1
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
2
|
Aiyede M, Lim XY, Russell AAM, Patel RP, Gueven N, Howells DW, Bye N. A Systematic Review and Meta-Analysis on the Therapeutic Efficacy of Heparin and Low Molecular Weight Heparins in Animal Studies of Traumatic Brain Injury. J Neurotrauma 2023; 40:4-21. [PMID: 35880422 DOI: 10.1089/neu.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification of effective pharmacotherapies for traumatic brain injury (TBI) remains a major challenge. Treatment with heparin and its derivatives is associated with neuroprotective effects after experimental TBI; however, the optimal dosage and method of administration, modes of action, and effects on hemorrhage remain unclear. Therefore, this review aimed to systematically evaluate, analyze, and summarize the available literature on the use of heparin and low molecular weight heparins (LMWHs) as treatment options for experimental TBI. We searched two online databases (PubMed and ISI Web of Science) to identify relevant studies. Data pertaining to TBI paradigm, animal subjects, drug administration, and all pathological and behavior outcomes were extracted. Eleven studies met our pre-specified inclusion criteria, and for outcomes with sufficient numbers, data from seven publications were analyzed in a weighted mean difference meta-analysis using a random-effects model. Study quality and risk of bias were also determined. Meta-analysis revealed that heparin and its derivatives decreased brain edema, leukocyte rolling, and vascular permeability, and improved neurological function. Further, treatment did not aggravate hemorrhage. These findings must be interpreted with caution, however, because they were determined from a limited number of studies with substantial heterogeneity. Also, overall study quality was low based on absences of data reporting, and potential publication bias was identified. Importantly, we found that there are insufficient data to evaluate the variables we had hoped to investigate. The beneficial effects of heparin and LMWHs, however, suggest that further pre-clinical studies are warranted.
Collapse
Affiliation(s)
- Mimieveshiofuo Aiyede
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ash A M Russell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - David W Howells
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Lopez AJ, ElSaadani M, Culkin MC, Jacovides CL, Georges AP, Song H, Kaplan LJ, Kumar MA, Smith DH, Pascual JL. Persistent Blunting of Penumbral Leukocyte Mobilization by Beta Blockade Administered for Two Weeks After Traumatic Brain Injury. J Surg Res 2022; 280:196-203. [PMID: 35994981 DOI: 10.1016/j.jss.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Beta-blockers (BB) after traumatic brain injury (TBI) accelerate cognitive recovery weeks after injury. BBs also inhibit leukocyte (LEU) mobilization to the penumbral blood brain barrier (BBB) 48-h after TBI. It is unclear whether the latter effects persist longer and accompany the persistent cognitive improvement. We hypothesized that 2 wk of BB after TBI reduce penumbral BBB leukocyte-endothelial interactions. METHODS Thirty CD1 mice underwent TBI (controlled cortical impact, CCI: 6 m/s velocity, 1 mm depth, 3 mm diameter) or sham craniotomy followed by i.p. saline (NS) or propranolol (1, 2, 4 mg/kg) every 12 h for 14 d. On day 14, in vivo pial intravital microscopy visualized endothelial-LEU interactions and BBB microvascular leakage. Day 14 Garcia neurological test scores and animal weights were compared to preinjury levels reflecting concurrent clinical recovery. RESULTS LEU rolling was greatest in CCI + NS when compared to sham (P = 0.03). 4 mg/kg propranolol significantly reduced postCCI LEU rolling down to uninjured sham levels (P = 0.03). LEU adhesion and microvascular permeability were not impacted at this time interval. Untreated injured animals (CCI + NS) scored lower Garcia neurological test and greater weight loss recovery at day 14 when compared to preinjury (P < 0.05). Treatment with higher doses of propranolol (2, 4 mg/kg), improved weight loss recovery (P < 0.001). CONCLUSIONS LEU rolling alone, was influenced by BB therapy 14 d after TBI suggesting that certain penumbral neuroinflammatory cellular effects of BB therapy after TBI persist up to 2 wk after injury potentially explaining the pervasive beneficial effects of BBs on learning and memory.
Collapse
Affiliation(s)
- Alfonso J Lopez
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohamed ElSaadani
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew C Culkin
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina L Jacovides
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anastasia P Georges
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hailong Song
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis J Kaplan
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monisha A Kumar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jose L Pascual
- Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Zheng X, Mi T, Wang R, Zhang Z, Li W, Zhao J, Yang P, Xia H, Mao Q. Progranulin deficiency promotes persistent neuroinflammation and causes regional pathology in the hippocampus following traumatic brain injury. Glia 2022; 70:1317-1336. [PMID: 35362178 DOI: 10.1002/glia.24175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/07/2022]
Abstract
Traumatic brain injury (TBI) can be progressive and can lead to the development of a long-term complication termed chronic traumatic encephalopathy. The mechanisms underlying the progressive changes are still unknown; however, studies have suggested that microglia-mediated neuroinflammation in response to TBI may play a fundamental role. This study aimed to determine whether progranulin (PGRN), a major modulator of microglial activity, plays a role in the progressive damage following TBI. PGRN-deficient and wild-type mice were subjected to controlled cortical impact and were observed neuropathologically after 3 days, 7 days, and 5 months. Compared to sham and wild-type mice, the PGRN-deficient mice showed overall stronger microgliosis and astrocytosis. The astrocytosis involved broader areas than the microgliosis and was more prominent in the basal ganglia, hippocampus, and internal capsule in PGRN-deficient mice. Ongoing neuronal death was uniquely observed in the hippocampal CA3 region of PGRN-deficient mice at 5 months after TBI, accompanying the regional chronic microgliosis and astrocytosis involving the CA3 commissural pathway. In addition, there was M1 microglial polarization in the pericontusional area with activated TLR4/MyD88/NF-κB signaling; however, the hippocampus showed only mild M1 polarization 7 days after TBI. Lastly, Morris water maze tests showed PGRN-deficient mice had poorer spatial learning and memory 5 months after TBI than wild-type or sham mice. The data indicated the PGRN deficiency caused TBI progression by promoting persistent microgliosis with microglial polarization and astrocytosis, as well as regional pathology in the hippocampus. The study suggests that PGRN should be evaluated as a potential therapy for TBI.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Tiantian Mi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rong Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zihan Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenyan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
HMGB1 Inhibition to Ameliorate Organ Failure and Increase Survival in Trauma. Biomolecules 2022; 12:biom12010101. [PMID: 35053249 PMCID: PMC8773879 DOI: 10.3390/biom12010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Several preclinical and clinical reports have demonstrated that levels of circulating high mobility group box 1 protein (HMGB1) are increased early after trauma and are associated with systemic inflammation and clinical outcomes. However, the mechanisms of the interaction between HMGB1 and inflammatory mediators that lead to the development of remote organ damage after trauma remain obscure. HMGB1 and inflammatory mediators were analyzed in plasma from 54 combat casualties, collected on admission to a military hospital in Iraq, and at 8 and 24 h after admission. In total, 45 (83%) of these patients had traumatic brain injury (TBI). Nine healthy volunteers were enrolled as controls. HMGB1 plasma levels were significantly increased in the first 8 h after admission, and were found to be associated with systemic inflammatory responses, injury severity score, and presence of TBI. These data provided the rationale for designing experiments in rats subjected to blast injury and hemorrhage, to explore the effect of HMGB1 inhibition by CX-01 (2-O, 3-O desulfated heparin). Animals were cannulated, then recovered for 5–7 days before blast injury in a shock tube and volume-controlled hemorrhage. Blast injury and hemorrhage induced an early increase in HMGB1 plasma levels along with severe tissue damage and high mortality. CX-01 inhibited systemic HMGB1 activity, decreased local and systemic inflammatory responses, significantly reduced tissue and organ damage, and tended to increase survival. These data suggest that CX-01 has potential as an adjuvant treatment for traumatic hemorrhage.
Collapse
|
6
|
Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JK, Tretyakova MV, Tsibizova VI, Shkoda AS, Grandone E, Elalamy I, Rizzo G, Gris JCR, Schulman S, Brenner B. COVID-19, hemostasis disorders and risk of thrombotic complications. ANNALS OF THE RUSSIAN ACADEMY OF MEDICAL SCIENCES 2020. [DOI: 10.15690/vramn1368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of a new coronavirus infection worldwide since the end of 2019 has becomes a pandemic. Thrombotic complications are the leading cause of death in this disease. After entering the human body, the virus starts a cascade of reactions leading to the development of a cytokine storm, activation of all parts of the hemostasis and complement systems and other changes that result in disturbances in the circulation system with the development of multiple organ failures. Numerous studies have shown that a predictor of a severe course of COVID-19 is a sharp increase of D-dimer concentration in the blood and rise of some other markers of hemostasis activation. Based on the pathogenesis, the developed schemes for the prevention and treatment of COVID-19 severe complications include low molecular weight heparins (LMWH) which are also recommended for an outpatient COVID-19 patient. The prescription of low molecular weight heparin, the duration of their use and doses should be decided on the basis of a risk assessment of factors for each individual patient in combination with laboratory monitoring.
Collapse
|
7
|
Lindsay SL, McCanney GA, Willison AG, Barnett SC. Multi-target approaches to CNS repair: olfactory mucosa-derived cells and heparan sulfates. Nat Rev Neurol 2020; 16:229-240. [PMID: 32099190 DOI: 10.1038/s41582-020-0311-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) remains one of the biggest challenges in the development of neuroregenerative therapeutics. Cell transplantation is one of numerous experimental strategies that have been identified and tested for efficacy at both preclinical and clinical levels in recent years. In this Review, we briefly discuss the state of human olfactory cell transplantation as a therapy, considering both its current clinical status and its limitations. Furthermore, we introduce a mesenchymal stromal cell derived from human olfactory tissue, which has the potential to induce multifaceted reparative effects in the environment within and surrounding the lesion. We argue that no single therapy will be sufficient to treat SCI effectively and that a combination of cell-based, rehabilitation and pharmaceutical interventions is the most promising approach to aid repair. For this reason, we also introduce a novel pharmaceutical strategy based on modifying the activity of heparan sulfate, an important regulator of a wide range of biological cell functions. The multi-target approach that is exemplified by these types of strategies will probably be necessary to optimize SCI treatment.
Collapse
Affiliation(s)
- Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George A McCanney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alice G Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Jacovides CL, Ahmed S, Suto Y, Paris AJ, Leone R, McCarry J, Christofidou-Solomidou M, Kaplan LJ, Smith DH, Holena DN, Schwab CW, Pascual JL. An inflammatory pulmonary insult post-traumatic brain injury worsens subsequent spatial learning and neurological outcomes. J Trauma Acute Care Surg 2019; 87:552-558. [PMID: 31205212 PMCID: PMC10497189 DOI: 10.1097/ta.0000000000002403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) patients are at high risk for early aspiration and pneumonia. How pneumonia impacts neurological recovery after TBI is not well characterized. We hypothesized that, independent of the cerebral injury, pneumonia after TBI delays and worsens neurological recovery and cognitive outcomes. METHODS Fifteen CD1 male mice were randomized to sham craniotomy or severe TBI (controlled cortical impact [CCI] - velocity 6 m/s, depth 1.0 mm) ± intratracheal lipopolysaccharide (LPS-2 mg/kg in 0.1 mL saline) as a pneumonia bioeffector. Neurological functional recovery by Garcia Neurologic Testing (GNT) and body weight loss were recorded daily for 14 days. On Days 6-14, animals underwent Morris Water Maze learning and memory testing with cued trials (platform visible), spatial learning trials (platform invisible, spatial cues present), and probe (memory) trials (platform removed, spatial clues present). Intergroup differences were assessed by the Kruskal-Wallis test with Bonferroni correction (p < 0.05). RESULTS Weight loss was greatest in the CCI + LPS group (maximum 24% on Day 3 vs. 8% [Sham], 7% [CCI], both on Day 1). GNT was lowest in CCI + LPS during the first week. Morris Water Maze testing demonstrated greater spatial learning impairment in the CCI + LPS group vs. Sham or CCI counterparts. Cued learning and long-term memory were worse in CCI + LPS and CCI as compared to Sham. CONCLUSION A pneumonia bioeffector insult after TBI worsens weight loss and mortality in a rodent model. Not only is spatial learning impaired, but animals are more debilitated and have worse neurologic performance. Understanding the adverse effects of pneumonia on TBI recovery is the first step d patients.
Collapse
Affiliation(s)
- Christina L Jacovides
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery (C.L.J., S.A., R.L., J.M., L.J.K., D.N.H., C.W.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Emergency and Critical Care Medicine (Y.S.), Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan; Department of Medicine (A.J.P.), University of Pennsylvania, Philadelphia, PA; Department of Medicine, Pulmonary, Allergy and Critical Care Division (M.C-S.), University of Pennsylvania, Philadelphia, Pennsylvania; and Center for Brain Injury and Repair, Department of Neurosurgery (D.H.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McCanney GA, Lindsay SL, McGrath MA, Willison HJ, Moss C, Bavington C, Barnett SC. The Use of Myelinating Cultures as a Screen of Glycomolecules for CNS Repair. BIOLOGY 2019; 8:biology8030052. [PMID: 31261710 PMCID: PMC6784161 DOI: 10.3390/biology8030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023]
Abstract
In vitro cell-based assays have been fundamental in modern drug discovery and have led to the identification of novel therapeutics. We have developed complex mixed central nervous system (CNS) cultures, which recapitulate the normal process of myelination over time and allow the study of several parameters associated with CNS damage, both during development and after injury or disease. In particular, they have been used as a reliable screen to identify drug candidates that may promote (re)myelination and/or neurite outgrowth. Previously, using these cultures, we demonstrated that a panel of low sulphated heparin mimetics, with structures similar to heparan sulphates (HSs), can reduce astrogliosis, and promote myelination and neurite outgrowth. HSs reside in either the extracellular matrix or on the surface of cells and are thought to modulate cell signaling by both sequestering ligands, and acting as co-factors in the formation of ligand-receptor complexes. In this study, we have used these cultures as a screen to address the repair potential of numerous other commercially available sulphated glycomolecules, namely heparosans, ulvans, and fucoidans. These compounds are all known to have certain characteristics that mimic cellular glycosaminoglycans, similar to heparin mimetics. We show that the N-sulphated heparosans promoted myelination. However, O-sulphated heparosans did not affect myelination but promoted neurite outgrowth, indicating the importance of structure in HS function. Moreover, neither highly sulphated ulvans nor fucoidans had any effect on remyelination but CX-01, a low sulphated porcine intestinal heparin, promoted remyelination in vitro. These data illustrate the use of myelinating cultures as a screen and demonstrate the potential of heparin mimetics as CNS therapeutics.
Collapse
Affiliation(s)
- George A McCanney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Susan L Lindsay
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Michael A McGrath
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Claire Moss
- GlycoMar Limited, Malin House, European Marine Science Park, Dunbeg, Oban Argyll, Scotland PA37 1SZ, UK
| | - Charles Bavington
- GlycoMar Limited, Malin House, European Marine Science Park, Dunbeg, Oban Argyll, Scotland PA37 1SZ, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
10
|
De Bellis A, Bellastella G, Maiorino MI, Costantino A, Cirillo P, Longo M, Pernice V, Bellastella A, Esposito K. The role of autoimmunity in pituitary dysfunction due to traumatic brain injury. Pituitary 2019; 22:236-248. [PMID: 30847776 DOI: 10.1007/s11102-019-00953-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the most common causes of mortality and long-term disability and it is associated with an increased prevalence of neuroendocrine dysfunctions. Post-traumatic hypopituitarism (PTHP) results in major physical, psychological and social consequences leading to impaired quality of life. PTHP can occur at any time after traumatic event, evolving through various ways and degrees of deficit, requiring appropriate screening for early detection and treatment. Although the PTHP pathophysiology remains to be elucitated, on the basis of proposed hypotheses it seems to be the result of combined pathological processes, with a possible role played by hypothalamic-pituitary autoimmunity (HPA). This review is aimed at focusing on this possible role in the development of PTHP and its potential clinical consequences, on the basis of the data so far appeared in the literature and of some results of personal studies on this issue. METHODS Scrutinizing the data so far appeared in literature on this topic, we have found only few studies evaluating the autoimmune pattern in affected patients, searching in particular for antipituitary and antihypothalamus autoantibodies (APA and AHA, respectively) by simple indirect immunofluorescence. RESULTS The presence of APA and/or AHA at high titers was associated with an increased risk of onset/persistence of PTHP. CONCLUSIONS HPA seems to contribute to TBI-induced pituitary damage and related PTHP. However, further prospective studies in a larger cohort of patients are needed to define etiopathogenic and diagnostic role of APA/AHA in development of post-traumatic hypothalamic/pituitary dysfunctions after a TBI.
Collapse
Affiliation(s)
- Annamaria De Bellis
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Costantino
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vlenia Pernice
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
11
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
12
|
Mayfosh AJ, Baschuk N, Hulett MD. Leukocyte Heparanase: A Double-Edged Sword in Tumor Progression. Front Oncol 2019; 9:331. [PMID: 31110966 PMCID: PMC6501466 DOI: 10.3389/fonc.2019.00331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate, a complex glycosaminoglycan found ubiquitously throughout mammalian cells and tissues. Heparanase has been strongly associated with important pathological processes including inflammatory disease and tumor metastasis, through its ability to promote various cellular functions such as cell migration, invasion, adhesion, and cytokine release. A number of cell types express heparanase including leukocytes, cells of the vasculature as well as tumor cells. However, the relative contribution of heparanase from these different cell sources to these processes is poorly defined. It is now well-established that the immune system plays a critical role in shaping tumor progression. Intriguingly, leukocyte-derived heparanase has been shown to either assist or impede tumor progression, depending on the setting. This review covers our current knowledge of heparanase in immune regulation of tumor progression, as well as the potential applications and implications of exploiting or inhibiting heparanase in cancer therapy.
Collapse
Affiliation(s)
- Alyce J Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Nikola Baschuk
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|