1
|
Bongoni AK, Kiss B, McRae JL, Salvaris EJ, Fisicaro N, Muntz F, Németh BZ, Nagy ZA, Kocsis A, Gál P, Cowan PJ, Pál G. Targeting the complement lectin pathway with a highly specific MASP-2 inhibitor protects against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2025; 122:e2424754122. [PMID: 40228118 PMCID: PMC12037010 DOI: 10.1073/pnas.2424754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common complication in several clinical scenarios including kidney transplantation. Mannan-binding lectin-associated serine proteinase (MASP)-2 is essential for activation of the complement lectin pathway, which has been implicated in the pathogenesis of renal IRI and therefore represents a potential therapeutic target. We developed a new, affinity-enhanced MASP-2 inhibitor, EVO24, by directed evolution of the D2 domain of human tissue factor pathway inhibitor. EVO24 was fused with a human IgG1-Fc to create the homodimer EVO24L, which potently and selectively inhibited the lectin pathway in human and mouse serum in vitro. EVO24L was tested in a mouse model of unilateral warm renal IRI. EVO24L administered before and after ischemia significantly protected against IRI, with improved renal function as well as reduced tubular injury and inflammatory cell infiltration at 24 h compared to vehicle-treated mice. Immunofluorescence analyses showed reduced deposition of complement components (C3d, C4d, and C9) and reduced expression of VCAM-1, indicating a decrease in complement activation and endothelial cell activation. Additionally, EVO24L treatment lowered plasma levels of complement C5a, hyaluronan (a marker of endothelial glycocalyx shedding), and the proinflammatory cytokines IL-6 and TNF-α. Our findings indicate that EVO24L inhibits acute inflammatory responses in renal IRI by blocking the lectin pathway, confirming the important role of this pathway in acute ischemic kidney injury and warranting further investigation of EVO24L in clinical settings.
Collapse
Affiliation(s)
- Anjan K. Bongoni
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Jennifer L. McRae
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Fenella Muntz
- Bioresources Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
| | - Bálint Zoltán Németh
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| | - Andrea Kocsis
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Péter Gál
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
- Institute of Molecular Life Sciences, Hungarian Research Network, Research Centre for Natural Sciences, BudapestH-1117, Hungary
| | - Peter J. Cowan
- Immunology Research Centre, St. Vincent’s Hospital Melbourne, Fitzroy, VIC3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC3052, Australia
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, BudapestH-1117, Hungary
- EvolVeritas Biotechnology Ltd., BudapestH-1117, Hungary
| |
Collapse
|
2
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
4
|
Lin C, Lei B, Dong C, Chen J, Chen S, Jiang K, Zeng Y, Su H, Jin H, Qiu X, Li Z, Hu Z, Yu S, Zhang C, Lu S, Atkinson C, Tomlinson S, Zhong F, Yuan G, He S. Complement inhibition alleviates donor brain death-induced liver injury and posttransplant cascade injury by regulating phosphoinositide 3-kinase signaling. Am J Transplant 2023; 23:484-497. [PMID: 36746335 DOI: 10.1016/j.ajt.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023]
Abstract
Brain death (BD) donors are the primary source of donor organs for liver transplantation. However, the effects of BD on donor livers and outcomes after liver transplantation remain unclear. Here, we explored the role of complement and the therapeutic effect of complement inhibition in BD-induced liver injury and posttransplantation injury in a mouse BD and liver transplantation model. For complement inhibition, we used complement receptor 2 (CR2)-Crry, a murine inhibitor of C3 activation that specifically targets sites of complement activation. In the mouse model, BD resulted in complement activation and liver injury in donor livers and a cascade liver injury posttransplantation, mediated in part through the C3a-C3aR (C3a receptor) signaling pathway, which was ameliorated by treatment with CR2-Crry. Treatment of BD donors with CR2-Crry improved graft survival, which was further improved when recipients received an additional dose of CR2-Crry posttransplantation. Mechanistically, we determined that complement inhibition alleviated BD-induced donor liver injury and posttransplant cascade injury by regulating phosphoinositide 3-kinase (PI3K) signaling pathways. Together, BD induced donor liver injury and cascade injury post-transplantation, which was mediated by complement activation products acting on PI3K signaling pathways. Our study provides an experimental basis for developing strategies to improve the survival of BD donor grafts in liver transplantation.
Collapse
Affiliation(s)
- Chengjie Lin
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Biao Lei
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Chunqiang Dong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Junze Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Keqing Jiang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Hu Jin
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoqiang Qiu
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Zeyuan Li
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Zhigao Hu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shuiping Yu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Cheng Zhang
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiliu Lu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Fudi Zhong
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China.
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China.
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China; Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Maassen H, Venema LH, Weiss MG, Huijink TM, Hofker HS, Keller AK, Mollnes TE, Eijken M, Pischke SE, Jespersen B, van Goor H, Leuvenink HGD. H2S-Enriched Flush out Does Not Increase Donor Organ Quality in a Porcine Kidney Perfusion Model. Antioxidants (Basel) 2023; 12:antiox12030749. [PMID: 36978997 PMCID: PMC10044751 DOI: 10.3390/antiox12030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Kidney extraction time has a detrimental effect on post-transplantation outcome. This study aims to improve the flush-out and potentially decrease ischemic injury by the addition of hydrogen sulphide (H2S) to the flush medium. Porcine kidneys (n = 22) were extracted during organ recovery surgery. Pigs underwent brain death induction or a Sham operation, resulting in four groups: donation after brain death (DBD) control, DBD H2S, non-DBD control, and non-DBD H2S. Directly after the abdominal flush, kidneys were extracted and flushed with or without H2S and stored for 13 h via static cold storage (SCS) +/− H2S before reperfusion on normothermic machine perfusion. Pro-inflammatory cytokines IL-1b and IL-8 were significantly lower in H2S treated DBD kidneys during NMP (p = 0.03). The non-DBD kidneys show superiority in renal function (creatinine clearance and FENa) compared to the DBD control group (p = 0.03 and p = 0.004). No differences were seen in perfusion parameters, injury markers and histological appearance. We found an overall trend of better renal function in the non-DBD kidneys compared to the DBD kidneys. The addition of H2S during the flush out and SCS resulted in a reduction in pro-inflammatory cytokines without affecting renal function or injury markers.
Collapse
|
6
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
7
|
Delaura IF, Gao Q, Anwar IJ, Abraham N, Kahan R, Hartwig MG, Barbas AS. Complement-targeting therapeutics for ischemia-reperfusion injury in transplantation and the potential for ex vivo delivery. Front Immunol 2022; 13:1000172. [PMID: 36341433 PMCID: PMC9626853 DOI: 10.3389/fimmu.2022.1000172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 01/21/2023] Open
Abstract
Organ shortages and an expanding waitlist have led to increased utilization of marginal organs. All donor organs are subject to varying degrees of IRI during the transplant process. Extended criteria organs, including those from older donors and organs donated after circulatory death are especially vulnerable to ischemia-reperfusion injury (IRI). Involvement of the complement cascade in mediating IRI has been studied extensively. Complement plays a vital role in the propagation of IRI and subsequent recruitment of the adaptive immune elements. Complement inhibition at various points of the pathway has been shown to mitigate IRI and minimize future immune-mediated injury in preclinical models. The recent introduction of ex vivo machine perfusion platforms provides an ideal window for therapeutic interventions. Here we review the role of complement in IRI by organ system and highlight potential therapeutic targets for intervention during ex vivo machine preservation of donor organs.
Collapse
Affiliation(s)
- Isabel F. Delaura
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Imran J. Anwar
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Nader Abraham
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Riley Kahan
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Matthew G. Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Andrew S. Barbas
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Ni Y, Wu GH, Cai JJ, Zhang R, Zheng Y, Liu JQ, Yang XH, Yang X, Shen Y, Lai JM, Ye XM, Mo SJ. Tubule-mitophagic secretion of SerpinG1 reprograms macrophages to instruct anti-septic acute kidney injury efficacy of high-dose ascorbate mediated by NRF2 transactivation. Int J Biol Sci 2022; 18:5168-5184. [PMID: 35982894 PMCID: PMC9379417 DOI: 10.7150/ijbs.74430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. Methods: The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) in vitro and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from Pax8-cre; Atg7flox/flox mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays. Results: High-dose ascorbate enables conversion of macrophages from a pro-inflammatory M1 subtype to an anti-inflammatory M2 subtype in murine AKI models of LIE, leading to decreased renal IL-1β and IL-18 production, reduced mortality and alleviated tubulotoxicity. Blockade of tubular mitophagy abrogates anti-inflammatory macrophages polarization under the high-dose ascorbate-exposed coculture systems. Similar abrogations are verified in LIE mice with tubular epithelium-specific ablation of Atg7, where the high-dose ascorbate-inducible renal protection and survival improvement are substantially weaker than their control littermates. Mechanistically, high-dose ascorbate stimulates tubular secretion of serpin family G member 1 (SerpinG1) through maintenance of mitophagy, for which nuclear factor-erythroid 2 related factor 2 (NRF2) transactivation is required. SerpinG1 perpetuates anti-inflammatory macrophages to prevent septic AKI, while kidney-specific disruption of SerpinG1 by adeno-associated viral vector serotype 9 (AAV9)-short hairpin RNA (shRNA) delivery thwarts the anti-inflammatory macrophages polarization and anti-septic AKI efficacy of high-dose ascorbate. Conclusion: Our study identifies SerpinG1 as an intermediate of tubular mitophagy-orchestrated myeloid function during septic AKI and reveals a novel rationale for ascorbate-based therapy.
Collapse
Affiliation(s)
- Yin Ni
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Guo-Hua Wu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, Zhejiang, P.R.China
| | - Juan-Juan Cai
- Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Run Zhang
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Yang Zheng
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jing-Quan Liu
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xiang-Hong Yang
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Ye Shen
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Jun-Mei Lai
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Xiang-Ming Ye
- Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| | - Shi-Jing Mo
- Emergency and Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Department of Intensive Rehabilitation Care Unit, Zhejiang P rovincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China.,Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, P.R.China
| |
Collapse
|
9
|
Jager NM, Venema LH, Arykbaeva AS, Meter-Arkema AH, Ottens PJ, van Kooten C, Mollnes TE, Alwayn IPJ, Leuvenink HGD, Pischke SE. Complement Is Activated During Normothermic Machine Perfusion of Porcine and Human Discarded Kidneys. Front Immunol 2022; 13:831371. [PMID: 35911712 PMCID: PMC9327788 DOI: 10.3389/fimmu.2022.831371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The gap between demand and supply of kidneys for transplantation necessitates the use of kidneys from extended criteria donors. Transplantation of these donor kidneys is associated with inferior results, reflected by an increased risk of delayed graft function. Inferior results might be explained by the higher immunogenicity of extended criteria donor kidneys. Normothermic machine perfusion (NMP) could be used as a platform to assess the quality and function of donor kidneys. In addition, it could be useful to evaluate and possibly alter the immunological response of donor kidneys. In this study, we first evaluated whether complement was activated during NMP of porcine and human discarded kidneys. Second, we examined the relationship between complement activation and pro-inflammatory cytokines during NMP. Third, we assessed the effect of complement activation on renal function and injury during NMP of porcine kidneys. Lastly, we examined local complement C3d deposition in human renal biopsies after NMP. Methods NMP with a blood-based perfusion was performed with both porcine and discarded human kidneys for 4 and 6 h, respectively. Perfusate samples were taken every hour to assess complement activation, pro-inflammatory cytokines and renal function. Biopsies were taken to assess histological injury and complement deposition. Results Complement activation products C3a, C3d, and soluble C5b-9 (sC5b-9) were found in perfusate samples taken during NMP of both porcine and human kidneys. In addition, complement perfusate levels positively correlated with the cytokine perfusate levels of IL-6, IL-8, and TNF during NMP of porcine kidneys. Porcine kidneys with high sC5b-9 perfusate levels had significantly lower creatinine clearance after 4 h of NMP. In line with these findings, high complement perfusate levels were seen during NMP of human discarded kidneys. In addition, kidneys retrieved from brain-dead donors had significantly higher complement perfusate levels during NMP than kidneys retrieved from donors after circulatory death. Conclusion Normothermic kidney machine perfusion induces complement activation in porcine and human kidneys, which is associated with the release of pro-inflammatory cytokines and in porcine kidneys with lower creatinine clearance. Complement inhibition during NMP might be a promising strategy to reduce renal graft injury and improve graft function prior to transplantation.
Collapse
Affiliation(s)
- Neeltina M. Jager
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Leonie H. Venema
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Asel S. Arykbaeva
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Anita H. Meter-Arkema
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Petra J. Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Cees van Kooten
- LUMC Transplant Center, Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E. Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ian P. J. Alwayn
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Soeren E. Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
10
|
Khedraki R, Noguchi H, Baldwin WM. Balancing the View of C1q in Transplantation: Consideration of the Beneficial and Detrimental Aspects. Front Immunol 2022; 13:873479. [PMID: 35401517 PMCID: PMC8988182 DOI: 10.3389/fimmu.2022.873479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Raneem Khedraki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Hirotsugu Noguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
11
|
Eerhart MJ, Reyes JA, Blanton CL, Danobeitia JS, Chlebeck PJ, Zitur LJ, Springer M, Polyak E, Coonen J, Capuano S, D’Alessandro AM, Torrealba J, van Amersfoort E, Ponstein Y, Van Kooten C, Burlingham W, Sullivan J, Pozniak M, Zhong W, Yankol Y, Fernandez LA. Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation. Transplantation 2022; 106:60-71. [PMID: 34905763 PMCID: PMC8674492 DOI: 10.1097/tp.0000000000003754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Complement activation in kidney transplantation is implicated in the pathogenesis of delayed graft function (DGF). This study evaluated the therapeutic efficacy of high-dose recombinant human C1 esterase inhibitor (rhC1INH) to prevent DGF in a nonhuman primate model of kidney transplantation after brain death and prolonged cold ischemia. METHODS Brain death donors underwent 20 h of conventional management. Procured kidneys were stored on ice for 44-48 h, then transplanted into ABO-compatible major histocompatibility complex-mismatched recipients. Recipients were treated with vehicle (n = 5) or rhC1INH 500 U/kg plus heparin 40 U/kg (n = 8) before reperfusion, 12 h, and 24 h posttransplant. Recipients were followed up for 120 d. RESULTS Of vehicle-treated recipients, 80% (4 of 5) developed DGF versus 12.5% (1 of 8) rhC1INH-treated recipients (P = 0.015). rhC1INH-treated recipients had faster creatinine recovery, superior urinary output, and reduced urinary neutrophil gelatinase-associated lipocalin and tissue inhibitor of metalloproteinases 2-insulin-like growth factor-binding protein 7 throughout the first week, indicating reduced allograft injury. Treated recipients presented lower postreperfusion plasma interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, and IL-18, lower day 4 monocyte chemoattractant protein 1, and trended toward lower C5. Treated recipients exhibited less C3b/C5b-9 deposition on day 7 biopsies. rhC1INH-treated animals also trended toward prolonged mediated rejection-free survival. CONCLUSIONS Our results recommend high-dose C1INH complement blockade in transplant recipients as an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes.
Collapse
Affiliation(s)
- Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Surgery, New York Medical College at Metropolitan Hospital Center, New York, NY, United States
| | - Casi L. Blanton
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Megan Springer
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erzsebet Polyak
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
12
|
Baldwin WM, Valujskikh A, Fairchild RL. C1q as a potential tolerogenic therapeutic in transplantation. Am J Transplant 2021; 21:3519-3523. [PMID: 34058061 PMCID: PMC8564585 DOI: 10.1111/ajt.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023]
Abstract
In 1963, Lepow and colleagues resolved C1, the first component of the classical pathway, into three components, which they named C1q, C1r, and C1s. All three of these components were demonstrated to be involved in causing hemolysis in vitro. For over 30 years after that seminal discovery, the primary function attributed to C1q was as part of the C1 complex that initiated the classical pathway of the complement cascade. Then, a series of papers reported that isolated C1q could bind to apoptotic cells and facilitate their clearance by macrophages. Since then, rheumatologists have recognized that C1q is an important pattern recognition receptor (PRR) that diverts autoantigen containing extracellular vesicles from immune recognition. This critical function of C1q as a regulator of immune recognition has been largely overlooked in transplantation. Now that extracellular vesicles released from transplants have been identified as a major agent of immune recognition, it is logical to consider the potential impact of C1q on modulating the delivery of allogeneic extracellular vesicles to antigen presenting cells. This concept has clinical implications in the possible use of C1q or a derivative as a biological therapeutic to down-modulate immune responses to transplants.
Collapse
Affiliation(s)
- William M Baldwin
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
13
|
van Leeuwen LL, Spraakman NA, Brat A, Huang H, Thorne AM, Bonham S, van Balkom BWM, Ploeg RJ, Kessler BM, Leuvenink HGD. Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome. Transpl Int 2021; 34:1618-1629. [PMID: 34448265 PMCID: PMC9292651 DOI: 10.1111/tri.13984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
Assessment of donor kidney quality is based on clinical scores or requires biopsies for histological assessment. Noninvasive strategies to identify and predict graft outcome at an early stage are, therefore, needed. We evaluated the perfusate of donation after brain death (DBD) kidneys during nonoxygenated hypothermic machine perfusion (HMP). In particular, we compared perfusate protein profiles of good outcome (GO) and suboptimal outcome (SO) 1‐year post‐transplantation. Samples taken 15 min after the start HMP (T1) and before the termination of HMP (T2) were analysed using quantitative liquid chromatography–tandem mass spectrometry (LC‐MS/MS). Hierarchical clustering of the 100 most abundant proteins showed discrimination between grafts with a GO and SO at T1. Elevated levels of proteins involved in classical complement cascades at both T1 and T2 and a reduced abundance of lipid metabolism at T1 and of cytoskeletal proteins at T2 in GO versus SO was observed. ATP‐citrate synthase and fatty acid‐binding protein 5 (T1) and immunoglobulin heavy variable 2‐26 and desmoplakin (T2) showed 91% and 86% predictive values, respectively, for transplant outcome. Taken together, DBD kidney HMP perfusate profiles can distinguish between outcome 1‐year post‐transplantation. Furthermore, it provides insights into mechanisms that could play a role in post‐transplant outcomes.
Collapse
Affiliation(s)
- L Leonie van Leeuwen
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Nora A Spraakman
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Aukje Brat
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Honglei Huang
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK.,Nuffield Department of Surgical Sciences, University of Oxford, BRC Oxford and NHS Blood and Transplant, Oxford, UK
| | - Adam M Thorne
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Sarah Bonham
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Rutger J Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Nuffield Department of Surgical Sciences, University of Oxford, BRC Oxford and NHS Blood and Transplant, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Henri G D Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Abstract
Complement plays important roles in both ischemia-reperfusion injury (IRI) and antibody-mediated rejection (AMR) of solid organ allografts. One approach to possibly improve outcomes after transplantation is the use of C1 inhibitor (C1-INH), which blocks the first step in both the classical and lectin pathways of complement activation and also inhibits the contact, coagulation, and kinin systems. C1-INH can also directly block leukocyte-endothelial cell adhesion. C1-INH contrasts with eculizumab and other distal inhibitors, which do not affect C4b or C3b deposition or noncomplement pathways. Authors of reports on trials in kidney transplant recipients have suggested that C1-INH treatment may reduce IRI and delayed graft function, based on decreased requirements for dialysis in the first month after transplantation. This effect was particularly marked with grafts with Kidney Disease Profile Index ≥ 85. Other clinical studies and models suggest that C1-INH may decrease sensitization and donor-specific antibody production and might improve outcomes in AMR, including in patients who are refractory to other modalities. However, the studies have been small and often only single-center. This article reviews clinical data and ongoing trials with C1-INH in transplant recipients, compares the results with those of other complement inhibitors, and summarizes potentially productive directions for future research.
Collapse
|
16
|
Danobeitia JS, Zens TJ, Chlebeck PJ, Zitur LJ, Reyes JA, Eerhart MJ, Coonen J, Capuano S, D’Alessandro AM, Torrealba JR, Burguete D, Brunner K, Amersfoort E, Ponstein-Simarro Doorten Y, Van Kooten C, Jankowska-Gan E, Burlingham W, Sullivan J, Djamali A, Pozniak M, Yankol Y, Fernandez LA. Targeted donor complement blockade after brain death prevents delayed graft function in a nonhuman primate model of kidney transplantation. Am J Transplant 2020; 20:1513-1526. [PMID: 31922336 PMCID: PMC7261643 DOI: 10.1111/ajt.15777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival. BD donors were maintained for 20 hours; kidneys were procured and stored at 4°C for 43-48 hours prior to implantation into ABO-compatible, nonsensitized, MHC-mismatched recipients. Animals were divided into 3 donor-treatment groups: G1 - vehicle, G2 - rhC1INH+heparin, and G3 - heparin. G2 donors showed significant reduction in classical complement pathway activation and decreased levels of tumor necrosis factor α and monocyte chemoattractant protein 1. DGF was diagnosed in 4/6 (67%) G1 recipients, 3/3 (100%) G3 recipients, and 0/6 (0%) G2 recipients (P = .008). In addition, G2 recipients showed superior renal function, reduced sC5b-9, and reduced urinary neutrophil gelatinase-associated lipocalin in the first week posttransplant. We observed no differences in incidence or severity of graft rejection between groups. Collectively, the data indicate that donor-management targeting complement activation prevents the development of DGF. Our results suggest a pivotal role for complement activation in BD-induced renal injury and postulate complement blockade as a promising strategy for the prevention of DGF after transplantation.
Collapse
Affiliation(s)
- Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tiffany J. Zens
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer Coonen
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose R. Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel Burguete
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Brunner
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewa Jankowska-Gan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
17
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Jager NM, van Zanden JE, Subías M, Leuvenink HGD, Daha MR, Rodríguez de Córdoba S, Poppelaars F, Seelen MA. Blocking Complement Factor B Activation Reduces Renal Injury and Inflammation in a Rat Brain Death Model. Front Immunol 2019; 10:2528. [PMID: 31736957 PMCID: PMC6838866 DOI: 10.3389/fimmu.2019.02528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Judith E van Zanden
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marta Subías
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Abstract
Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia-reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.
Collapse
|
20
|
Yaron JR, Kwiecien JM, Zhang L, Ambadapadi S, Wakefield DN, Clapp WL, Dabrowski W, Burgin M, Munk BH, McFadden G, Chen H, Lucas AR. Modifying the Organ Matrix Pre-engraftment: A New Transplant Paradigm? Trends Mol Med 2019; 25:626-639. [DOI: 10.1016/j.molmed.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
|
21
|
van Zanden JE, Jager NM, Daha MR, Erasmus ME, Leuvenink HGD, Seelen MA. Complement Therapeutics in the Multi-Organ Donor: Do or Don't? Front Immunol 2019; 10:329. [PMID: 30873176 PMCID: PMC6400964 DOI: 10.3389/fimmu.2019.00329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, striking progress has been made in the field of organ transplantation, such as better surgical expertise and preservation techniques. Therefore, organ transplantation is nowadays considered a successful treatment in end-stage diseases of various organs, e.g. the kidney, liver, intestine, heart, and lungs. However, there are still barriers which prevent a lifelong survival of the donor graft in the recipient. Activation of the immune system is an important limiting factor in the transplantation process. As part of this pro-inflammatory environment, the complement system is triggered. Complement activation plays a key role in the transplantation process, as highlighted by the amount of studies in ischemia-reperfusion injury (IRI) and rejection. However, new insight have shown that complement is not only activated in the later stages of transplantation, but already commences in the donor. In deceased donors, complement activation is associated with deteriorated quality of deceased donor organs. Of importance, since most donor organs are derived from either brain-dead donors or deceased after circulatory death donors. The exact mechanisms and the role of the complement system in the pathophysiology of the deceased donor have been underexposed. This review provides an overview of the current knowledge on complement activation in the (multi-)organ donor. Targeting the complement system might be a promising therapeutic strategy to improve the quality of various donor organs. Therefore, we will discuss the complement therapeutics that already have been tested in the donor. Finally, we question whether complement therapeutics should be translated to the clinics and if all organs share the same potential complement targets, considering the physiological differences of each organ.
Collapse
Affiliation(s)
- Judith E. van Zanden
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Neeltina M. Jager
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Michiel E. Erasmus
- Department of Thoracic Surgery, University Medical Center Groningen, Groningen, Netherlands
| | | | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Gaya da Costa M, Poppelaars F, van Kooten C, Mollnes TE, Tedesco F, Würzner R, Trouw LA, Truedsson L, Daha MR, Roos A, Seelen MA. Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population. Front Immunol 2018; 9:2664. [PMID: 30515158 PMCID: PMC6255829 DOI: 10.3389/fimmu.2018.02664] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex. Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated. Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5. Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies.
Collapse
Affiliation(s)
- Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Obstetrics and Gynecology, Martini Hospital, Groningen, Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Research Laboratory, Bodø Hospital, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Anja Roos
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Ekdahl KN, Persson B, Mohlin C, Sandholm K, Skattum L, Nilsson B. Interpretation of Serological Complement Biomarkers in Disease. Front Immunol 2018; 9:2237. [PMID: 30405598 PMCID: PMC6207586 DOI: 10.3389/fimmu.2018.02237] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Complement system aberrations have been identified as pathophysiological mechanisms in a number of diseases and pathological conditions either directly or indirectly. Examples of such conditions include infections, inflammation, autoimmune disease, as well as allogeneic and xenogenic transplantation. Both prospective and retrospective studies have demonstrated significant complement-related differences between patient groups and controls. However, due to the low degree of specificity and sensitivity of some of the assays used, it is not always possible to make predictions regarding the complement status of individual patients. Today, there are three main indications for determination of a patient's complement status: (1) complement deficiencies (acquired or inherited); (2) disorders with aberrant complement activation; and (3) C1 inhibitor deficiencies (acquired or inherited). An additional indication is to monitor patients on complement-regulating drugs, an indication which may be expected to increase in the near future since there is now a number of such drugs either under development, already in clinical trials or in clinical use. Available techniques to study complement include quantification of: (1) individual components; (2) activation products, (3) function, and (4) autoantibodies to complement proteins. In this review, we summarize the appropriate indications, techniques, and interpretations of basic serological complement analyses, exemplified by a number of clinical disorders.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Barbro Persson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Lillemor Skattum
- Section of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Clinical Immunology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Castellano G, Franzin R, Stasi A, Divella C, Sallustio F, Pontrelli P, Lucarelli G, Battaglia M, Staffieri F, Crovace A, Stallone G, Seelen M, Daha MR, Grandaliano G, Gesualdo L. Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling. Front Immunol 2018; 9:1002. [PMID: 29875766 PMCID: PMC5974049 DOI: 10.3389/fimmu.2018.01002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferentiation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we investigated the role of complement in inducing PMT after transplantation. Using a swine model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 24 h of I/R injury as demonstrated by reduction of PDGFRβ+/NG2+ cells with increase in myofibroblasts marker αSMA. In addition, PMT was associated with significant reduction in peritubular capillary luminal diameter. Treatment by C1-inhibitor (C1-INH) significantly preserved the phenotype of pericytes maintaining microvascular density and capillary lumen area at tubulointerstitial level. In vitro, C5a transdifferentiated human pericytes in myofibroblasts, with increased αSMA expression in stress fibers, collagen I production, and decreased antifibrotic protein Id2. The C5a-induced PMT was driven by extracellular signal-regulated kinases phosphorylation leading to increase in collagen I release that required both non-canonical and canonical TGFβ pathways. These results showed that pericytes are a pivotal target of complement activation leading to a profibrotic maladaptive cellular response. Our studies suggest that C1-INH may be a potential therapeutic strategy to counteract the development of PMT and capillary lumen reduction in I/R injury.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Staffieri
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Crovace
- Veterinary Surgery Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Marc Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.,Department of Nephrology, Leiden University Medical Centre, Leiden, Netherlands
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|