mm depth, and 4-mm diameter) or sham craniotomy and then received either AT-III (250 IU/kg), ENX (1.5 mg/kg), or vehicle (saline) every 24 hours. Forty-eight hours post-TBI, cerebral intravital microscopy visualized in vivo penumbral microvascular LEU-EC interactions and microvascular leakage to assess BBB inflammation/permeability. Body weight loss and the Garcia neurological test (motor, sensory, reflex, balance) served as surrogates of clinical recovery. RESULTS Both AT-III and ENX similarly reduced in vivo penumbral LEU rolling and adhesion (p < 0.05). Antithrombin III also reduced live BBB leakage (p < 0.05). Antithrombin III animals demonstrated the least 48-hour body weight loss (8.4 ± 1%) versus controlled cortical impact and vehicle (11.4 ± 0.5%, p < 0.01). Garcia neurological test scores were similar among groups. CONCLUSION Antithrombin III reduces post-TBI penumbral LEU-EC interactions in the BBB leading to reduced neuromicrovascular permeability. Antithrombin III further reduced body weight loss compared with no therapy. Further study is needed to determine if these AT-III effects on neuroinflammation affect longer-term neurocognitive recovery after TBI.
Collapse
Affiliation(s)
- Mohamed ElSaadani
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery (M.E., S.M.A., C.J., A.L., L.J.K., C.W.S., J.L.P.), and Department of Neurosurgery, Center for Brain Injury and Repair (V.E.J., D.H.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Therapeutic Anticoagulation with Argatroban and Heparins Reduces Granulocyte Migration: Possible Impact on ECLS-Therapy? Cardiovasc Ther 2020; 2020:9783630. [PMID: 32405324 PMCID: PMC7196999 DOI: 10.1155/2020/9783630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Anticoagulants such as argatroban and heparins (low-molecular-weight and unfractionated) play an immense role in preventing thromboembolic complications in clinical practice. Nevertheless, they can also have a negative effect on the immune system. This study is aimed at investigating the influence of these substances on polymorphonuclear neutrophils (PMNs), whose nonspecific defense mechanisms can promote thrombogenesis. Methods Blood samples from 30 healthy volunteers were investigated, whereby PMNs were isolated by density gradient centrifugation and incubated with 0.8 μg/mL of argatroban, 1.0 U/mL of low-molecular-weight heparin (LMWH), 1.0 U/mL of unfractionated heparin (UFH), or without drug (control). A collagen-cell mixture was prepared and filled into 3D μ-slide chemotaxis chambers (IBIDI® GmbH, Germany). Stimulation was initiated by using a chemokine gradient of n-formyl-methionine-leucyl-phenylalanine (fMLP), and microscopic observation was conducted for 4.5 hours. The cells' track length and track straightness, as well as the number of attracted granulocytes, level of ROS (reactive oxygen species) production, and NET (neutrophil extracellular traps) formation, were analyzed and categorized into migration distances and time periods. Results All three anticoagulants led to significantly reduced PMN track lengths, with UFH having the biggest impact. The number of tracks observed in the UFH group were significantly reduced compared to the control group. Additionally, the UFH group demonstrated a significantly lower track straightness compared to the control. ROS production and NET formation were unaffected. Conclusion Our data provide evidence that anticoagulants have an inhibitory effect on the extent of PMN migration and chemotactic migration efficiency, thus indicating their potential immune-modulatory and prothrombotic effects.
Collapse
|
13
|
Morris MC, Kassam F, Bercz A, Beckmann N, Schumacher F, Gulbins E, Makley AT, Goodman MD. The Role of Chemoprophylactic Agents in Modulating Platelet Aggregability After Traumatic Brain Injury. J Surg Res 2019; 244:1-8. [PMID: 31279258 DOI: 10.1016/j.jss.2019.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/22/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The pathophysiology behind the subacute but persistent hypercoagulable state after traumatic brain injury (TBI) is poorly understood but contributes to morbidity induced by venous thromboembolism. Because platelets and their microvesicles have been hypothesized to play a role in post-traumatic hypercoagulability, administration of commonly used agents may ameliorate this coagulability. We hypothesized that utilization of aspirin, ketorolac, amitriptyline, unfractionated heparin, or enoxaparin would modulate the platelet aggregation response after TBI. METHODS Concussive TBI was induced by weight drop. Mice were then randomized to receive aspirin, ketorolac, amitriptyline, heparin, enoxaparin, or saline control at 2 and 8 h after TBI. Mice were sacrificed at 6 or 24 h after injury to determine coagulability by rotational thromboelastometry (ROTEM), platelet function testing with impedance aggregometry, and microvesicle enumeration. Platelet sphingolipid metabolites were analyzed by mass spectrometry. RESULTS ROTEM demonstrated increased platelet contribution to maximum clot firmness at 6 h after TBI in mice that received aspirin or amitriptyline, but this did not persist at 24 h. By contrast, adenosine diphosphate- and arachidonic acid-induced platelet aggregation at 6 h was significantly lower in mice receiving ketorolac, aspirin, and amitriptyline compared with mice receiving saline at 6 h after injury and only arachidonic acid-initiated platelet aggregation was decreased by aspirin at 24 h. There were no differences in microvesicle production at either time point. Platelet sphingosine-1-phosphate levels were decreased at 6 h in the group receiving amitriptyline and increased at 24 h along with platelet ceramide levels at 24 h in the amitriptyline group. CONCLUSION After TBI, amitriptyline decreased platelet aggregability and increased contribution to clot in a manner similar to aspirin. The amitriptyline effects on platelet function and sphingolipid metabolites may represent a possible role of the acid sphingomyelinase in the hypercoagulability observed after injury. In addition, inhibition of platelet reactivity may be an underappreciated benefit of low molecular weight heparins, such as enoxaparin.
Collapse
Affiliation(s)
| | - Farzaan Kassam
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Aron Bercz
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Nadine Beckmann
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Fabian Schumacher
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
14
|
A concomitant bone fracture delays cognitive recovery from traumatic brain injury. J Trauma Acute Care Surg 2019; 85:275-284. [PMID: 29787539 DOI: 10.1097/ta.0000000000001957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Brain injury progression after severe traumatic brain injury (TBI) is associated with worsening cerebral inflammation but it is unknown how a concomitant bone fracture (BF) affects this progression. Enoxaparin (ENX) decreases penumbral leukocyte mobilization after TBI and improves neurologic recovery. We hypothesized that a concomitant BF worsens learning/memory recovery weeks after TBI and that ENX improves this recovery. METHODS CD1 male mice underwent controlled cortical impact or sham craniotomy with or without tibial fracture, receiving either daily ENX (0.8 mg/kg) or saline for 14 days after injury. Randomization defined four groups (Sham, TBI only, TBI + Fx, TBI + Fx + ENX, n = 5/each). Body weight loss and neurologic recovery (Garcia Neurologic Test, max score = 18) were assessed each day. Mouse learning (swimming time [s] and total distance [m] to reach the submerged platform Days 14 to 17 after TBI) and memory (swimming time [s] in platform quadrant after platform removed [probe]) was assessed by the Morris water maze. Ly-6G (cerebral neutrophil sequestration) and glial fibrillary acidic protein were evaluated by immunohistochemistry in brain tissue post mortem. Analysis of variance with Tukey's post hoc test determined significance (p < 0.05). RESULTS A concurrent BF worsened Garcia Neurologic Test scores post-TBI Days 2 to 4 (p < 0.01) as compared with TBI only, and ENX reversed this worsening on Day 4 (p < 0.01). Learning was significantly slower (greater swimming time and distance) in TBI + Fx versus TBI only on Day 17 (p < 0.01). This was despite similar swimming velocities in both groups, indicating intact extremity motor function. Memory was similar in isolated TBI and Sham which was significantly better than in TBI + Fx animals (p < 0.05). Glial fibrillary acidic protein-positive cells in penumbral cortex were most prevalent in TBI + Fx animals, significantly greater than in Sham (p < 0.05). CONCLUSION A long BF accompanying TBI worsens early neurologic recovery and subsequent learning/memory. Enoxaparin may partially counter this and improve neurologic recovery.
Collapse
|
15
|
Early low-anticoagulant desulfated heparin after traumatic brain injury: Reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. J Trauma Acute Care Surg 2019; 84:727-735. [PMID: 29373460 DOI: 10.1097/ta.0000000000001819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Unfractionated heparin administered immediately after traumatic brain injury (TBI) reduces brain leukocyte (LEU) accumulation, and enhances early cognitive recovery, but may increase bleeding after injury. It is unknown how non-anticoagulant heparins, such as 2,3-O desulfated heparin (ODSH), impact post-TBI cerebral inflammation and long-term recovery. We hypothesized that ODSH after TBI reduces LEU-mediated brain inflammation and improves long-term neurologic recovery. METHODS CD1 male mice (n = 66) underwent either TBI (controlled cortical impact [CCI]) or sham craniotomy. 2,3-O desulfated heparin (25 mg/kg [25ODSH] or 50 mg/kg [50ODSH]) or saline was administered for 48 hours after TBI in 46 animals. At 48 hours, intravital microscopy visualized rolling LEUs and fluorescent albumin leakage in the pial circulation, and the Garcia Neurologic Test assessed neurologic function. Brain edema (wet/dry ratio) was evaluated post mortem. In a separate group of animals (n = 20), learning/memory ability (% time swimming in the Probe platform quadrant) was assessed by the Morris Water Maze 17 days after TBI. Analysis of variance with Bonferroni correction determined significance (p < 0.05). RESULTS Compared with CCI (LEU rolling: 32.3 ± 13.7 LEUs/100 μm per minute, cerebrovascular albumin leakage: 57.4 ± 5.6%), both ODSH doses reduced post-TBI pial LEU rolling (25ODSH: 18.5 ± 9.2 LEUs/100 μm per minute, p = 0.036; 50ODSH: 7.8 ± 3.9 LEUs/100 μm per minute, p < 0.001) and cerebrovascular albumin leakage (25ODSH: 37.9 ± 11.7%, p = 0.001, 50ODSH: 32.3 ± 8.7%, p < 0.001). 50ODSH also reduced injured cerebral hemisphere edema (77.7 ± 0.4%) vs. CCI (78.7 ± 0.4 %, p = 0.003). Compared with CCI, both ODSH doses improved Garcia Neurologic Test at 48 hours. Learning/memory ability (% time swimming in target quadrant) was lowest in CCI (5.9 ± 6.4%) and significantly improved in the 25ODSH group (27.5 ± 8.2%, p = 0.025). CONCLUSION 2,3-O desulfated heparin after TBI reduces cerebral LEU recruitment, microvascular permeability and edema. 2,3-O desulfated heparin may also improve acute neurologic recovery leading to improved learning/memory ability weeks after injury.
Collapse
|
16
|
Baharvahdat H, Ganjeifar B, Etemadrezaie H, Farajirad M, Zabihyan S, Mowla A. Enoxaparin in the treatment of severe traumatic brain injury: A randomized clinical trial. Surg Neurol Int 2019; 10:10. [PMID: 30783541 PMCID: PMC6367949 DOI: 10.4103/sni.sni_112_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/12/2018] [Indexed: 11/04/2022] Open
Abstract
Background: Enoxaparin was shown to have a neuroprotective effect in animal models as well as a human study following traumatic brain injury. This study was conducted to assess the effect of enoxaparin on the clinical outcome of severe traumatic brain injury (TBI) and its safety. Methods: This study is a randomized double-blinded placebo-controlled trial. The inclusion criteria were age 16–70, a closed head injury, a postresuscitation Glasgow Coma Scale (GCS) between 5 and 8, and a latency time between the injury and entering the study of less than 5 h. The patients were randomized into enoxaparin and placebo groups. In the enoxaparin group, 0.5 mg/kg enoxaparin was injected subcutaneously every 6 h in six total doses. The two groups were compared for the occurrence of intracranial hematoma (ICH) and for clinical neurological outcome, assessed by the Glasgow Outcome Scale. Results: Twenty-seven patients were assigned to the placebo group and 26 to the enoxaparin group. The two groups were similar regarding baseline characteristics, including age, sex, postresuscitation GCS, and best motor response. The occurrence of new ICH or an ICH size increase was insignificantly more frequent in the enoxaparin group than the placebo group (26.9% vs. 7.4%, P = 0.076). The favorable outcome rate in the enoxaparin group was significantly higher than in the placebo group (57.7% vs. 25.9%, P = 0.019). Conclusions: This study showed that the early administration of enoxaparin could lead to favorable outcomes in severe TBI patients without significantly increasing cerebral hemorrhagic complications.
Collapse
Affiliation(s)
- Humain Baharvahdat
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran
| | - Babak Ganjeifar
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran
| | - Hamid Etemadrezaie
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran
| | - Mohammad Farajirad
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran
| | - Samira Zabihyan
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 99199-91766, Iran
| | - Ashkan Mowla
- Division of Interventional Neuroradiology, Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Suto Y, Nagata K, Ahmed SM, Jacovides CL, Browne KD, Cognetti J, Johnson VE, Leone R, Kaplan LJ, Smith DH, Pascual JL. Cerebral Edema and Neurological Recovery after Traumatic Brain Injury Are Worsened if Accompanied by a Concomitant Long Bone Fracture. J Neurotrauma 2018; 36:609-618. [PMID: 30084745 DOI: 10.1089/neu.2018.5812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Progression of severe traumatic brain injury (TBI) is associated with worsening cerebral inflammation, but it is unknown how a concomitant bone fracture (FX) affects this progression. Enoxaparin (ENX), a low molecular weight heparin often used for venous thromboembolic prophylaxis, decreases penumbral leukocyte (LEU) mobilization in isolated TBI and improves neurological recovery. We investigated if TBI accompanied by an FX worsens LEU-mediated cerebral inflammation and if ENX alters this process. CD1 male mice underwent controlled cortical impact (CCI) or sham craniotomy with or without an open tibial FX, and received either ENX (1 mg/kg, three times/day) or saline for 2 days following injury. Randomization defined four groups (Sham, CCI, CCI+FX, CCI+FX+ENX, n = 10/group). Two days after CCI, neurological recovery was assessed with the Garcia Neurological Test (GNT); intravital microscopy (LEU rolling and adhesion, microvascular leakage) and blood hemoglobin levels were also evaluated. Penumbral cerebral neutrophil sequestration (Ly-6G immunohistochemistry [IHC]) were evaluated post-mortem. In vivo LEU rolling was greater in CCI+FX (45.2 ± 4.8 LEUs/100 μm/min) than in CCI alone (26.5 ± 3.1, p = 0.007), and was suppressed by ENX (23.2 ± 5.5, p = 0.003 vs. CCI + FX). Neurovascular permeability was higher in CCI+FX (71.1 ± 2.9%) than CCI alone (42.5 ± 2.3, p < 0.001). GNT scores were lower in CCI+FX (15.2 ± 0.2) than in CCI alone (16.3 ± 0.3, p < 0.001). Hemoglobin was lowest in the CCI+FX+ENX group, lower than in Sham or CCI. IHC demonstrated greatest polymorphonuclear neutrophil (PMN) invasion in CCI+FX in uninjured cerebral territories. A concomitant long bone FX worsens TBI-induced cerebral LEU mobilization, microvascular leakage, and cerebral edema, and impairs neurological recovery at 48 h. ENX suppresses this progression but may increase bleeding.
Collapse
Affiliation(s)
- Yujin Suto
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Katsuhiro Nagata
- 3 Department of Emergency and Critical Care Medicine, Tokyo Medical University Hachioji Medical Center , Tokyo, Japan
| | - Syed M Ahmed
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Christina L Jacovides
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Kevin D Browne
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - John Cognetti
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Victoria E Johnson
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Ryan Leone
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Lewis J Kaplan
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Douglas H Smith
- 2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - Jose L Pascual
- 1 Division of Traumatology, Surgical Clinical Care and Emergency Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania.,2 Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park SY, Poloyac S, Vagni VA, Janesko-Feldman KL, Hoshitsuki K, Minnigh MB, Kochanek PM. Glibenclamide Produces Region-Dependent Effects on Cerebral Edema in a Combined Injury Model of Traumatic Brain Injury and Hemorrhagic Shock in Mice. J Neurotrauma 2018; 35:2125-2135. [PMID: 29648981 PMCID: PMC6098411 DOI: 10.1089/neu.2016.4696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cerebral edema is critical to morbidity/mortality in traumatic brain injury (TBI) and is worsened by hypotension. Glibenclamide may reduce cerebral edema by inhibiting sulfonylurea receptor-1 (Sur1); its effect on diffuse cerebral edema exacerbated by hypotension/resuscitation is unknown. We aimed to determine if glibenclamide improves pericontusional and/or diffuse edema in controlled cortical impact (CCI) (5m/sec, 1 mm depth) plus hemorrhagic shock (HS) (35 min), and compare its effects in CCI alone. C57BL/6 mice were divided into five groups (n = 10/group): naïve, CCI+vehicle, CCI+glibenclamide, CCI+HS+vehicle, and CCI+HS+glibenclamide. Intravenous glibenclamide (10 min post-injury) was followed by a subcutaneous infusion for 24 h. Brain edema in injured and contralateral hemispheres was subsequently quantified (wet-dry weight). This protocol brain water (BW) = 80.4% vehicle vs. 78.3% naïve, p < 0.01) but was not reduced by glibenclamide (I%BW = 80.4%). Ipsilateral edema also developed in CCI alone (I%BW = 80.2% vehicle vs. 78.3% naïve, p < 0.01); again unaffected by glibenclamide (I%BW = 80.5%). Contralateral (C) %BW in CCI+HS was increased in vehicle (78.6%) versus naive (78.3%, p = 0.02) but unchanged in CCI (78.3%). At 24 h, glibenclamide treatment in CCI+HS eliminated contralateral cerebral edema (C%BW = 78.3%) with no difference versus naïve. By 72 h, contralateral cerebral edema had resolved (C%BW = 78.5 ± 0.09% vehicle vs. 78.3 ± 0.05% naïve). Glibenclamide decreased 24 h contralateral cerebral edema in CCI+HS. This beneficial effect merits additional exploration in the important setting of TBI with polytrauma, shock, and resuscitation. Contralateral edema did not develop in CCI alone. Surprisingly, 24 h of glibenclamide treatment failed to decrease ipsilateral edema in either model. Interspecies dosing differences versus prior studies may play an important role in these findings. Mechanisms underlying brain edema may differ regionally, with pericontusional/osmolar swelling refractory to glibenclamide but diffuse edema (via Sur1) from combined injury and/or resuscitation responsive to this therapy. TBI phenotype may mandate precision medicine approaches to treat brain edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bradley J. Molyneaux
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica S. Wallisch
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel Poloyac
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent A. Vagni
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Keito Hoshitsuki
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Beth Minnigh
- Department of Pharmacy and Therapeutics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Li D, Ni H, Rui Q, Gao R, Chen G. Deletion of Mst1 attenuates neuronal loss and improves neurological impairment in a rat model of traumatic brain injury. Brain Res 2017; 1688:15-21. [PMID: 29054447 DOI: 10.1016/j.brainres.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Neuronal cell death following traumatic brain injury (TBI) is a considerable contributor to neurological deficits. In our work, we explored the functions of Mammalian STE20-like kinase-1 (Mst1), a apoptosis-promoting kinase and also a pivotal bridgebuilder of apoptotic signaling, in the etiopathogenesis of an experimental rat model of TBI. We found that the phosphorylation level of Mst1 in injured area was significantly increased after TBI. Furthermore, we discovered that inhibition of Mst1 phosphorylation can effectively reduce neuronal cell death by inhibiting the activation of caspase 3 and suppressing the damage of DNA during TBI. In addition, the decreased of Mst1 phosphorylation level, not only reduced brain edema and blood-brain barrier (BBB) damage in injured region but also weakened the impairment of neurologic behavior during TBI. In conclusion, our work demonstrates that Mst1 plays an important role in TBI-induced neuronal cell death, suggesting that Mst1 is expected to be a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Di Li
- Department of Neurosurgery and Translational Medicine Center, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The First People 's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Qin Rui
- Clinical Laboratory, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, The First People 's Hospital of Zhangjiagang, Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Early heparin administration after traumatic brain injury: Prolonged cognitive recovery associated with reduced cerebral edema and neutrophil sequestration. J Trauma Acute Care Surg 2017; 83:406-412. [PMID: 28538627 DOI: 10.1097/ta.0000000000001590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Early administration of unfractionated heparin (UFH) after traumatic brain injury (TBI) reduces early in vivo circulating leukocytes (LEUs) in peri-injury penumbral brain tissue, enhancing cognitive recovery 2 days after injury. It remains unclear how long this effect lasts and if this is related to persistently accumulating LEUs in penumbral brain tissue. We hypothesized that UFH reduces LEU brain tissue sequestration resulting in prolonged cognitive recovery. METHODS CD1 male mice underwent either TBI by controlled cortical impact (CCI) or sham craniotomy. Unfractionated heparin (75 or 225 U/kg) or vehicle was repeatedly administered after TBI. Neurologic function (Garcia Neurological Test [maximum score = 18]) and body weight loss ratios were evaluated at 24 hours to 96 hours after TBI. Brain and lung wet-to-dry ratios, hemoglobin levels, and brain LEU sequestration (Ly6G immunohistochemistry) were evaluated 96 hours postmortem. Analysis of variance with Bonferroni correction determined significance (p < 0.05). RESULTS Compared with untreated CCI animals (24 hours, 14.7 ± 1.0; 48 hours, 15.5 ± 0.7; 72 hours, 15.0 ± 0.8; 96 hours, 16.5 ± 0.9), UFH75 (24 hours, 16.0 ± 1.0, p < 0.01; 48 hours, 16.5 ± 0.7, p < 0.05; 72 hours, 17.1 ± 0.6, p < 0.01; 96 hours, 17.4 ± 0.7, p < 0.05) increased cognitive recovery throughout the entire observation period after TBI. At 48 hours, UFH225 significantly worsened body weight loss (10.2 ± 4.7%) as compared with uninjured animals (5.5 ± 2.9%, p < 0.05). Both UFH75 (60.8 ± 40.9 PMNs per high-power field [HPF], p < 0.05) and UFH225 (36.0 ± 17.6 PMNs/HPF, p < 0.01) significantly decreased brain neutrophil sequestration found in untreated CCI animals (124.2 ± 44.1 PMNs/HPF) 96 hours after TBI. Compared with untreated CCI animals (78.8 ± 0.8%), UFH75 (77.3 ± 0.6%, p = 0.04) reduced cerebral edema to uninjured levels (77.4 ± 0.6%, p = 0.04 vs. CCI). Only UFH225 (10.6 ± 1.2 g/dL) resulted in lower hemoglobin than in uninjured animals (13.0 ± 1.2 g/dL, p < 0.05). CONCLUSIONS Heparin after TBI reduces tissue LEU sequestration and edema in injured brain for up to 4 days. This is associated with persistent improved cognitive recovery, but only when low-dose UFH is given. Early administration of UFH following TBI may blunt LEU-related cerebral swelling and slow progression of secondary brain injury.
Collapse
|
21
|
Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, Ali S. Regulation of Chemokine Function: The Roles of GAG-Binding and Post-Translational Nitration. Int J Mol Sci 2017; 18:ijms18081692. [PMID: 28771176 PMCID: PMC5578082 DOI: 10.3390/ijms18081692] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.
Collapse
Affiliation(s)
- Sarah Thompson
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - John A Kirby
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | - Simi Ali
- Applied Immunobiology and Transplantation Group, Institute of Cellular Medicine, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
22
|
Heparin and Heparin-Derivatives in Post-Subarachnoid Hemorrhage Brain Injury: A Multimodal Therapy for a Multimodal Disease. Molecules 2017; 22:molecules22050724. [PMID: 28468328 PMCID: PMC6154575 DOI: 10.3390/molecules22050724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Pharmacologic efforts to improve outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain disappointing, likely owing to the complex nature of post-hemorrhage brain injury. Previous work suggests that heparin, due to the multimodal nature of its actions, reduces the incidence of clinical vasospasm and delayed cerebral ischemia that accompany the disease. This narrative review examines how heparin may mitigate the non-vasospastic pathological aspects of aSAH, particularly those related to neuroinflammation. Following a brief review of early brain injury in aSAH and heparin’s general pharmacology, we discuss potential mechanistic roles of heparin therapy in treating post-aSAH inflammatory injury. These roles include reducing ischemia-reperfusion injury, preventing leukocyte extravasation, modulating phagocyte activation, countering oxidative stress, and correcting blood-brain barrier dysfunction. Following a discussion of evidence to support these mechanistic roles, we provide a brief discussion of potential complications of heparin usage in aSAH. Our review suggests that heparin’s use in aSAH is not only safe, but effectively addresses a number of pathologies initiated by aSAH.
Collapse
|