1
|
Haile SM, Gruber M, Bollwein G, Trabold B. Effect of Arginine Vasopressin on Human Neutrophil Function Under Physiological and Sepsis-Associated Conditions. Int J Mol Sci 2025; 26:2512. [PMID: 40141155 PMCID: PMC11942086 DOI: 10.3390/ijms26062512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
This study examines how different concentrations of arginine vasopressin (AVP) and its preservative chlorobutanol (ClB) impact the immune functions of human polymorphonuclear neutrophils (PMNs), which are crucial in the immune response, particularly in sepsis. Using a model to simulate the physiological, sepsis-related, and therapeutic AVP levels in plasma, we analysed how AVP and ClB affect PMN activities, including reactive oxygen species (ROS) production, NETosis, antigen expression, and migration. PMNs were isolated from whole human blood and assessed using flow cytometry and live cell imaging. The results indicated that neither AVP nor ClB significantly affected PMN viability, antigen expression, NETosis, or ROS production in response to N-Formylmethionine-leucyl-phenylalanine, or fMLP, and tumour necrosis factor alpha. In the migration assays, concentration-dependent effects were observed. At physiological AVP levels, PMN migration showed no reduction, while the sepsis-associated AVP levels initially reduced migration before returning to the baseline or even increasing. The therapeutic AVP concentrations showed similar migration to that in the controls, while high concentrations progressively inhibited migration. ClB, regardless of its concentration, enhanced PMN migration. These findings suggest that AVP during sepsis may impair PMN migration, potentially contributing to tissue damage and systemic complications. This highlights AVP's role as a possible immune modulator in complex immune responses.
Collapse
Affiliation(s)
- Sophie-Marie Haile
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
- Department of Internal Medicine II, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Michael Gruber
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| | - Gabriele Bollwein
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| | - Benedikt Trabold
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| |
Collapse
|
2
|
Ruiz LM, de Oliveira Braga KA, Nepomuceno NA, Correia AT, Ribeiro de Carvalho GH, Vilela VS, Dolhnikoff M, Pêgo-Fernandes PM. Effect of Hypertonic Saline Solution on the Ventilatory Mechanics of Lungs Donated After Brain Death. J Surg Res 2024; 298:109-118. [PMID: 38603941 DOI: 10.1016/j.jss.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Brain death (BD) compromises the viability of the lung for donation. Hypertonic saline solution (HSS) induces rapid intravascular volume expansion and immunomodulatory action. We investigated its role in ventilatory mechanics (VMs) and in the inflammatory activity of the lungs of rats subjected to BD. METHODS Wistar rats were divided into four groups: control, n = 10: intact rats subjected to extraction of the heart-lung block; BD, n = 8 (BD): rats treated with isotonic saline solution (4 mL/kg) immediately after BD; hypertonic saline 0 h, n = 9 (Hip.0'): rats treated with HSS (4 mL/kg) immediately after BD; and hypertonic saline 1 h, n = 9 (Hip.60'), rats treated with HSS (4 mL/kg) 60 min after BD. The hemodynamic characteristics, gas exchange, VMs, inflammatory mediators, and histopathological evaluation of the lung were evaluated over 240 min of BD. RESULTS In VMs, we observed increased airway resistance, tissue resistance, tissue elastance, and respiratory system compliance in the BD group (P < 0.037), while the treated groups showed no impairment over time (P > 0.05). In the histological analysis, the BD group showed a greater area of perivascular edema and a higher neutrophil count than the control group and the Hip.60' group (P < 0.05). CONCLUSIONS Treatment with HSS was effective in preventing changes in the elastic and resistive pulmonary components, keeping them at baseline levels. Late treatment reduced perivascular and neutrophilic edema in lung tissue.
Collapse
Affiliation(s)
- Liliane Moreira Ruiz
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil.
| | - Karina Andrighetti de Oliveira Braga
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Natalia Aparecida Nepomuceno
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Aristides Tadeu Correia
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | - Vanessa Sana Vilela
- Doctoral Student, Laboratory of Thoracic Surgery Research, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Marisa Dolhnikoff
- Pathology Departament, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Paulo Manuel Pêgo-Fernandes
- Laboratorio de Pesquisa em Cirurgia Toracica, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Ouerd S, Frenette AJ, Williamson D, Serri K, D'Aragon F, Bichet DG, Charbonney E. Vasopressin Use in the Support of Organ Donors: Physiological Rationale and Review of the Literature. Crit Care Explor 2023; 5:0907. [PMID: 37101535 PMCID: PMC10125506 DOI: 10.1097/cce.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The objective of this review was to depict the physiological and clinical rationale for the use of vasopressin in hemodynamic support of organ donors. After summarizing the physiological, pharmacological concepts and preclinical findings, regarding vasopressin's pathophysiological impacts, we will present the available clinical data. DATA SOURCES Detailed search strategies in PubMed, OVID Medline, and EMBASE were undertaken using Medical Subject Headings and Key Words. STUDY SELECTION Physiological articles regarding brain death, and preclinical animal and human studies about the use of vasopressin or analogs, as an intervention in organ support for donation, were considered. DATA EXTRACTION Two authors independently screened titles, abstracts, and full text of articles to determine eligibility. Data encompassing models, population, methodology, outcomes, and relevant concepts were extracted. DATA SYNTHESIS Following brain death, profound reduction in sympathetic outflow is associated with reduced cardiac output, vascular tone, and hemodynamic instability in donors. In addition to reducing catecholamine needs and reversing diabetes insipidus, vasopressin has been shown to limit pulmonary injury and decrease systemic inflammatory response in animals. Several observational studies show the benefit of vasopressin on hemodynamic parameters and catecholamine sparing in donors. Small trials suggest that vasopressin increase organ procurement and have some survival benefit for recipients. However, the risk of bias is overall concerning, and therefore the quality of the evidence is deemed low. CONCLUSIONS Despite potential impact on graft outcome and a protective effect through catecholamine support sparing, the benefit of vasopressin use in organ donors is based on low evidence. Well-designed observational and randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Sofiane Ouerd
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anne Julie Frenette
- Department of Pharmacy CIUSSS du nord-de-l'Île-de-Montréal, Sacré-Coeur Hospital, Montreal, QC, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - David Williamson
- Department of Pharmacy and Research Center, CIUSSS du nord-de-l'Île-de-Montréal, Sacré-Coeur Hospital, Montréal, QC, Canada
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Karim Serri
- Critical Care Division, Department of Medicine, Centre de Recherche du CIUSSS du nord-de-l'Île-de Montréal, Hôpital Sacré-Coeur de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Frederick D'Aragon
- Department of Anesthesiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniel G Bichet
- Departments of Medicine and Molecular and Integrative Physiology, Université de Montréal Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Emmanuel Charbonney
- Critical Care Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Belhaj A, Dewachter L, Hupkens E, Remmelink M, Galanti L, Rorive S, Melot C, Naeije R, Rondelet B. Tacrolimus Prevents Mechanical and Humoral Alterations in Brain Death-Induced Lung Injury in Pigs. Am J Respir Crit Care Med 2022; 206:584-595. [PMID: 35549669 DOI: 10.1164/rccm.202201-0033oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Donor brain death-induced lung injury may compromise graft function after transplantation. Establishing strategies to attenuate lung damage remains a challenge because the underlying mechanisms remain uncertain. OBJECTIVES The effects of tacrolimus pretreatment were evaluated in an experimental model of brain death-induced lung injury. METHODS Brain death was induced by slow intracranial infusion of blood in anesthetized pigs after randomization to tacrolimus (orally administered at 0.25 mg. kg-1 BID the day before the experiment and intravenously at 0.05 mg. kg-1 one hour before the experiment; n=8) or placebo (n=9) pretreatment. Hemodynamic measurements were performed 1, 3, 5 and 7 hours after brain death. After euthanasia of the animals, lung tissue was sampled for pathobiological and histological analysis, including lung injury scoring (LIS). MEASUREMENTS AND MAIN RESULTS Tacrolimus pretreatment prevented increases in pulmonary artery pressure, pulmonary vascular resistance and pulmonary capillary pressure and decreases in systemic artery pressure and thermodilution cardiac output associated with brain death. After brain death, the ratio of the partial arterial O2 pressure to the inspired O2 fraction (PaO2/FiO2) decreased, which was prevented by tacrolimus. Tacrolimus pretreatment prevented increases in the interleukin (IL)-6-to-IL-10 ratio, vascular cell adhesion molecule-1, circulating levels of IL-1β, IL-6-to-IL-10 ratio and glycocalyx-derived molecules. Tacrolimus partially decreased apoptosis [Bax-to-Bcl2 ratio (p=0.07) and the number of apoptotic cells in the lungs (p<0.05)] but failed to improve LIS. CONCLUSIONS Immunomodulation through tacrolimus pretreatment prevented pulmonary capillary hypertension as well as the activation of inflammatory and apoptotic processes in the lungs after brain death; however, LIS did not improve.
Collapse
Affiliation(s)
- Asmae Belhaj
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium;
| | - Laurence Dewachter
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Emeline Hupkens
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Myriam Remmelink
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Laurence Galanti
- CHU UCL Namur, 82470, Department of Clinical Biology, Yvoir, Belgium
| | - Sandrine Rorive
- Université Libre de Bruxelles, 26659, Department of Pathology, Hôpital Erasme, Brussels, Belgium
| | - Christian Melot
- Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| | - Robert Naeije
- Department of Pathophysiology, Free University of Brussels, Brussels, Belgium
| | - Benoît Rondelet
- CHU UCL Namur, 82470, cardiovascular, thoracic surgery and lung transplantation, Yvoir, Belgium.,Université Libre de Bruxelles, 26659, Laboratory of Physiology and Pharmacology, Faculty of Medicine, Bruxelles, Belgium
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Atanu FO, Batiha GES. Arginine vasopressin and pathophysiology of COVID-19: An innovative perspective. Biomed Pharmacother 2021; 143:112193. [PMID: 34543987 PMCID: PMC8440235 DOI: 10.1016/j.biopha.2021.112193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
In Covid-19, systemic disturbances may progress due to development of cytokine storm and dysregulation of and plasma osmolarility due to high release of pro-inflammatory cytokines and neuro-hormonal disorders. Arginine vasopressin (AVP) which is involve in the regulation of body osmotic system, body water content, blood pressure and plasma volume, that are highly disturbed in Covid-19 and linked with poor clinical outcomes. Therefore, this present study aimed to find the potential association between AVP serum level and inflammatory disorders in Covid-19. It has been observed by different recent studies that physiological response due to fever, pain, hypovolemia, dehydration, and psychological stress is characterized by activation release of AVP to counter-balance high blood viscosity in Covid-19 patients. In addition, activated immune cells mainly T and B lymphocytes and released pro-inflammatory cytokines stimulate discharge of stored AVP from immune cells, which in a vicious cycle trigger release of pro-inflammatory cytokines. Vasopressin receptor antagonists have antiviral and anti-inflammatory effects that may inhibit AVP-induced hyponatremia and release of pro-inflammatory cytokines in Covid-19. In conclusion, release of AVP from hypothalamus is augmented in Covid-19 due to stress, high pro-inflammatory cytokines, high circulating AngII and inhibition of GABAergic neurons. In turn, high AVP level leads to induction of hyponatremia, inflammatory disorders, and development of complications in Covid-19 by activation of NF-κB and NLRP3 inflammasome with release of pro-inflammatory cytokines. Therefore, AVP antagonists might be novel potential therapeutic modality in treating Covid-19 through mitigation of AVP-mediated inflammatory disorders and hyponatremia.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq.
| | - Safaa Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia.
| | - Francis O Atanu
- Department of Biochemistry, Faculty of Natural Sciences, Kogi State University, P.M.B. 1008 Anyigba, Nigeria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| |
Collapse
|
6
|
Wong A, Liu M. Inflammatory responses in lungs from donation after brain death: Mechanisms and potential therapeutic targets. J Heart Lung Transplant 2021; 40:890-896. [PMID: 34167864 DOI: 10.1016/j.healun.2021.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
The vast majority of lungs used in clinical transplantation are donated after brain death (DBD). The utilization of DBD lungs is low due to brain death-induced lung injury. Moreover, inflammatory responses in DBD lungs used for transplantation contribute to ischemia-reperfusion injury and primary graft dysfunction. Work from human observational studies has demonstrated overexpression of cytokines, activation of endothelial cells, and cell death in DBD lungs, are associated with the activation of signaling pathways. Animal models have characterized the pulmonary injury induced by brain death and identified potential strategies to improve donor management. Interestingly, transcriptomic studies comparing DBD and donated after circulatory death (DCD) lungs have found that inflammatory responses are elevated in DBD lungs, while cell death pathways are elevated in DCD lungs. Development of the ex vivo lung perfusion technique, has made it possible to assess donor lungs using inflammation and cell death biomarkers. In the future, identification of potential therapeutic targets and development of novel treatments strategies may allow for lung repair during EVLP prior to transplantation.
Collapse
Affiliation(s)
- Aaron Wong
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada. https://twitter.com/aaronkkwong
| | - Mingyao Liu
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada; Latner Thoracic Surgical Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Departments of Surgery, Medicine and Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Ricardo-da-Silva FY, Armstrong R, Vidal-Dos-Santos M, Correia CDJ, Coutinho E Silva RDS, da Anunciação LF, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. 17β-Estradiol Treatment Protects Lungs Against Brain Death Effects in Female Rat Donor. Transplantation 2021; 105:775-784. [PMID: 33031230 DOI: 10.1097/tp.0000000000003467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high-lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17β-estradiol (E2) treatment on the lungs of female brain dead rats. METHODS Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false operated), E2-T0 (treated with E2 immediately after BD; 50 μg/mL, 2 mL/h), and E2-T3 (treated with E2 after 3 h of BD; 50 μg/mL, 2 mL/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated, and analysis of NO synthase gene and protein expression was performed using real-time PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs was analyzed. RESULTS BD increased leukocyte infiltration, as shown by intravital microscopy (P = 0.017), bronchoalveolar lavage cell count (P = 0.016), the release of inflammatory mediators (P = 0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of matrix metalloproteinase-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and matrix metalloproteinase activity in the lungs. CONCLUSIONS E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raphael Dos Santos Coutinho E Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci (Lond) 2020; 134:1957-1971. [PMID: 32643759 DOI: 10.1042/cs20200586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe condition with high morbidity and mortality and few interventions. The role of sympathetic stress in the pathogenesis of ARDS has attracted recent research attention. Blockade of α-2 or α2A-adrenoceptor (α2A-AR) has been shown to attenuate lung injury induced by lipopolysaccharide (LPS) in rats. However, the mechanism is unclear. We confirmed the role of α2A-AR in ARDS using knockout mice and alveolar macrophages following LPS stimulation to assess the underlying mechanisms. We found that α2A-AR deficiency decreased the permeability of the alveolar capillary barrier in ARDS mice and suppressed lung inflammation by reducing inflammatory cell infiltration and the production of TNF-α, interleukin (IL)-6, and CXCL2/MIP-2. LPS stimulation decreased NF-κB activation in lung tissues of α2A-AR deficient mice and increased norepinephrine concentrations. In vitro, we found that norepinephrine inhibited the production of TNF-α, IL-6, and CXCL2/MIP-2 and promoted the secretion of IL-10 from LPS-stimulated murine alveolar macrophages. Blockade of α2A-AR by a specific antagonist further inhibited the production of TNF-α, IL-6, and IL-10. Furthermore, norepinephrine down-regulated NF-κB activation in stimulated alveolar macrophages. Altogether, these results suggest that α2A-AR deficiency ameliorates lung injury by increasing norepinephrine concentrations in lung tissues and inhibiting the activation of alveolar macrophages.
Collapse
|
9
|
van Zanden JE, Rebolledo RA, Hoeksma D, Bubberman JM, Burgerhof JG, Breedijk A, Yard BA, Erasmus ME, Leuvenink HGD, Hottenrott MC. Rat donor lung quality deteriorates more after fast than slow brain death induction. PLoS One 2020; 15:e0242827. [PMID: 33253309 PMCID: PMC7704005 DOI: 10.1371/journal.pone.0242827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/10/2020] [Indexed: 01/22/2023] Open
Abstract
Donor brain death (BD) is initiated by an increase in intracranial pressure (ICP), which subsequently damages the donor lung. In this study, we investigated whether the speed of ICP increase affects quality of donor lungs, in a rat model for fast versus slow BD induction. Rats were assigned to 3 groups: 1) control, 2) fast BD induction (ICP increase over 1 min) or 3) slow BD induction (ICP increase over 30 min). BD was induced by epidural inflation of a balloon catheter. Brain-dead rats were sacrificed after 0.5 hours, 1 hour, 2 hours and 4 hours to study time-dependent changes. Hemodynamic stability, histological lung injury and inflammatory status were investigated. We found that fast BD induction compromised hemodynamic stability of rats more than slow BD induction, reflected by higher mean arterial pressures during the BD induction period and an increased need for hemodynamic support during the BD stabilization phase. Furthermore, fast BD induction increased histological lung injury scores and gene expression levels of TNF-α and MCP-1 at 0.5 hours after induction. Yet after donor stabilization, inflammatory status was comparable between the two BD models. This study demonstrates fast BD induction deteriorates quality of donor lungs more on a histological level than slow BD induction.
Collapse
Affiliation(s)
- Judith E. van Zanden
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Rolando A. Rebolledo
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dane Hoeksma
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeske M. Bubberman
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes G. Burgerhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annette Breedijk
- Department of Internal Medicine, V. Clinic, University Medical Center Mannheim, Mannheim, Germany
| | - Benito A. Yard
- Department of Internal Medicine, V. Clinic, University Medical Center Mannheim, Mannheim, Germany
| | - Michiel E. Erasmus
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maximilia C. Hottenrott
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Surgery, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Correia CDJ, Coutinho E Silva RDS, Soares RGF, Armstrong R, Ricardo-da-Silva FY, Sannomiya P, Breithaupt-Faloppa AC, Moreira LFP. Hypertonic saline reduces cell infiltration into the lungs after brain death in rats. Pulm Pharmacol Ther 2020; 61:101901. [PMID: 32044433 DOI: 10.1016/j.pupt.2020.101901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lung transplantation is a treatment method for end stage lung disease, but the availability of donor lungs remains a major constraint. Brain death (BD) induces hemodynamic instability with microcirculatory hypoperfusion and increased inflammation, leading to pulmonary dysfunction. Hypertonic saline solution (HSS) is a volume expander possessing immunomodulatory effects. This study evaluated the influence of HSS on pulmonary dysfunction and inflammation in a rat model of BD. METHODS BD was induced by inflation of an intracranial balloon catheter. Rats were divided into [1]: Sham, without BD [2]; NS, NaCl treatment (0.9%, 4 mL/kg, i.v.) immediately after BD [3]; HSS1, HSS treatment (NaCl 7.5%, 4 mL/kg, i.v.) immediately after BD; and [4] HSS60, HSS treatment 60 min post BD. All groups were analyzed after 360 min. RESULTS Animals subjected to BD exhibited increased exhaled O2 and decreased CO2.The number of leukocytes in the lungs was significantly increased in the NS group (p = 0.002) and the HSS treatment was able to reduce it (HSS1, p = 0.018 and HSS60 = 0.030). In parallel, HSS-treated rats showed reduced levels of ICAM-1 expression, which was increased in the NS compared to Sham group. Lung edema was found increased in the NS group animals compared to Sham and no effect of the HSS treatment was observed. There were no differences among the groups in terms of TNF-α, VEGF, and CINC-1 lung concentrations. CONCLUSIONS HSS is capable of reducing inflammatory cell infiltration into the lung after BD induction, which is associated with the reduction of ICAM-1 expression in organ vessels.
Collapse
Affiliation(s)
- Cristiano de Jesus Correia
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raphael Dos Santos Coutinho E Silva
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafaela Garcia Ferreira Soares
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulina Sannomiya
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe P Moreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coração (Incor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Vieira RF, Breithaupt-Faloppa AC, Matsubara BC, Rodrigues G, Sanches MP, Armstrong-Jr R, Ferreira SG, Correia CDJ, Moreira LFP, Sannomiya P. 17β-Estradiol protects against lung injuries after brain death in male rats. J Heart Lung Transplant 2018; 37:1381-1387. [PMID: 30139547 DOI: 10.1016/j.healun.2018.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17β-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats. METHODS Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17β-estradiol (280 μg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7). Experiments were performed 180 minutes thereafter. Histopathological changes in the lung were evaluated by histomorphometry. Gene expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and endothelin-1 was measured by real-time polymerase chain reaction. Protein expression of NO synthases, endothelin-1, platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), BCL-2, and caspase 3 was assessed by immunohistochemistry. Cytokines were quantified by enzyme-linked immunosorbent assay. RESULTS Treatment with 17β-estradiol after brain death decreased lung edema and hemorrhage (p < 0.0001), and serum levels of cytokine-induced neutrophil chemoattractant-1 (CINC-1; p = 0.0020). iNOS (p < 0.0001) and VCAM-1 (p < 0.0001) also diminished at protein levels, while eNOS accumulated (p = 0.0002). However, gene expression of iNOS, eNOS, and endothelin-1 was comparable among groups, as was protein expression of endothelin-1, ICAM-1, BCL-2, and caspase 3. CONCLUSIONS 17β-Estradiol effectively reduces lung injury in brain-dead rats mainly due to its ability to regulate NO synthases. Thus, the drug may improve lung viability for transplantation.
Collapse
Affiliation(s)
- Roberta Figueiredo Vieira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Carvalho Matsubara
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geovana Rodrigues
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Petrof Sanches
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong-Jr
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sueli Gomes Ferreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe P Moreira
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulina Sannomiya
- Laboratório Cirúrgico de Pesquisa Cardiovascular, Instituto do Coração, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Crawford TC, Lui C, Magruder JT, Suarez-Pierre A, Ha JS, Higgins RS, Broderick SR, Merlo CA, Kim BS, Bush EL. Traumatically Brain-Injured Donors and the Impact on Lung Transplantation Survival. Ann Thorac Surg 2018; 106:842-847. [PMID: 29730351 DOI: 10.1016/j.athoracsur.2018.03.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Concern has been raised over inferior lung transplantation survival associated with traumatic brain injury (TBI) organ donors. Our purpose was to explore the relationship between TBI donors and lung transplantation survival in the lung allocation score (LAS) era. METHODS We queried the United Network for Organ Sharing Scientific Registry of Transplant Recipients and identified all adult (≥18 years) lung transplantations performed from May 4, 2005, to December 31, 2015. Recipients were dichotomized based on donor cause of death, TBI versus non-TBI, propensity score across eight variables (final LAS, intensive care unit admission before transplantation, extracorporeal membrane oxygenation before transplantation, donor age 50 years or older, cytomegalovirus antibody recipient-/donor+, ischemia time, annual center transplantation volume, single versus double lung transplantation), and matched 1:1 without replacement. Our primary outcomes were survival at 1, 3, and 5 years by Kaplan-Meier method. RESULTS A total of 17,610 patients underwent isolated lung transplantation over the study period at 75 different transplantation centers. TBI was the leading cause of death in the donor population: 47% of all donors. Propensity score matching generated 6,782 well-matched donor TBI versus non-TBI pairs (all covariate p > 0.2). Risk-adjusted survival was similar between recipients of TBI donors versus non-TBI donors at 1 year (86% versus 86%, log-rank p = 0.27), 3 years (68% versus 68%, log-rank p = 0.47), and 5 years (55% versus 54%, log-rank p = 0.40). CONCLUSIONS In the largest analysis of TBI donors and the impact on lung transplantation survival to date, we found similar survival out to 5 years in lung transplant recipients of TBI versus non-TBI donors, alleviating concerns over continued transplantation with this unique donor population.
Collapse
Affiliation(s)
- Todd C Crawford
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cecillia Lui
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Trent Magruder
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alejandro Suarez-Pierre
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jinny S Ha
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert S Higgins
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen R Broderick
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christian A Merlo
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo S Kim
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Errol L Bush
- Division of Thoracic Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
13
|
Hahnenkamp K, Böhler K, Wolters H, Wiebe K, Schneider D, Schmidt HHJ. Organ-Protective Intensive Care in Organ Donors. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 113:552-8. [PMID: 27598872 DOI: 10.3238/arztebl.2016.0552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The ascertainment of brain death (the irreversible, total loss of brain function) gives the physician the opportunity to limit or stop further treatment. Alternatively, if the brain-dead individual is an organ donor, the mode of treatment can be changed from patient-centered to donationcentered. Consensus-derived recommendations for the organ-protective treatment of brain-dead organ donors are not yet available in Germany. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed, and on the authors' clinical experience. RESULTS Brain death causes major pathophysiological changes, including an increase in catecholamine levels and a sudden drop in the concentration of multiple hormones, among them antidiuretic hormone, cortisol, insulin, and triand tetraiodothyronine. These changes affect the function of all organ systems, as well as the hemodynamic state and the regulation of body temperature. The use of standardized donor management protocols might well increase the rate of transplanted organs per donor and improve the quality of the transplanted organs. In addition, the administration of methylprednisolone, desmopressin, and vasopressin could be a useful supplement to treatment in some cases. Randomized controlled trials have not yet demonstrated either improved organ function or prolonged survival of the transplant recipients. CONCLUSION The evidence base for organ-protective intensive care is weak; most of the available evidence is on the level of expert opinion. There is good reason to believe, however, that the continuation of intensive care, in the sense of early donor management, can make organ transplantation more successful both by increasing the number of transplantable organs and by improving organ quality.
Collapse
Affiliation(s)
- Klaus Hahnenkamp
- Department of Anesthesiology and Intensive Care Medicine, University Medicine Greifswald, German Organ Transplantation Foundation, North-East Donor Region, Berlin, Department of General and Visceral Surgery, University Hospital Münster, Department of Thoracic and Cardiovascular Surgery, University Hospital Münster, Department of Anaesthesiology and Intensive Care, University Hospital Leipzig, Department of Transplant Medicine, University Hospital Münster
| | | | | | | | | | | |
Collapse
|
14
|
Belhaj A, Dewachter L, Rorive S, Remmelink M, Weynand B, Melot C, Hupkens E, Dewachter C, Creteur J, Mc Entee K, Naeije R, Rondelet B. Mechanical versus humoral determinants of brain death-induced lung injury. PLoS One 2017; 12:e0181899. [PMID: 28753621 PMCID: PMC5533440 DOI: 10.1371/journal.pone.0181899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022] Open
Abstract
Background The mechanisms of brain death (BD)-induced lung injury remain incompletely understood, as uncertainties persist about time-course and relative importance of mechanical and humoral perturbations. Methods Brain death was induced by slow intracranial blood infusion in anesthetized pigs after randomization to placebo (n = 11) or to methylprednisolone (n = 8) to inhibit the expression of pro-inflammatory mediators. Pulmonary artery pressure (PAP), wedged PAP (PAWP), pulmonary vascular resistance (PVR) and effective pulmonary capillary pressure (PCP) were measured 1 and 5 hours after Cushing reflex. Lung tissue was sampled to determine gene expressions of cytokines and oxidative stress molecules, and pathologically score lung injury. Results Intracranial hypertension caused a transient increase in blood pressure followed, after brain death was diagnosed, by persistent increases in PAP, PCP and the venous component of PVR, while PAWP did not change. Arterial PO2/fraction of inspired O2 (PaO2/FiO2) decreased. Brain death was associated with an accumulation of neutrophils and an increased apoptotic rate in lung tissue together with increased pro-inflammatory interleukin (IL)-6/IL-10 ratio and increased heme oxygenase(HO)-1 and hypoxia inducible factor(HIF)-1 alpha expression. Blood expressions of IL-6 and IL-1β were also increased. Methylprednisolone pre-treatment was associated with a blunting of increased PCP and PVR venous component, which returned to baseline 5 hours after BD, and partially corrected lung tissue biological perturbations. PaO2/FiO2 was inversely correlated to PCP and lung injury score. Conclusions Brain death-induced lung injury may be best explained by an initial excessive increase in pulmonary capillary pressure with increased pulmonary venous resistance, and was associated with lung activation of inflammatory apoptotic processes which were partially prevented by methylprednisolone.
Collapse
Affiliation(s)
- Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UcL Namur, Université Catholique de Louvain, Yvoir, Belgium
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail: ,
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandrine Rorive
- Department of Anatomopathology, Erasmus Academic Hospital, Brussels, Belgium
- DIAPATH—Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Myriam Remmelink
- Department of Anatomopathology, Erasmus Academic Hospital, Brussels, Belgium
| | - Birgit Weynand
- Department of Anatomopathology, UZ Leuven, Katholiek Universiteit Leuven, Brussels, Belgium
| | - Christian Melot
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Department of Emergency, Erasmus Academic Hospital, Brussels, Belgium
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasmus Academic Hospital, Brussels, Belgium
| | - Kathleen Mc Entee
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UcL Namur, Université Catholique de Louvain, Yvoir, Belgium
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Li L, Li N, He C, Huang W, Fan X, Zhong Z, Wang Y, Ye Q. Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits. Mol Med Rep 2017; 16:215-223. [PMID: 28534953 PMCID: PMC5482134 DOI: 10.3892/mmr.2017.6609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors.
Collapse
Affiliation(s)
- Ling Li
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Ning Li
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Chongxiang He
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Wei Huang
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Xiaoli Fan
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Simão RR, Ferreira SG, Kudo GK, Armstrong Junior R, Silva LFFD, Sannomiya P, Breithaupt-Faloppa AC, Moreira LFP. Sex differences on solid organ histological characteristics after brain death1. Acta Cir Bras 2017; 31:278-85. [PMID: 27168541 DOI: 10.1590/s0102-865020160040000009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate gender differences in the evolution of the inflammatory process in rats subjected to brain death (BD). METHODS Adult Wistar rats were divided into three groups: female; ovariectomized female; and male rats. BD was induced using intracranial balloon inflation and confirmed by maximal pupil dilatation, apnea, absence of reflex, and drop of mean arterial pressure. Six hours after BD, histological evaluation was performed in lungs, heart, liver and kidneys, and levels of inflammatory proteins, estrogen, progesterone, and corticosterone were determined in plasma. RESULTS In the lungs, females presented more leukocyte infiltration compared to males (p<0.01). Ovariectomized female rat lungs were more hemorrhagic compared to other groups (p<0.001). In the heart, females had higher leukocyte infiltration and tissue edema compared to males (p<0.05). In the liver and kidneys, there were no differences among groups. In female group estradiol and progesterone were sharply reduced 6 hours after BD (p<0.001) to values observed in ovariectomized females and males. Corticosterone levels were similar. CONCLUSIONS Sex hormones influence the development of inflammation and the status of organs. The increased inflammation in lungs and heart of female rats might be associated with the acute reduction in female hormones triggered by BD.
Collapse
|
17
|
Ritschl PV, Ashraf MI, Oberhuber R, Mellitzer V, Fabritius C, Resch T, Ebner S, Sauter M, Klingel K, Pratschke J, Kotsch K. Donor brain death leads to differential immune activation in solid organs but does not accelerate ischaemia-reperfusion injury. J Pathol 2016; 239:84-96. [DOI: 10.1002/path.4704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/21/2016] [Accepted: 02/10/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Paul Viktor Ritschl
- Department of General, Visceral and Transplantation Surgery; Charité-Universitätsmedizin Berlin; Germany
| | - Muhammad Imtiaz Ashraf
- Department of General, Visceral and Transplantation Surgery; Charité-Universitätsmedizin Berlin; Germany
| | - Rupert Oberhuber
- Centre for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery; Medical University of Innsbruck; Austria
| | - Vanessa Mellitzer
- Centre for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery; Medical University of Innsbruck; Austria
| | - Cornelia Fabritius
- Centre for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery; Medical University of Innsbruck; Austria
| | - Thomas Resch
- Centre for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery; Medical University of Innsbruck; Austria
| | - Susanne Ebner
- Centre for Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery; Medical University of Innsbruck; Austria
| | - Martina Sauter
- Department of Molecular Pathology; University Hospital Tübingen; Germany
| | - Karin Klingel
- Department of Molecular Pathology; University Hospital Tübingen; Germany
| | - Johann Pratschke
- Department of General, Visceral and Transplantation Surgery; Charité-Universitätsmedizin Berlin; Germany
| | - Katja Kotsch
- Department of General, Visceral and Transplantation Surgery; Charité-Universitätsmedizin Berlin; Germany
| |
Collapse
|
18
|
Chinese Pediatric Organ Donation With Scheduled Cardiac Arrest After Brain Death: A Novel China Classification Beyond Maastricht. Transplant Proc 2015; 47:2836-40. [PMID: 26707298 DOI: 10.1016/j.transproceed.2015.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Organ donation with scheduled cardiac arrest after brain death (s-DBCD) is a special category in China. This study was to evaluate the procedure of pediatric s-DBCD, graft quality, and clinical outcomes of single kidney transplantation. METHODS We retrospectively analyzed the data of 8 Chinese pediatric donors. RESULTS The death causes of the donors (age 4-12 years) were cerebral hypoxia after cardiopulmonary resuscitation (n = 1), intracranial vascular malformation (n = 1), severe traumatic brain injury (n = 3), and brain malignancy (n = 3). The functional warm ischemia time of the grafts was 18 (13-26) minutes. Sixteen kidneys were recovered using liver-kidney en bloc procurement after in situ perfusion. All kidneys had a length >7 cm and were transplanted to 3 adolescent and 13 adult recipients. Two cases of delayed graft function occurred. The patients had a median serum creatinine level of 97 (55-123) μmol/L by the last visit. The median estimated glomerular filtration rate level was 85.4 (58-136) mL/min. Five episodes of biopsy-proven acute rejection occurred in 4 patients, which were reversed by methylprednisolone pulse therapy. Renal arterial stenosis was observed in 1 patient, which was cured by interventional balloon dilatation and stent implantation. CONCLUSION Pediatric s-DBCD is feasible with acceptable graft quality. Single kidney transplantation with pediatric graft size >7 cm has good clinical outcomes.
Collapse
|
19
|
DU BING, LI LING, ZHONG ZHIBIAO, FAN XIAOLI, QIAO BINGBING, HE CHONGXIANG, FU ZHEN, WANG YANFENG, YE QIFA. Brain death induces the alteration of liver protein expression profiles in rabbits. Int J Mol Med 2014; 34:578-84. [DOI: 10.3892/ijmm.2014.1806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/30/2014] [Indexed: 11/06/2022] Open
|
20
|
A comparison of vasopressin, terlipressin, and lactated ringers for resuscitation of uncontrolled hemorrhagic shock in an animal model. PLoS One 2014; 9:e95821. [PMID: 24759799 PMCID: PMC3997410 DOI: 10.1371/journal.pone.0095821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/31/2014] [Indexed: 12/02/2022] Open
Abstract
Aim The aim of this study is to compare the effect of lactated ringer (LR), vasopressin (Vaso) or terlipressin (Terli) on uncontrolled hemorrhagic shock (UHS) in rats. Methods 48 rats were divided into four treatment groups for UHS study. Vaso group was given bolus vasopressin (0.8 U/kg); the Terli group was given bolus terlipressin (15 mcg/kg); LR group was given LR and the sham group was not given anything. Mean arterial pressure (MAP), serum lactate level, plasma cytokine levels, lung injury and mortality are investigated for these different treatment groups. Results Compared with LR group, vasopressin and terlipressin-treated groups were associated with higher MAP, lowered mortality rates, less lung injury, lowered serum lactate level, less proinflammatory and more anti-inflammatory cytokine production at certain time points. Comparing between vasopressin and terlipressin treated groups, there is no statistical difference in mortality rates, lung injury, serum lactate level and cytokine level. However, there is a difference in the length of time in maintaining a restored level of MAP (80 to 110 mmHg). The terlipressin treated rats can maintain this restored level of MAP for 45 minutes, but the vasopressin treated rats can only maintain this restored level of MAP for 5 minutes before decreasing gradually to the MAP observed in LR group (40 mmHg). Conclusion Early optimization of hemodynamics with terlipressin or vasopressin in an animal model of UHS was associated with improved hemodynamics and inflammatory cytokine profile than the LR control. Compared with vasopressin, terlipressin has the advantage of ease of use and sustained effects.
Collapse
|
21
|
Abstract
Brain death is associated with complex physiologic changes that may impact the management of the potential organ donor. Medical management is critical to actualizing the individual or family’s intent to donate and maximizing the benefit of that intent. This interval of care in the PICU begins with brain death and consent to donation and culminates with surgical organ procurement. During this phase, risks for hemodynamic instability and compromise of end organ function are high. The brain dead organ donor is in a distinct and challenging pathophysiologic condition that culminates in multifactorial shock. The potential benefits of aggressive medical management of the organ donor may include increased number of donors providing transplantable organs and increased number of organs transplanted per donor. This may improve graft function, graft survival, and patient survival in those transplanted. In this chapter, pathophysiologic changes occurring after brain death are reviewed. General and organ specific donor management strategies and logistic considerations are discussed. There is a significant opportunity for enhancing donor multi-organ function and improving organ utilization with appropriate PICU management.
Collapse
|
22
|
The effect of arginine vasopressin on organ donor procurement and lung function. J Surg Res 2013; 186:452-7. [PMID: 24176209 DOI: 10.1016/j.jss.2013.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hormone replacement therapy (HRT) is becoming more common when managing brain-dead donors. Arginine vasopressin (AVP) is associated with benefits but is not consistently used. We hypothesize that AVP is associated with the maintenance of lung function and successful recovery in donors and enhanced lung graft performance in recipients. METHODS The Organ Procurement and Transplantation Network database was used. Study donors were those treated with HRT and procured from January 1, 2009 to June 30, 2011. AVP (+) and AVP (-) donors were compared. Donor lung function, the rate of successful lung procurement, and the incidence of graft failure in recipients were studied. RESULTS There were 12,322 donors included, of which 7686 received AVP (62.4%). Cerebrovascular accident (4722 [38.3%]) was the most common cause of donor death. There was a significant increase in high yield (≥4 organs) (51.0% versus 39.3%, <0.001), mean number of organs (3.75 versus 3.33, <0.001), and rate of successful lung recovery (26.3% versus 20.5%, <0.001) with AVP. Lung function was preserved to a greater degree in donors receiving AVP. Adjusting the significant factors, AVP was independently associated with lung procurement (1.220 [1.114-1.336], <0.001). The incidence of early graft failure was not changed. CONCLUSIONS AVP with HRT is associated with the maintenance of lung function and a significant increase in successful organ recovery in donors without untoward effects in the recipient. AVP should be universally adopted as a component of HRT in the management of donors with neurologic death.
Collapse
|
23
|
Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury. J Transplant 2013; 2013:521369. [PMID: 23691272 PMCID: PMC3649190 DOI: 10.1155/2013/521369] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 01/26/2023] Open
Abstract
Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.
Collapse
|
24
|
Moreno P, Alvarez A, Illana J, Espinosa D, Baamonde C, Cerezo F, Algar FJ, Salvatierra A. Early lung retrieval from traumatic brain-dead donors does not compromise outcomes following lung transplantation. Eur J Cardiothorac Surg 2013; 43:e190-7. [DOI: 10.1093/ejcts/ezt033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Zhou H, Fu Z, Wei Y, Liu J, Cui X, Yang W, Ding W, Pan P, Li W. Hydrogen inhalation decreases lung graft injury in brain-dead donor rats. J Heart Lung Transplant 2013; 32:251-8. [DOI: 10.1016/j.healun.2012.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 11/01/2012] [Accepted: 11/10/2012] [Indexed: 11/29/2022] Open
|
26
|
Simas R, Kogiso DH, Correia CDJ, Silva LFFD, Silva IA, Cruz JWMC, Sannomiya P, Moreira LFP. Influence of brain death and associated trauma on solid organ histological characteristics. Acta Cir Bras 2012; 27:465-70. [PMID: 22760831 DOI: 10.1590/s0102-86502012000700006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate histopathological alterations triggered by brain death and associated trauma on different solid organs in rats. METHODS Male Wistar rats (n=37) were anesthetized with isoflurane, intubated and mechanically ventilated. A trepanation was performed and a balloon catheter inserted into intracraninal cavity and rapidly inflated with saline to induce brain death. After induction, rats were monitored for 30, 180, and 360 min for hemodynamic parameters and exsanguinated from abdominal aorta. Heart, lung, liver, and kidney were removed and fixed in paraffin to evaluation of histological alterations (H&E). Sham-operated rats were trepanned only and used as control group. RESULTS Brain dead rats showed a hemodynamic instability with hypertensive episode in the first minute after the induction followed by hypotension for approximately 1 h. Histological analyses showed that brain death induces vascular congestion in heart (p<0.05), and lung (p<0.05); lung alveolar edema (p=0.001), kidney tubular edema (p<0.05); and leukocyte infiltration in liver (p<0.05). CONCLUSIONS Brain death induces hemodynamic instability associated with vascular changes in solid organs and compromises most severely the lungs. However, brain death associated trauma triggers important pathophysiological alterations in these organs.
Collapse
Affiliation(s)
- Rafael Simas
- Postgraduate Program on Thoracic and Cardiovascular Surgery, Medicine School, University of Sao Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The clinical importance of cardiovascular consequences resulting from cerebral injury has long been recognized. However, interactions between the brain and the cardiovascular system remain poorly defined and their importance for the management of patients suffering from acute brain injury is largely underestimated. This should have profound consequences on treatment strategies during anaesthesia and intensive cares of these patients, taking into account not only brain perfusion, but also cardiovascular optimisation. This report summarizes the main data available regarding the cardiovascular consequences of brain death, traumatic brain injury, stroke and epilepsy.
Collapse
Affiliation(s)
- P-M Mertes
- Service d'anesthésie-réanimation, CHU de Nancy, hôpital Central, 29, avenue de Lattre-de-Tassigny, 54035 Nancy cedex, France.
| | | | | |
Collapse
|
28
|
Cowley MJ, Weinberg A, Zammit NW, Walters SN, Hawthorne WJ, Loudovaris T, Thomas H, Kay T, Gunton JE, Alexander SI, Kaplan W, Chapman J, O'Connell PJ, Grey ST. Human islets express a marked proinflammatory molecular signature prior to transplantation. Cell Transplant 2012; 21:2063-78. [PMID: 22404979 DOI: 10.3727/096368911x627372] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the context of islet transplantation, experimental models show that induction of islet intrinsic NF-κB-dependent proinflammatory genes can contribute to islet graft rejection. Isolation of human islets triggers activation of the NF-κB and mitogen-activated kinase (MAPK) stress response pathways. However, the downstream NF-κB target genes induced in human islets during the isolation process are poorly described. Therefore, in this study, using microarray, bioinformatic, and RTqPCR approaches, we determined the pattern of genes expressed by a set of 14 human islet preparations. We found that isolated human islets express a panel of genes reminiscent of cells undergoing a marked NF-κB-dependent proinflammatory response. Expressed genes included matrix metallopeptidase 1 (MMP1) and fibronectin 1 (FN1), factors involved in tissue remodeling, adhesion, and cell migration; inflammatory cytokines IL-1β and IL-8; genes regulating cell survival including A20 and ATF3; and notably high expression of a set of chemokines that would favor neutrophil and monocyte recruitment including CXCL2, CCL2, CXCL12, CXCL1, CXCL6, and CCL28. Of note, the inflammatory profile of isolated human islets was maintained after transplantation into RAG(-/-) recipients. Thus, human islets can provide a reservoir of NF-κB-dependent inflammatory factors that have the potential to contribute to the anti-islet-graft immune response. To test this hypothesis, we extracted rodent islets under optimal conditions, forced activation of NF-κB, and transplanted them into allogenic recipients. These NF-κB activated islets not only expressed the same chemokine profile observed in human islets but also struggled to maintain normoglycemia posttransplantation. Further, NF-κB-activated islets were rejected with a faster tempo as compared to non-NF-κB-activated rodent islets. Thus, isolated human islets can make cell autonomous contributions to the ensuing allograft response by elaborating inflammatory factors that contribute to their own demise. These data highlight the potential importance of islet intrinsic proinflammatory responses as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark J Cowley
- Peter Wills Bioinformatics Centre, Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Simas R, Sannomiya P, Cruz JWMC, Correia CDJ, Zanoni FL, Kase M, Menegat L, Silva IA, Moreira LFP. Paradoxical effects of brain death and associated trauma on rat mesenteric microcirculation: an intravital microscopic study. Clinics (Sao Paulo) 2012; 67:69-75. [PMID: 22249483 PMCID: PMC3248604 DOI: 10.6061/clinics/2012(01)11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/20/2011] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of Pselectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage.
Collapse
Affiliation(s)
- Rafael Simas
- Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração, Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Following the Norwood palliation, neonates may require an escalation of inotropic and vasoactive support. Arginine Vasopressin may be uniquely useful in supporting this population. MATERIALS AND METHODS A retrospective evaluation of neonates at this institution between November, 2007 and October, 2010 who received Arginine Vasopressin following the Norwood procedure. Data were recorded from the patient records at one hour prior to, and then 1, 2, 3, 4, 6, and 24 hours following Arginine Vasopressin initiation. RESULTS We included 28 neonates. The mean dose of Arginine Vasopressin was 0.0005 plus or minus 0.0003 units per kilogram per minute. There was an early response (less than 6 hours) characterised by an 8% increase in systolic blood pressure (p = 0.0004), a 100% increase in urine output (p = 0.02), and a 29% decrease in total fluid administration (p = 0.04). The late response (at 24 hours) revealed further increases in systolic blood pressure and urine output as well as a 53% decrease in serum lactate (p = 0.007) and increase in arterial pH from 7.36 to 7.45 (p less than 0.0001). These changes were not accompanied by increases in heart rate or inotrope score. CONCLUSIONS The initiation of Arginine Vasopressin in post-operative Norwood patients was temporally associated with an improvement in markers of perfusion including systolic blood pressure, urine output, lactate, and pH. Further studies are required to ascertain the efficacy of Arginine Vasopressin in this population.
Collapse
|
31
|
|
32
|
Sammani S, Park KS, Zaidi SR, Mathew B, Wang T, Huang Y, Zhou T, Lussier YA, Husain AN, Moreno-Vinasco L, Vigneswaran WT, Garcia JGN. A sphingosine 1-phosphate 1 receptor agonist modulates brain death-induced neurogenic pulmonary injury. Am J Respir Cell Mol Biol 2011; 45:1022-7. [PMID: 21617203 DOI: 10.1165/rcmb.2010-0267oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung transplantation remains the only viable therapy for patients with end-stage lung disease. However, the full utilization of this strategy is severely compromised by a lack of donor lung availability. The vast majority of donor lungs available for transplantation are from individuals after brain death (BD). Unfortunately, the early autonomic storm that accompanies BD often results in neurogenic pulmonary edema (NPE), producing varying degrees of lung injury or leading to primary graft dysfunction after transplantation. We demonstrated that sphingosine 1-phosphate (S1P)/analogues, which are major barrier-enhancing agents, reduce vascular permeability via the S1P1 receptor, S1PR1. Because primary lung graft dysfunction is induced by lung vascular endothelial cell barrier dysfunction, we hypothesized that the S1PR1 agonist, SEW-2871, may attenuate NPE when administered to the donor shortly after BD. Significant lung injury was observed after BD, with increases of approximately 60% in bronchoalveolar lavage (BAL) total protein, cell counts, and lung tissue wet/dry (W/D) weight ratios. In contrast, rats receiving SEW-2871 (0.1 mg/kg) 15 minutes after BD and assessed after 4 hours exhibited significant lung protection (∼ 50% reduction, P = 0.01), as reflected by reduced BAL protein/albumin, cytokines, cellularity, and lung tissue wet/dry weight ratio. Microarray analysis at 4 hours revealed a global impact of both BD and SEW on lung gene expression, with a differential gene expression of enriched immune-response/inflammation pathways across all groups. Overall, SEW served to attenuate the BD-mediated up-regulation of gene expression. Two potential biomarkers, TNF and chemokine CC motif receptor-like 2, exhibited gene array dysregulation. We conclude that SEW-2871 significantly attenuates BD-induced lung injury, and may serve as a potential candidate to improve human donor availability.
Collapse
Affiliation(s)
- Saad Sammani
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Exogenous biliverdin improves the function of lung grafts from brain dead donors in rats. Transplant Proc 2010; 42:1602-9. [PMID: 20620483 DOI: 10.1016/j.transproceed.2010.01.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/29/2009] [Accepted: 01/07/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biliverdin, a product of heme oxygenase-1 (HO-1), ameliorates the posttransplant functions of heart, kidney, and liver. In this study, we investigated the effects of biliverdin on lung grafts from brain dead (BD) rat donors. METHODS Male Wistar rats were randomly divided into 3 groups. The sham group (n = 7), did not undergo BD. Both donor and recipient rats in the BD biliverdin group (n = 8) were injected with biliverdin (35 mg/kg in 1 mL) intraperitoneally after confirmed BD and transplantation. In the BD group (n = 8), both donor and recipient rats received the same volume of saline (35 mg/kg in 1 mL) as the BD biliverdin group. All donor rats were observed for 1.5 hours before undergoing lung transplantation. Two hours after transplantation, we obtained blood and lung graft samples. RESULTS Biliverdin reversed the aggravation of Pa(O(2)) in recipients, reduced the grafts wet/dry ratio, decreased the severity of lung injury measured by histologic examination, reduced serum tumor necrosis factor-alpha and interleukin-8 levels and inhibited myeloperoxidase activity (MPO) in the grafts. Furthermore, it significantly decreased malonaldehyde levels and increased superoxide dismutase levels. Biliverdin reduced cell apoptosis, activated protein expression of biliverdin reductase, and inhibited expression of HO-1 and nuclear factor (NF)-kappaB in lung grafts. CONCLUSION Biliverdin exerts protective effects on lung grafts from BD donors through anti-inflammatory, antioxidant, and anti-apoptotic mechanisms.
Collapse
|
34
|
Rostron AJ, Cork DMW, Avlonitis VS, Fisher AJ, Dark JH, Kirby JA. Contribution of Toll-like receptor activation to lung damage after donor brain death. Transplantation 2010; 90:732-9. [PMID: 20671596 PMCID: PMC2987562 DOI: 10.1097/tp.0b013e3181eefe02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Donor brain death is the first injurious event that can produce inflammatory dysfunction after pulmonary transplantation. This study was designed to determine whether stimulation of the toll-like receptor (TLR) system contributes to the changes produced by brain death. MATERIALS AND METHODS Rats were repeatedly treated with specific agonists for TLR4 or TLR2/6 to desensitize these receptors. Brain death was then induced by inflation of a balloon catheter within the extradural space. Mean arterial pressure changes and inflammatory markers were measured serially by protein and mRNA analysis. RESULTS Both desensitizing pretreatments prevented the neurogenic hypotension (P<0.001) and metabolic acidosis (P<0.001) observed in control animals after brain death. These treatments also reduced the levels of tumor necrosis factor-α and CXCL1 in serum and bronchoalveolar lavage fluid, although desensitization of TLR4 produced a greater inhibition than desensitization of TLR2. Desensitization of TLR4 also reduced (P<0.05) expression of the adhesive integrin CD11b on blood neutrophils after brain death. Examination of mRNA levels in lung tissue 5 hr after brain death showed that desensitization of TLR4 limited the expression of interferon (IFN)-γ, IFNβ, and CXCL10, whereas desensitization of TLR2/6 reduced only the expression of IFNγ. CONCLUSION These results indicate that activation of TLR signaling pathways can contribute to the lung damage produced by brain death; this may increase subsequent graft injury after transplantation.
Collapse
Affiliation(s)
- Anthony J Rostron
- Applied Immunobiology and Transplant Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Avlonitis VS, Wigfield CH, Kirby JA, Dark JH. Treatment of the brain-dead lung donor with aprotinin and nitric oxide. J Heart Lung Transplant 2010; 29:1177-84. [PMID: 20615728 DOI: 10.1016/j.healun.2010.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/11/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND It has been previously shown that donor treatment with aprotinin or inhaled nitric oxide reduces reperfusion injury after lung transplantation in animals. These studies used living donors with normal lungs. However, the main source of lungs for transplantation is brain-dead donors. Brain death causes systemic inflammatory response and lung injury, rendering the organ susceptible to reperfusion injury after transplantation. We hypothesized that treatment with aprotinin or inhaled nitric oxide after brain death would improve the donor inflammatory response and reduce lung reperfusion injury after transplantation. METHODS Brain death was induced in 24 rats by intracranial balloon inflation. Subsequently, the animals received intravenous aprotinin (n = 8), inhaled nitric oxide (n = 7), or no treatment (n = 9) for 5 hours. The lungs were retrieved and reperfused for 2 hours using recipient rats. RESULTS After brain death, oxygenation deteriorated earlier and significantly more in rats that received treatment, especially with nitric oxide. Treatment did not reduce the donor systemic inflammatory response as assessed by serum levels of proinflammatory cytokines. Oxygenation, airway pressure, pulmonary vascular resistance, lung water index and bronchoalveolar lavage cytokine levels were similar after reperfusion of grafts from all three groups of donors. CONCLUSIONS Donor treatment with aprotinin or inhaled nitric oxide does not improve lungs that have been injured by brain death.
Collapse
Affiliation(s)
- Vassilios S Avlonitis
- Applied Immunology and Transplant Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Abstract
The systemic physiologic changes that occur during and after brain death affect all organs suitable for transplantation. Major changes occur in the cardiovascular, pulmonary, endocrine, and immunological systems, and, if untreated may soon result in cardiovascular collapse and somatic death. Understanding these complex physiologic changes is mandatory for developing effective strategies for donor resuscitation and management in such a way that the functional integrity of potentially transplantable organs is maintained. This review elucidates these physiological changes and their consequences, and based on these consequences the rationale behind current medical management of brain-dead organ donors is discussed.
Collapse
Affiliation(s)
- J F Bugge
- Division of Anesthesia and Intensive Care, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
37
|
|
38
|
Update on donor assessment, resuscitation, and acceptance criteria, including novel techniques--non-heart-beating donor lung retrieval and ex vivo donor lung perfusion. Thorac Surg Clin 2009; 19:261-74. [PMID: 19662970 DOI: 10.1016/j.thorsurg.2009.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The shortage of adequate organ donors remains a great challenge in clinical lung transplantation. With increasing experience in the medical management and surgical technique of lung transplantation, gradual expansion of the criteria for lung donor selection has occurred with beneficial effects on the donor pool. Interest in donation after cardiac death also is increasing as the gap increases between donors and the needs of listed patients. Successful use of these new sources of lungs depends on the accurate assessment and prediction of transplanted lung function. Promising techniques for lung assessment and diagnostics include investigating key genes associated with graft failure or good graft performance using molecular approaches, and ex vivo evaluation. Further studies are needed to answer remaining questions about the best technique and solution to reperfuse human lungs for several hours without edema formation. As the predictive ability to discern good from injured donor lungs improves, strategies to repair donor lungs become increasingly important. Prolonged normothermic EVLP seems to be a platform on which many reparative strategies can be realized. With these new methods for assessing and resuscitating lungs accurately, it is hoped that inroads will be made toward providing every listed patient a chance for successful lung transplantation.
Collapse
|
39
|
|
40
|
|
41
|
Botha P, Rostron AJ, Fisher AJ, Dark JH. Current Strategies in Donor Selection and Management. Semin Thorac Cardiovasc Surg 2008; 20:143-51. [DOI: 10.1053/j.semtcvs.2008.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2008] [Indexed: 01/29/2023]
|
42
|
Activation and modulation of cardiac poly-adenosine diphosphate ribose polymerase activity in a rat model of brain death. Transplantation 2008; 85:1348-50. [PMID: 18475194 DOI: 10.1097/tp.0b013e31816c7cec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA damage during transplantation can activate poly-adenosine diphosphate ribose polymerase (PARP) resulting in the generation of polymers of adenosine diphosphate-ribose (PAR). Excessive linkage of PAR to nuclear proteins can induce cell death, thereby limiting the function of transplanted organs. This study uses a rat model of brain death to determine the profile of PARP activation and whether mechanisms that lead to cell death can be ameliorated by appropriate donor resuscitation. The expression of PAR-linked nuclear proteins within cardiac myocytes was greatly increased after the induction of donor brain death. Importantly, infusion of noradrenaline or vasopressin to normalize the chronic hypotension produced by brain death reduced the expression of PAR to a level below baseline. These data suggest that chronic hypotension after donor brain death has the potential to limit cardiac function through the activation of PARP; however, this early cause of graft damage can be mitigated by appropriate donor resuscitation.
Collapse
|