1
|
Grgac I, Herzer G, Voelckel WG, Secades JJ, Trimmel H. Neuroprotective and neuroregenerative drugs after severe traumatic brain injury : A narrative review from a clinical perspective. Wien Klin Wochenschr 2024; 136:662-673. [PMID: 38748062 DOI: 10.1007/s00508-024-02367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/06/2024] [Indexed: 12/11/2024]
Abstract
Traumatic brain injuries cause enormous individual and socioeconomic burdens. Survivors frequently struggle with motor handicaps as well as impaired cognition and emotion. In addition to the primary mechanical brain damage, complex secondary mechanisms are the main drivers of functional impairment. Many of these pathophysiological mechanisms are now well known: excitotoxic amino acids, breakdown of the blood-brain barrier, neuroinflammation with subsequent damage to cell organelles and membranes, cerebral edema, and apoptotic processes triggering neuronal death; however, paracrine resilience factors may counteract these processes. Specific neuroprotective and neuroregenerative intensive care therapies are few. This review highlights medical approaches aimed at mitigating secondary damage and promoting neurotrophic processes in severe traumatic brain injury. Some pharmacologic attempts that appeared very promising in experimental settings have had disappointing clinical results (progesterone, cyclosporine A, ronopterin, erythropoietin, dexanabinol). Thus, the search for drugs that can effectively limit ongoing posttraumatic neurological damage is ongoing. Some medications appear to be beneficial: N‑methyl-D-aspartate receptor (NMDA) antagonists (esketamine, amantadine, Mg++) reduce excitotoxicity and statins and cerebrolysin are known to counteract neuroinflammation. By supporting the impaired mitochondrial energy supply, oxidative processes are inhibited and neuroregenerative processes, such as neurogenesis, angiogenesis and synaptogenesis are promoted by citicoline and cerebrolysin. First clinical evidence shows an improvement in cognitive and thymopsychic outcomes, underlined by own clinical experience combining different therapeutic approaches. Accordingly, adjuvant treatment with neuroprotective substances appears to be a promising option, although more randomized prospective studies are still needed.
Collapse
Affiliation(s)
- Ivan Grgac
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Guenther Herzer
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Wolfgang G Voelckel
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
- University of Stavanger, Network for Medical Science, Stavanger, Norway
| | | | - Helmut Trimmel
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria.
- Faculty of Medicine and Dentistry, Danube Private University (DPU), 3500, Krems, Austria.
- Institute for Emergency Medicine, Medical Simulation and Patient Safety, Karl Landsteiner Society, Wiener Neustadt, Austria.
| |
Collapse
|
2
|
Syzdykbayev M, Kazymov M, Aubakirov M, Kurmangazina A, Kairkhanov E, Kazangapov R, Bryzhakhina Z, Imangazinova S, Sheinin A. A Modern Approach to the Treatment of Traumatic Brain Injury. MEDICINES (BASEL, SWITZERLAND) 2024; 11:10. [PMID: 38786549 PMCID: PMC11123131 DOI: 10.3390/medicines11050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Background: Traumatic brain injury manifests itself in various forms, ranging from mild impairment of consciousness to severe coma and death. Traumatic brain injury remains one of the leading causes of morbidity and mortality. Currently, there is no therapy to reverse the effects associated with traumatic brain injury. New neuroprotective treatments for severe traumatic brain injury have not achieved significant clinical success. Methods: A literature review was performed to summarize the recent interdisciplinary findings on management of traumatic brain injury from both clinical and experimental perspective. Results: In the present review, we discuss the concepts of traditional and new approaches to treatment of traumatic brain injury. The recent development of different drug delivery approaches to the central nervous system is also discussed. Conclusions: The management of traumatic brain injury could be aimed either at the pathological mechanisms initiating the secondary brain injury or alleviating the symptoms accompanying the injury. In many cases, however, the treatment should be complex and include a variety of medical interventions and combination therapy.
Collapse
Affiliation(s)
- Marat Syzdykbayev
- Department of Hospital Surgery, Anesthesiology and Reanimatology, Semey Medical University, Semey 071400, Kazakhstan
| | - Maksut Kazymov
- Department of General Practitioners, Semey Medical University, Semey 071400, Kazakhstan
| | - Marat Aubakirov
- Department of Pediatric Surgery, Semey Medical University, Semey 071400, Kazakhstan
| | - Aigul Kurmangazina
- Committee for Medical and Pharmaceutical Control of the Ministry of Health of the Republic of Kazakhstan for East Kazakhstan Region, Ust-Kamenogorsk 070004, Kazakhstan
| | - Ernar Kairkhanov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Rustem Kazangapov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Zhanna Bryzhakhina
- Department Psychiatry and Narcology, Semey Medical University, Semey 071400, Kazakhstan
| | - Saule Imangazinova
- Department of Therapy, Astana Medical University, Astana 010000, Kazakhstan
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
3
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
4
|
Gebretsadik H, Kahsay G, Adams E, Van Schepdael A. A comprehensive review of capillary electrophoresis-based techniques for erythropoietin isoforms analysis. J Chromatogr A 2023; 1708:464331. [PMID: 37660565 DOI: 10.1016/j.chroma.2023.464331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Different CE techniques have been used to analyze erythropoietin. These techniques have been shown to be effective in differentiating and quantifying erythropoietin isoforms, including natural and recombinant origins. This review provides a comprehensive overview of various capillary electrophoresis-based techniques used for the analysis of erythropoietin isoforms. The importance of erythropoietin in clinical practice and the necessity for the accurate analysis of its isoforms are first discussed. Various techniques that have been used for erythropoietin isoform analysis are then described. The main body of the review focuses on the different capillary electrophoresis-based methods that have been developed for erythropoietin isoform analysis, including capillary zone electrophoresis and capillary isoelectric focusing. The advantages and drawbacks of each method as well as their applications are discussed. Suggestions into the future directions of the area are also described.
Collapse
Affiliation(s)
- Hailekiros Gebretsadik
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Getu Kahsay
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Erwin Adams
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB 923, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Skrifvars MB, Luethi N, Bailey M, French C, Nichol A, Trapani T, McArthur C, Arabi YM, Bendel S, Cooper DJ, Bellomo R. The effect of recombinant erythropoietin on long-term outcome after moderate-to-severe traumatic brain injury. Intensive Care Med 2023; 49:831-839. [PMID: 37405413 PMCID: PMC10353955 DOI: 10.1007/s00134-023-07141-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE Recombinant erythropoietin (EPO) administered for traumatic brain injury (TBI) may increase short-term survival, but the long-term effect is unknown. METHODS We conducted a pre-planned long-term follow-up of patients in the multicentre erythropoietin in TBI trial (2010-2015). We invited survivors to follow-up and evaluated survival and functional outcome with the Glasgow Outcome Scale-Extended (GOSE) (categories 5-8 = good outcome), and secondly, with good outcome determined relative to baseline function (sliding scale). We used survival analysis to assess time to death and absolute risk differences (ARD) to assess favorable outcomes. We categorized TBI severity with the International Mission for Prognosis and Analysis of Clinical Trials in TBI model. Heterogeneity of treatment effects were assessed with interaction p-values based on the following a priori defined subgroups, the severity of TBI, and the presence of an intracranial mass lesion and multi-trauma in addition to TBI. RESULTS Of 603 patients in the original trial, 487 patients had survival data; 356 were included in the follow-up at a median of 6 years from injury. There was no difference between treatment groups for patient survival [EPO vs placebo hazard ratio (HR) (95% confidence interval (CI) 0.73 (0.47-1.14) p = 0.17]. Good outcome rates were 110/175 (63%) in the EPO group vs 100/181 (55%) in the placebo group (ARD 8%, 95% CI [Formula: see text] 3 to 18%, p = 0.14). When good outcome was determined relative to baseline risk, the EPO groups had better GOSE (sliding scale ARD 12%, 95% CI 2-22%, p = 0.02). When considering long-term patient survival, there was no evidence for heterogeneity of treatment effect (HTE) according to severity of TBI (p = 0.85), presence of an intracranial mass lesion (p = 0.48), or whether the patient had multi-trauma in addition to TBI (p = 0.08). Similarly, no evidence of treatment heterogeneity was seen for the effect of EPO on functional outcome. CONCLUSION EPO neither decreased overall long-term mortality nor improved functional outcome in moderate or severe TBI patients treated in the intensive care unit (ICU). The limited sample size makes it difficult to make final conclusions about the use of EPO in TBI.
Collapse
Affiliation(s)
- Markus B Skrifvars
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland.
| | - Nora Luethi
- Department of Emergency Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Craig French
- Department of Intensive Care, Western Health, Melbourne, VIC, Australia
| | - Alistair Nichol
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Tony Trapani
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Colin McArthur
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Yaseen M Arabi
- Intensive Care Department, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Stepani Bendel
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital and University of Eastern, Kuopio, Finland
| | - David J Cooper
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Guideline of clinical neurorestorative treatment for brain trauma (2022 China version). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Intraperitoneal Carbamylated erythropoietin improves memory and hippocampal apoptosis in beta amyloid rat model of Alzheimer’s disease through stimulating autophagy and inhibiting necroptosis. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Mansour NO, Shama MA, Werida RH. The effect of doxycycline on neuron-specific enolase in patients with traumatic brain injury: a randomized controlled trial. Ther Adv Chronic Dis 2021; 12:20406223211024362. [PMID: 34262678 PMCID: PMC8246481 DOI: 10.1177/20406223211024362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: We aimed to examine the effect of doxycycline on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage in traumatic brain injury (TBI) patients. Methods: Patients were randomly assigned into two groups (n = 25 each) to receive either placebo or doxycycline (200 mg daily), with their standard management for 7 days. Results: NSE serum levels in the doxycycline and control groups on day 3 were 14.66 ± 1.78 versus 18.09 ± 4.38 ng/mL, respectively (p = 0.008), and on day 7 were 12.3 ± 2.0 versus 16.43 ± 3.85 ng/mL, respectively (p = 0.003). Glasgow Coma Scale (GCS) on day 7 was 11.90 ± 2.83 versus 9.65 ± 3.44 in the doxycycline and control groups, respectively (p = 0.031). NSE serum levels and GCS scores were negatively correlated (r = −0.569, p < 0.001). Conclusion: Adjunctive early use of doxycycline might be a novel option that halts the ongoing secondary brain injury in patients with moderate to severe TBI. Future larger clinical trials are warranted to confirm these findings.
Collapse
Affiliation(s)
- Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, El-Dakahelia, Egypt
| | - Mohamed A Shama
- Emergency Medicine and Traumatology Department, Faculty of Medicine, Tanta University, Tanta, El-Gharbia, Egypt
| | - Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice Department - Faculty of Pharmacy, Damanhour University, Elchorniash Street, Damanhour, Elbehairah 31527, Egypt
| |
Collapse
|
10
|
Katiyar V, Chaturvedi A, Sharma R, Gurjar HK, Goda R, Singla R, Ganeshkumar A. Meta-Analysis with Trial Sequential Analysis on the Efficacy and Safety of Erythropoietin in Traumatic Brain Injury: A New Paradigm. World Neurosurg 2020; 142:465-475. [PMID: 32450313 DOI: 10.1016/j.wneu.2020.05.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) has been shown to be beneficial in traumatic brain injury (TBI). We have attempted to quantitatively synthesize the findings of current randomized controlled trials (RCTs) in this meta-analysis and analyzed the need for further trials using trial sequential analysis (TSA). METHODS A systematic search was performed in PubMed, the Cochrane Library databases, and Google Scholar for RCTs until December 2019 evaluating the role of EPO in patients with TBI. Seven RCTs were finally included in the quantitative analysis. TSA was done to evaluate the need for further studies. RESULTS The pooled estimate demonstrated that EPO significantly reduced mortality at 6 months (odds ratio [OR], 0.65; 95% confidence interval [CI], 0.43-0.97; P = 0.04) but not in hospital mortality (OR, 0.84; 95% CI, 0.31-2.32; P = 0.74). There was no significant difference in the rate of favorable outcomes with EPO (OR, 1.58; 95% CI, 0.84-2.99; P = 0.16). The rate of deep vein thrombosis (RD, -0.02; 95% CI, -0.06 to 0.02; P =0.41) was also not found to be significantly different in the 2 groups. TSA showed that the accrued information is insufficient to make any definitive conclusions. CONCLUSIONS EPO seems to be beneficial in terms of reducing 6-month mortality, however, its effect on in-hospital mortality, neurologic outcomes, and risk of deep vein thrombosis fails to reach statistical significance. TSA suggests a need for large trials to evaluate the role of EPO in patients with TBI in a more systematic way.
Collapse
Affiliation(s)
- Varidh Katiyar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aprajita Chaturvedi
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Revanth Goda
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Singla
- Department of Neurosurgery, Post Graduate Institute for Medical Education and Research, Chandigarh, India
| | - Akshay Ganeshkumar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Erythropoietin attenuates propofol-induced hippocampal neuronal cell injury in developing rats by inhibiting toll-like receptor 4 expression. Neurosci Lett 2020; 716:134647. [PMID: 31765729 DOI: 10.1016/j.neulet.2019.134647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study was to investigate the neuroprotective effect of erythropoietin (EPO) on hippocampal neuronal cell injury in developing rats. METHODS The hippocampal neurons cells were obtained from SD rats aged 10 days and divided into control, propofol, EPO, and propofol + erythropoietin (E + P) groups. Cell proliferation and apoptosis were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Ki-67 immunofluorescence, and flow cytometry, respectively. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). Cellular immunohistochemistry was utilized to detect the expression of proliferating cell nuclear antigen (PCNA), nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). Quantitative real time polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of Bax, Bcl-2, Caspase-3, toll-like receptor 4 (TLR4) and p65. Furthermore, TLR4 antagonist (TAK-242) and activator (LPS) were used to study the relationship between EPO and TLR4. RESULTS Propofol treatment caused morphological and structural damage of hippocampal neurons. However, EPO significantly improved this damage, enhanced cell proliferation, decreased apoptosis and pro-inflammatory factor content, up-regulated the expression of Ki-67, PCNA, Bcl-2, NGF, BDNF and NT-3, as well as decreased the expression of Bax, Caspase-3, TLR4 and p65 (p < 0.05). After TAK-242 or LPS treatment, it showed similar results in propofol + TAK-242 (T + P) group and E + P group. CONCLUSION Erythropoietin could attenuate propofol-induced hippocampal neuronal cell injury in developing rats, which may be related to inhibit TLR4 expression.
Collapse
|
12
|
Khandelwal A, Bithal PK, Rath GP. Anesthetic considerations for extracranial injuries in patients with associated brain trauma. J Anaesthesiol Clin Pharmacol 2019; 35:302-311. [PMID: 31543576 PMCID: PMC6748016 DOI: 10.4103/joacp.joacp_278_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patients with severe traumatic brain injury often presents with extracranial injuries, which may contribute to fatal outcome. Anesthetic management of such polytrauma patients is extremely challenging that includes prioritizing the organ system to be dealt first, reducing on-going injury, and preventing secondary injuries. Neuroprotective and neurorescue measures should be instituted simultaneously during extracranial surgeries. Selection of anesthetic drugs that minimally interferes with cerebral dynamics, maintenance of hemodynamics and cerebral perfusion pressure, optimal utilization of multimodal monitoring techniques, and aggressive rehabilitation approach are the key factors for improving overall patient outcome.
Collapse
Affiliation(s)
- Ankur Khandelwal
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Parmod Kumar Bithal
- Department of Anesthesia and OR Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Girija Prasad Rath
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Kumar Sahel D, Kaira M, Raj K, Sharma S, Singh S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neurosci Lett 2019; 710:134347. [PMID: 31229625 DOI: 10.1016/j.neulet.2019.134347] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) is the injury to the vasculature of brain while trauma caused by physical, chemical and biological stimuli. TBI is the leading cause of mortality and morbidity around the world. In this, primary insult leads to secondary injury through the involvement and initiation of various pathological processes. The most citable includes excitotoxicity, Blood Brain Barrier (BBB) dysfunction, inflammation, mitochondrial dysfunction, oxidative stress, calcium efflux, microglial mediated release of proinflammatory mediators (cytokine, chemokines, interleukin, tissue necrosis factor etc.). The morphological changes in TBI are proportional to mitochondrial dysfunctioning and microglial activation, which play an assorted role in neurodegeneration following traumatic brain injury. It is also assumed that the release of nitric oxide, activation of microglial cells plays a diversive role in maintaining the physiological and pathological balance. This review cites different pathophysiological mechanisms that are involved in progenesis of secondary injury after primary insult. These targets further are useful to explore the deep molecular mechanisms and to analyse the effectiveness of available drugs. Moreover, the present review reflects the underlying inflammatory cascade responsible for neuronal loss and neurological deficit in TBI.
Collapse
Affiliation(s)
- Deepak Kumar Sahel
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Meenakshi Kaira
- Department of Pharmaceutical Sciences, M.D University, Rohtak, Haryana, 124001, India
| | - Khadga Raj
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Shakshi Sharma
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
14
|
Jantzie L, El Demerdash N, Newville JC, Robinson S. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury? Exp Neurol 2019; 318:205-215. [PMID: 31082389 DOI: 10.1016/j.expneurol.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023]
Abstract
Pediatric traumatic brain injury (TBI) remains a leading cause of childhood morbidity and mortality worldwide. Most efforts to reduce the chronic impact of pediatric TBI involve prevention and minimization of secondary injury. Currently, no treatments are used in routine clinical care during the acute and subacute phases to actively repair injury to the developing brain. The endogenous pluripotent cytokine erythropoietin (EPO) holds promise as an emerging neuroreparative agent in perinatal brain injury (PBI). EPO signaling in the central nervous system (CNS) is essential for multiple stages of neurodevelopment, including the genesis, survival and differentiation of multiple lineages of neural cells. Postnatally, EPO signaling decreases markedly as the CNS matures. Importantly, high-dose, extended EPO regimens have shown efficacy in preclinical controlled cortical impact (CCI) models of infant TBI at two different, early ages by independent research groups. Specifically, extended high-dose EPO treatment after infantile CCI prevents long-term cognitive deficits in adult rats. Because of the striking differences in the molecular and cellular responses to both injury and recovery in the developing and mature CNS, and the excellent safety profile of EPO in infants and children, extended courses of EPO are currently in Phase III trials for neonates with PBI. Extended, high-dose EPO may also warrant testing for infants and young children with TBI.
Collapse
Affiliation(s)
- Lauren Jantzie
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States..
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jessie C Newville
- Division of Neonatology, Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM, 87111,United States.; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87111, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
16
|
Abstract
Erythropoietin (EPO) is a 34kD pleiotropic cytokine that was first identified as being essential for red blood cell (RBC) production. It is now recognized however that EPO is produced by many tissues. It plays a key role in the modulation of the response to injury, inflammation, and tissue hypoxia via the inhibition of apoptosis. Large clinical trials in the critically ill failed to demonstrate a role for EPO as an RBC transfusion sparing agent; however, improved clinical outcomes, attributable to EPO role in tissue protection are observed in critically ill trauma patients. Further research to confirm or refute these observations is required.
Collapse
Affiliation(s)
- Craig French
- Western Health, Footscray Hospital, Gordon Street Footscray, Melbourne, VIC 3011, Australia; The University of Melbourne, Parkville, VIC 3010, Australia; Monash University, School of Public Health and Preventive Medicine, 553 St Kilda Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
17
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|