1
|
Wang Z, Jin X, Zeng J, Xiong Z, Chen X. The application of JAK inhibitors in the peri-transplantation period of hematopoietic stem cell transplantation for myelofibrosis. Ann Hematol 2024; 103:3293-3301. [PMID: 38494551 PMCID: PMC11358344 DOI: 10.1007/s00277-024-05703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with a poor prognosis, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment with curative potential. Ruxolitinib, a JAK1/2 inhibitor, has shown promising results in improving patients' symptoms, overall survival, and quality of life, and can be used as a bridging therapy to HSCT that increases the proportion of transplantable patients. However, the effect of this and similar drugs on HSCT outcomes is unknown, and the reports on their efficacy and safety in the peri-transplantation period vary widely in the published literature. This paper reviews clinical data related to the use of JAK inhibitors in the peri-implantation phase of hematopoietic stem cell transplantation for primary myelofibrosis and discusses their efficacy and safety.
Collapse
Affiliation(s)
- Zerong Wang
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xuelian Jin
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Jiajia Zeng
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Zilin Xiong
- West China Hospital, Sichuan University, Chendu, Sichuan, China
| | - Xinchuan Chen
- West China Hospital, Sichuan University, Chendu, Sichuan, China.
| |
Collapse
|
2
|
Subramanyam SH, Hriczko JT, Pappas A, Schippers A, Wagner N, Ohl K, Tenbrock K. Tofacitinib fails to prevent T cell transfer colitis in mice but ameliorates disease activity. Sci Rep 2023; 13:3762. [PMID: 36882462 PMCID: PMC9992375 DOI: 10.1038/s41598-023-30616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Tofactinib is a JAK inhibitor approved for ulcerative colitis in humans. Despite of its' proven effectiveness in humans, mechanistic data are scarce on the effectiveness of Tofactinib in experimental colitis in mice. We induced experimental colitis by transfer of CD4+CD25- isolated T cells into RAG2-/- (T and B cell deficient) mice and treated these mice with tofacitinib for 5-6 weeks either with a dosage of 10 or 40 mg/kg body weight immediately after CD4+ transfer or started treatment after first symptoms of disease for several weeks. While treatment with tofacitinib immediately after transfer resulted in an enhanced expansion of CD4+ T cells and did not prevent occurrence of colitis, treatment after start of symptoms of colitis ameliorated disease activity on a clinical basis and in histological analyses. Tofacitinib is effective in the treatment of murine experimental T cell transfer colitis, however does not prevent occurrence of disease.
Collapse
Affiliation(s)
| | - Judit Turyne Hriczko
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angeliki Pappas
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Nobert Wagner
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Fernandez CA. Pharmacological strategies for mitigating anti-TNF biologic immunogenicity in rheumatoid arthritis patients. Curr Opin Pharmacol 2023; 68:102320. [PMID: 36580770 PMCID: PMC10540078 DOI: 10.1016/j.coph.2022.102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor alpha (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi immunogenicity, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.
Collapse
Affiliation(s)
- Christian A Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Saha A, Hyzy S, Lamothe T, Hammond K, Clark N, Lanieri L, Bhattarai P, Palchaudhuri R, Gillard GO, Proctor J, Riddle MJ, Panoskaltsis-Mortari A, MacMillan ML, Wagner JE, Kiem HP, Olson LM, Blazar BR. A CD45-targeted antibody-drug conjugate successfully conditions for allogeneic hematopoietic stem cell transplantation in mice. Blood 2022; 139:1743-1759. [PMID: 34986233 PMCID: PMC8931510 DOI: 10.1182/blood.2021012366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment of patients with nonmalignant or malignant blood disorders. Its success has been limited by graft-versus-host disease (GVHD). Current systemic nontargeted conditioning regimens mediate tissue injury and potentially incite and amplify GVHD, limiting the use of this potentially curative treatment beyond malignant disorders. Minimizing systemic nontargeted conditioning while achieving alloengraftment without global immune suppression is highly desirable. Antibody-drug-conjugates (ADCs) targeting hematopoietic cells can specifically deplete host stem and immune cells and enable alloengraftment. We report an anti-mouse CD45-targeted-ADC (CD45-ADC) that facilitates stable murine multilineage donor cell engraftment. Conditioning with CD45-ADC (3 mg/kg) was effective as a single agent in both congenic and minor-mismatch transplant models resulting in full donor chimerism comparable to lethal total body irradiation (TBI). In an MHC-disparate allo-HSCT model, pretransplant CD45-ADC (3 mg/kg) combined with low-dose TBI (150 cGy) and a short course of costimulatory blockade with anti-CD40 ligand antibody enabled 89% of recipients to achieve stable alloengraftment (mean value: 72%). When CD45-ADC was combined with pretransplant TBI (50 cGy) and posttransplant rapamycin, cyclophosphamide (Cytoxan), or a JAK inhibitor, 90% to 100% of recipients achieved stable chimerism (mean: 77%, 59%, 78%, respectively). At a higher dose (5 mg/kg), CD45-ADC as a single agent was sufficient for rapid, high-level multilineage chimerism sustained through the 22 weeks observation period. Therefore, CD45-ADC has the potential utility to confer the benefit of fully myeloablative conditioning but with substantially reduced toxicity when given as a single agent or at lower doses in conjunction with reduced-intensity conditioning.
Collapse
Affiliation(s)
- Asim Saha
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | | | | | | | | | | | | | | | - Megan J Riddle
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Margaret L MacMillan
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - John E Wagner
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, WA
| | | | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
5
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Yarmohammadi A, Yarmohammadi M, Fakhri S, Khan H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur J Pharmacol 2021; 890:173620. [PMID: 33038418 PMCID: PMC7539138 DOI: 10.1016/j.ejphar.2020.173620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
As an emerging global health crisis, coronavirus disease 2019 (COVID-19) has been labeled a worldwide pandemic. Growing evidence is revealing further pathophysiological mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amongst these dysregulated pathways inflammation seems to play a more critical role toward COVID-19 complications. In the present study, precise inflammatory pathways triggered by SARS-CoV-2, along with potential therapeutic candidates have been discussed. Prevailing evidence has indicated a close correlation of inflammatory cascades with severity, pathological progression, and organ damages in COVID-19 patients. From the mechanistic point of view, interleukin-6, interleukin-1β receptor, interferon-gamma, tumor necrosis factor-alpha receptor, toll-like receptor, receptor tyrosine kinases, growth factor receptor, Janus kinase/signal transducers and transcription pathway, mammalian target of rapamycin, cytokine storm and macrophage activation have shown to play critical roles in COVID-19 complications. So, there is an urgent need to provide novel mechanistic-based anti-inflammatory agents. This review highlights inflammatory signaling pathways of SARS-CoV-2. Several therapeutic targets and treatment strategies have also been provided in an attempt to tackle COVID-19 complications.
Collapse
Affiliation(s)
- Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Mostafa Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
7
|
Covington M, He X, Scuron M, Li J, Collins R, Juvekar A, Shin N, Favata M, Gallagher K, Sarah S, Xue CB, Peel M, Burke K, Oliver J, Fay B, Yao W, Huang T, Scherle P, Diamond S, Newton R, Zhang Y, Smith P. Preclinical characterization of itacitinib (INCB039110), a novel selective inhibitor of JAK1, for the treatment of inflammatory diseases. Eur J Pharmacol 2020; 885:173505. [PMID: 32861662 DOI: 10.1016/j.ejphar.2020.173505] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/30/2022]
Abstract
Pharmacological modulation of the Janus kinase (JAK) family has achieved clinically meaningful therapeutic outcomes for the treatment of inflammatory and hematopoietic diseases. Several JAK1 selective compounds are being investigated clinically to determine their anti-inflammatory potential. We used recombinant enzymes and primary human lymphocytes to assess the JAK1 specificity of itacitinib (INCB039110) and study inhibition of signal transducers and activators of transcription (STAT) signaling. Rodent models of arthritis and inflammatory bowel disease were subsequently explored to elucidate the efficacy of orally administered itacitinib on inflammatory pathogenesis. Itacitinib is a potent and selective JAK1 inhibitor when profiled against the other JAK family members. Upon oral administration in rodents, itacitinib achieved dose-dependent pharmacokinetic exposures that highly correlated with STAT3 pharmacodynamic pathway inhibition. Itacitinib ameliorated symptoms and pathology of established experimentally-induced arthritis in a dose-dependent manner. Furthermore, itacitinib effectively delayed disease onset, reduced symptom severity, and accelerated recovery in three distinct mouse models of inflammatory bowel disease. Low dose itacitinib administered via cannula directly into the colon was highly efficacious in TNBS-induced colitis but with minimal systemic drug exposure, suggesting localized JAK1 inhibition is sufficient for disease amelioration. Itacitinib treatment in an acute graft-versus-host disease (GvHD) model rapidly reduced inflammatory markers within lymphocytes and target tissue, resulting in a marked improvement in disease symptoms. This is the first manuscript describing itacitinib as a potent and selective JAK1 inhibitor with anti-inflammatory activity across multiple preclinical disease models. These data support the scientific rationale for ongoing clinical trials studying itacitinib in select GvHD patient populations.
Collapse
Affiliation(s)
| | - Xin He
- Incyte Corporation, Wilmington, DE, USA
| | | | - Jun Li
- Incyte Corporation, Wilmington, DE, USA
| | | | | | - Niu Shin
- Incyte Corporation, Wilmington, DE, USA
| | | | | | - Sarala Sarah
- Taconic Biosciences Incorporated, Rensselaer, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Yan Zhang
- Incyte Corporation, Wilmington, DE, USA
| | - Paul Smith
- Incyte Corporation, Wilmington, DE, USA.
| |
Collapse
|
8
|
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020; 111:102452. [PMID: 32291137 PMCID: PMC7151347 DOI: 10.1016/j.jaut.2020.102452] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The emergent outbreak of coronavirus disease 2019 (COVID-19) has caused a global pandemic. Acute respiratory distress syndrome (ARDS) and multiorgan dysfunction are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. However, the efficacy of corticosteroids, commonly utilized antiinflammatory agents, to treat COVID-19-induced CRS is controversial. There is an urgent need for novel therapies to treat COVID-19-induced CRS. Here, we discuss the pathogenesis of severe acute respiratory syndrome (SARS)-induced CRS, compare the CRS in COVID-19 with that in SARS and Middle East respiratory syndrome (MERS), and summarize the existing therapies for CRS. We propose to utilize interleukin-6 (IL-6) blockade to manage COVID-19-induced CRS and discuss several factors that should be taken into consideration for its clinical application.
Collapse
Affiliation(s)
- Bingwen Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, China
| | - Xuan Guan
- Department of Internal Medicine, AdventHealth Orlando, Orlando, Florida, USA.
| | - Yufei Xiang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
9
|
Gadina M, Johnson C, Schwartz D, Bonelli M, Hasni S, Kanno Y, Changelian P, Laurence A, O'Shea JJ. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol 2018; 104:499-514. [PMID: 29999544 DOI: 10.1002/jlb.5ri0218-084r] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
In this era, it is axiomatic that cytokines have critical roles in cellular development and differentiation, immune homeostasis, and host defense. Equally, dysregulation of cytokines is known to contribute to diverse inflammatory and immune-mediated disorders. In fact, the past 20 years have witnessed the rapid translation of basic discoveries in cytokine biology to multiple successful biological agents (mAbs and recombinant fusion proteins) that target cytokines. These targeted therapies have not only fundamentally changed the face of multiple immune-mediated diseases but have also unequivocally established the role of specific cytokines in human disease; cytokine biologists have many times over provided remarkable basic advances with direct clinical benefit. Numerous cytokines rely on the JAK-STAT pathway for signaling, and new, safe, and effective small molecule inhibitors have been developed for a range of disorders. In this review, we will briefly summarize basic discoveries in cytokine signaling and briefly comment on some major unresolved issues. We will review clinical data pertaining to the first generation of JAK inhibitors and their clinical indications, discuss additional opportunities for targeting this pathway, and lay out some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Massimo Gadina
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Catrina Johnson
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella Schwartz
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bonelli
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Changelian
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Kuwabara T, Matsui Y, Ishikawa F, Kondo M. Regulation of T-Cell Signaling by Post-Translational Modifications in Autoimmune Disease. Int J Mol Sci 2018. [PMID: 29534522 PMCID: PMC5877680 DOI: 10.3390/ijms19030819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adaptive immune system involves antigen-specific host defense mechanisms mediated by T and B cells. In particular, CD4+ T cells play a central role in the elimination of pathogens. Immunological tolerance in the thymus regulates T lymphocytes to avoid self-components, including induction of cell death in immature T cells expressing the self-reactive T-cell receptor repertoire. In the periphery, mature T cells are also regulated by tolerance, e.g., via induction of anergy or regulatory T cells. Thus, T cells strictly control intrinsic signal transduction to prevent excessive responses or self-reactions. If the inhibitory effects of T cells on these mechanisms are disrupted, T cells may incorrectly attack self-components, which can lead to autoimmune disease. The functions of T cells are supported by post-translational modifications, particularly phosphorylation, of signaling molecules, the proper regulation of which is controlled by endogenous mechanisms within the T cells themselves. In recent years, molecular targeted agents against kinases have been developed for treatment of autoimmune diseases. In this review, we discuss T-cell signal transduction in autoimmune disease and provide an overview of acetylation-mediated regulation of T-cell signaling pathways.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Yukihide Matsui
- Department of Molecular Immunology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Fumio Ishikawa
- Department of Molecular Immunology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
11
|
Jia H, Cui J, Jia X, Zhao J, Feng Y, Zhao P, Zang D, Yu J, Zhao T, Wang H, Xu K. Therapeutic effects of STAT3 inhibition by nifuroxazide on murine acute graft graft-vs.-host disease: Old drug, new use. Mol Med Rep 2017; 16:9480-9486. [PMID: 29152660 PMCID: PMC5780006 DOI: 10.3892/mmr.2017.7825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Graft-vs.-host disease (GvHD) is a major and lethal complication of allogeneic bone marrow transplantation (allo-BMT). Although great development has been made, the treatment progress of this disorder is slow. Research has illustrated that STAT3 was critical for T cell alloactivation in GvHD. In the present study, the authors hypothesized that nifuroxazide, as the STAT3 inhibitor, treatment may attenuate the development of acute GvHD (aGvHD). The results demonstrated that nifuroxazide suppressed the development of aGvHD and significantly delayed aGvHD-induced lethality. Mice receiving nifuroxazide had mostly normal-appearing skin with minimal focal ulceration, mild edema and congestion in the liver, and a less-pronounced villus injury and less inflammatory infiltrate in the small intestine. Treatment with nifuroxazide inhibited the activation of STAT3, resulting in the regulation of the CD4+ T cells and CD4+CD25+ T cells and reduction of interferon-γ and tumor necrosis factor-α levels. In conclusion, nifuroxazide may be efficacious for post-transplant of GvHD, providing a potent drug for use as a prophylactic or as a second-line therapy for aGvHD in clinical trials.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jing Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xiaolong Jia
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jingjing Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Peijuan Zhao
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tiesuo Zhao
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Kailin Xu
- Laboratory of Transplantation and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
12
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
13
|
Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: A systematic review. J Am Acad Dermatol 2017; 76:745-753.e19. [DOI: 10.1016/j.jaad.2016.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
|
14
|
Tofacitinib versus Biologic Treatments in Moderate-to-Severe Rheumatoid Arthritis Patients Who Have Had an Inadequate Response to Nonbiologic DMARDs: Systematic Literature Review and Network Meta-Analysis. Int J Rheumatol 2017; 2017:8417249. [PMID: 28377787 PMCID: PMC5362710 DOI: 10.1155/2017/8417249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/24/2016] [Indexed: 12/16/2022] Open
Abstract
Objective. To compare the efficacy and tolerability of tofacitinib, an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA), as monotherapy and combined with disease-modifying antirheumatic drugs (DMARDs) versus biological DMARDs (bDMARDs) and other novel DMARDs for second-line moderate-to-severe rheumatoid arthritis (RA) patients by means of a systematic literature review (SLR) and network meta-analysis (NMA). Methods. MEDLINE®, EMBASE®, and Cochrane Central Register of Controlled Trials were searched to identify randomized clinical trials (RCTs) published between 1990 and March 2015. Efficacy data based on American College of Rheumatology (ACR) response criteria, improvements in the Health Assessment Questionnaire Disability Index (HAQ-DI) at 6 months, and discontinuation rates due to adverse events were analyzed by means of Bayesian NMAs. Results. 45 RCTs were identified, the majority of which demonstrated a low risk of bias. Tofacitinib 5 mg twice daily (BID) and 10 mg BID monotherapy exhibited comparable efficacy and discontinuation rates due to adverse events versus other monotherapies. Tofacitinib 5 mg BID and 10 mg BID + DMARDs or methotrexate (MTX) were mostly comparable to other combination therapies in terms of efficacy and discontinuation due to adverse events. Conclusion. In most cases, tofacitinib had similar efficacy and discontinuation rates due to adverse events compared to biologic DMARDs.
Collapse
|
15
|
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm that presents either as a primary disease or evolves secondarily from polycythemia vera or essential thrombocythemia to post-polycythemia vera MF or post-essential thrombocythemia MF, respectively. Myelofibrosis is characterized by stem cell-derived clonal myeloproliferation, abnormal cytokine expression, bone marrow fibrosis, anemia, splenomegaly, extramedullary hematopoiesis, constitutional symptoms, cachexia, leukemic progression, and shortened survival. Therapeutic options for patients with MF have been limited to the use of cytoreductive agents, predominantly hydroxyurea; splenectomy and splenic irradiation for treatment of splenomegaly; and management of anemia with transfusions, erythropoiesis-stimulating agents, androgens, and immunomodulatory agents along with steroids. The only curative option is allogeneic stem cell transplantation (ASCT), which is associated with high morbidity and mortality risks. Recently, JAK (Janus kinase) inhibitor therapies have become available and proven to be palliative in primary MF patients with hydroxyurea-refractory splenomegaly and severe constitutional symptoms. The purpose of this article is to review the clinical features of MF; discuss different treatment strategies, including ASCT; and discuss the potential danger and benefit of using JAK inhibitors prior to ASCT.
Collapse
|
16
|
Servais S, Beguin Y, Delens L, Ehx G, Fransolet G, Hannon M, Willems E, Humblet-Baron S, Belle L, Baron F. Novel approaches for preventing acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Expert Opin Investig Drugs 2016; 25:957-72. [PMID: 27110922 DOI: 10.1080/13543784.2016.1182498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (alloHSCT) offers potential curative treatment for a wide range of malignant and nonmalignant hematological disorders. However, its success may be limited by post-transplant acute graft-versus-host disease (aGVHD), a systemic syndrome in which donor's immune cells attack healthy tissues in the immunocompromised host. aGVHD is one of the main causes of morbidity and mortality after alloHSCT. Despite standard GVHD prophylaxis regimens, aGVHD still develops in approximately 40-60% of alloHSCT recipients. AREAS COVERED In this review, after a brief summary of current knowledge on the pathogenesis of aGVHD, the authors review the current combination of a calcineurin inhibitor with an antimetabolite with or without added anti-thymocyte globulin (ATG) and emerging strategies for GVHD prevention. EXPERT OPINION A new understanding of the involvement of cytokines, intracellular signaling pathways, epigenetics and immunoregulatory cells in GVHD pathogenesis will lead to new standards for aGVHD prophylaxis allowing better prevention of severe aGVHD without affecting graft-versus-tumor effects.
Collapse
Affiliation(s)
- Sophie Servais
- a Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium.,b GIGA I3 , University of Liège , Liège , Belgium
| | - Yves Beguin
- a Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium.,b GIGA I3 , University of Liège , Liège , Belgium
| | - Loic Delens
- b GIGA I3 , University of Liège , Liège , Belgium
| | - Grégory Ehx
- b GIGA I3 , University of Liège , Liège , Belgium
| | | | | | - Evelyne Willems
- a Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium
| | - Stéphanie Humblet-Baron
- c Translational Immunology Laboratory , VIB , Leuven , Belgium.,d Department of Microbiology and Immunology , KUL-University of Leuven , Leuven , Belgium
| | | | - Frédéric Baron
- a Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium.,b GIGA I3 , University of Liège , Liège , Belgium
| |
Collapse
|
17
|
Abstract
INTRODUCTION Graft-versus-host disease (GVHD) leads to significant morbidity and mortality after allogeneic stem cell transplantation. While corticosteroids alone are adequate in some cases, they are often insufficient, leading to poor quality of life associated with the symptoms of disease, or mortality from infection and GVHD. Moreover, corticosteroids have significant side effects and often do not lead to durable responses. New therapies are needed to improve the development and progression of acute and chronic GVHD. AREAS COVERED We discuss the spectrum of emerging drugs for GVHD prevention and therapy. Cellular therapies will be briefly discussed. The available pre-clinical and clinical data regarding monoclonal antibodies, interleukin-2, alpha-1 antitrypsin, histone deacetylase inhibitors, tyrosine kinase inhibitors, and proteasome inhibitors will be reviewed. EXPERT OPINION Although therapies emerging for GVHD remain promising, most of these drugs are still in early phase clinical trials and require randomized comparisons before formal conclusions can be drawn. It is likely that in the near future some of these agents will show improvements in response when compared with corticosteroids alone. Although it is difficult to predict which of these agents will be most promising, alpha-1 antitrypsin, ruxolitinib and interleukin-2 have demonstrated encouraging results.
Collapse
Affiliation(s)
- Natasha Kekre
- a Division of Hematology , Ottawa Health Research Institute, The Ottawa Hospital and University of Ottawa , Ottawa , ON , Canada
| | - Joseph H Antin
- b Blood and Marrow Transplantation Program, Division of Hematologic Malignancies , Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
18
|
El Fakih R, Popat U. Janus Kinase Inhibitors and Stem Cell Transplantation in Myelofibrosis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15 Suppl:S34-42. [PMID: 26297276 DOI: 10.1016/j.clml.2015.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Myelofibrosis (MF) is characterized by splenomegaly, blood count abnormalities, particularly cytopenias, and a propensity for transformation to acute leukemia. The current treatment approach is to ameliorate symptoms due to these abnormalities. Treatment with Janus kinase 2 inhibitors reduces spleen size and improves symptoms in patients with MF, but most of the patients eventually have disease progression and stop responding. Allogeneic stem cell transplantation remains the only curative option. However, its efficacy must be balanced against the risk of treatment-related death and long-term sequelae of transplant like chronic graft versus host disease. The challenge is to integrate treatment with Janus kinase inhibitors with allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Riad El Fakih
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Uday Popat
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
19
|
Zeiser R. Activation of Innate Immunity in Graft-versus-Host Disease: Implications for Novel Targets? Oncol Res Treat 2015; 38:239-43. [PMID: 25966771 DOI: 10.1159/000381296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
Acute graft-versus-host disease (GvHD) is mediated by alloreactive donor-derived T cells with a suitable T cell receptor recognizing recipient major histocompatibility complex or minor histocompatibility antigens. However, the process of T cell activation and tissue injury sensing is also dependent on innate immune cells and non-hematopoietic cells. Different cell types of the innate immune system have the ability to sense danger-associated and pathogen-associated molecular patterns via pattern recognition receptors which can be transmembrane Toll-like receptors or cytoplasmic nucleotide-binding oligomerization domain-like receptors. Infectious stimuli include bacterial, viral, and fungal components, while non-infectious stimuli can be components derived from damaged cells or extracellular matrix. A better understanding of the complex sensing and effector mechanisms of innate immune cells in GvHD may help to improve preventive and therapeutic strategies in GvHD.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Hematology and Oncology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg i.Br., Germany
| |
Collapse
|
20
|
Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD. Blood 2014; 125:570-80. [PMID: 25352130 DOI: 10.1182/blood-2014-06-581793] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The common γ chain (CD132) is a subunit of the interleukin (IL) receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Because levels of several of these cytokines were shown to be increased in the serum of patients developing acute and chronic graft-versus-host disease (GVHD), we reasoned that inhibition of CD132 could have a profound effect on GVHD. We observed that anti-CD132 monoclonal antibody (mAb) reduced acute GVHD potently with respect to survival, production of tumor necrosis factor, interferon-γ, and IL-6, and GVHD histopathology. Anti-CD132 mAb afforded protection from GVHD partly via inhibition of granzyme B production in CD8 T cells, whereas exposure of CD8 T cells to IL-2, IL-7, IL-15, and IL-21 increased granzyme B production. Also, T cells exposed to anti-CD132 mAb displayed a more naive phenotype in microarray-based analyses and showed reduced Janus kinase 3 (JAK3) phosphorylation upon activation. Consistent with a role of JAK3 in GVHD, Jak3(-/-) T cells caused less severe GVHD. Additionally, anti-CD132 mAb treatment of established chronic GVHD reversed liver and lung fibrosis, and pulmonary dysfunction characteristic of bronchiolitis obliterans. We conclude that acute GVHD and chronic GVHD, caused by T cells activated by common γ-chain cytokines, each represent therapeutic targets for anti-CD132 mAb immunomodulation.
Collapse
|
21
|
Next generation treatment of acute graft-versus-host disease. Leukemia 2014; 28:2283-91. [PMID: 24938648 DOI: 10.1038/leu.2014.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023]
Abstract
Despite rapid increase in the utilization of allogeneic hematopoietic stem cell transplantation, non-relapse mortality and sequela from acute graft-versus-host disease (GVHD) remain principle barriers. GVHD involves complex interactions between innate and adaptive immunity, culminating in tissue damage by inflammatory mediators and cellular effectors. Recently, our understanding of the molecular intricacies of GVHD has grown tremendously. New insights into the roles played by novel cytokines, chemokines, intracellular signaling pathways, epigenetics and post-translational modifications of proteins in GVHD biology provide numerous targets that might be therapeutically exploited. This review highlights recent advances and identifies opportunities for reshaping contemporary GVHD therapeutics.
Collapse
|
22
|
Abstract
Graft-versus-host-disease (GVHD) is a severe complication of allogeneic hematopoietic cell transplantation (allo-HCT) characterized by the production of high levels of proinflammatory cytokines. Activated Janus kinases (JAKs) are required for T-effector cell responses in different inflammatory diseases, and their blockade could potently reduce acute GVHD. We observed that inhibition of JAK1/2 signaling resulted in reduced proliferation of effector T cells and suppression of proinflammatory cytokine production in response to alloantigen in mice. In vivo JAK 1/2 inhibition improved survival of mice developing acute GVHD and reduced histopathological GVHD grading, serum levels of proinflammatory cytokines, and expansion of alloreactive luc-transgenic T cells. Mechanistically, we could show that ruxolitinib impaired differentiation of CD4(+) T cells into IFN-γ- and IL17A-producing cells, and that both T-cell phenotypes are linked to GVHD. Conversely, ruxolitinib treatment in allo-HCT recipients increased FoxP3(+) regulatory T cells, which are linked to immunologic tolerance. Based on these results, we treated 6 patients with steroid-refractory GVHD with ruxolitinib. All patients responded with respect to clinical GVHD symptoms and serum levels of proinflammatory cytokines. In summary, ruxolitinib represents a novel targeted approach in GVHD by suppression of proinflammatory signaling that mediates tissue damage and by promotion of tolerogenic Treg cells.
Collapse
|
23
|
Tanaka Y, Yamaoka K. JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Kubo S, Yamaoka K, Maeshima K, Tanaka Y. The possible mode of action of Tofacitinib, a JAK inhibitor. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Oh K, Seo MW, Kim IG, Hwang YI, Lee HY, Lee DS. CP-690550 Treatment Ameliorates Established Disease and Provides Long-Term Therapeutic Effects in an SKG Arthritis Model. Immune Netw 2013; 13:257-63. [PMID: 24385944 PMCID: PMC3875784 DOI: 10.4110/in.2013.13.6.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023] Open
Abstract
Although pathogenesis of human rheumatoid arthritis (RA) remains unclear, arthritogenic T cells and downstream signaling mediators have been shown to play critical roles. An increasing numbers of therapeutic options have been added for the effective control of RA. Nevertheless, there is still a category of patients that fails treatment and suffers from progressive disease. The recently developed immunosuppressant CP-690550, a small molecule JAK kinase inhibitor, has been implicated as an important candidate treatment modality for autoimmune arthritis. In this study, we evaluated the therapeutic effect of CP-690550 on established arthritis using an SKG arthritis model, a pathophysiologically relevant animal model for human RA. CP-690550 treatment revealed remarkable long-term suppressive effects on SKG arthritis when administered to the well-advanced disease (clinical score 3.5~4.0). The treatment effect lasted at least 3 more weeks after cessation of drug infusion, and suppression of disease was correlated with the reduced pro-inflammatory cytokines, including IL-17, IFN-γ, and IL-6 and increased level of immunoregulatory IL-10.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Myung Won Seo
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - In Gyu Kim
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Young-Il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hee-Yoon Lee
- Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | - Dong-Sup Lee
- Laboratory of Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
26
|
Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J Invest Dermatol 2013; 134:992-1000. [PMID: 24213371 PMCID: PMC3961527 DOI: 10.1038/jid.2013.476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022]
Abstract
The utility of allogeneic hematopoietic stem cell transplantation is limited by graft-versus-host disease (GVHD), a significant cause of morbidity and mortality. Patients with GVHD exhibit cutaneous manifestations with histological features of interface dermatitis followed by scleroderma-like changes. JAK inhibitors represent a class of immunomodulatory drugs that inhibit signaling by multiple cytokines. Herein we report the effects of tofacitinib in a murine model of GVHD. Oral administration of tofacitinib prevented GVHD-like disease manifested by weight loss and mucocutaneous lesions. More importantly, tofacitinib was also effective in reversing established disease. Tofacitinib diminished the expansion and activation of murine CD8 T cells in this model, and had similar effects on IL-2-stimulated human CD8 T cells. Tofacitinib also inhibited the expression of IFN-γ-inducible chemoattractants by keratinocytes, and IFN-γ-inducible cell death of keratinocytes. Tofacitinib may be an effective drug for treatment against CD8 T-cell-mediated mucocutaneous diseases in patients with GVHD.
Collapse
|
27
|
Fujino M, Li XK. Role of STAT3 in regulatory T lymphocyte plasticity during acute graft-vs.-host-disease. JAKSTAT 2013; 2:e24529. [PMID: 24498538 PMCID: PMC3906148 DOI: 10.4161/jkst.24529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) lymphocytes are important mediators of the allogeneic immune response, although the mechanisms by which they are controlled are not fully understood. Studies conducted in mice, including a recent article in Immunity by Laurence et al., have shown that STAT3 is an important factor involved in the instability of natural Treg (nTreg) lymphocytes and the generation of induced Treg (iTreg) lymphocytes. The authors used T lymphocytes obtained from Foxp3-GFP reporter mice, which allowed them to track the in vivo fate of the nTreg and iTreg lymphocyte populations in the inflammatory milieu of acute GvHD. They showed that nTreg lymphocytes lose the expression of FoxP3 within this inflammatory environment and that the loss of FoxP3 is, in part, STAT3-dependent. Ultimately, the absence of STAT3 permitted the conversion of transferred naive CD4+ T lymphocytes to iTreg lymphocytes, which correlated with a strikingly improved survival rate during GvHD. We herein discuss how the article by Laurence et al. offers a novel mechanism to explain how the inflammatory environment may alter the stability or phenotype of Treg lymphocytes.
Collapse
Affiliation(s)
- Masayuki Fujino
- AIDS Research Center; National Institute of Infectious Diseases; Tokyo, Japan ; Division of Radiation Safety and Immune Tolerance; National Research Institute for Child Health and Development; Tokyo, Japan
| | - Xiao-Kang Li
- Division of Radiation Safety and Immune Tolerance; National Research Institute for Child Health and Development; Tokyo, Japan
| |
Collapse
|
28
|
Iwamoto S, Azuma E, Kumamoto T, Hirayama M, Yoshida T, Ito M, Amano K, Ido M, Komada Y. Efficacy of azithromycin in preventing lethal graft-versus-host disease. Clin Exp Immunol 2013; 171:338-45. [PMID: 23379441 DOI: 10.1111/cei.12023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2012] [Indexed: 12/27/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) following allogeneic bone marrow transplantation (BMT) is initiated by donor T lymphocytes that recognize histocompatibility antigens presented by recipient dendritic cells (DCs). Current approaches to reduce GVHD are focused on suppressing donor T lymphocyte responses to alloantigens. However, these strategies may be inadequate in the setting of allogeneic transplants (particularly histoincompatible transplants), may increase the risk of tumour relapse and are associated with high rates of opportunistic infections. We hypothesized that inhibition of recipient DCs might suppress GVHD. We recently demonstrated in vitro that azithromycin, a macrolide antibiotic, also acts as a nuclear factor (NF)-κB inhibitor of murine DCs and inhibits their maturation and functions, including allogeneic responses. We investigated whether azithromycin could prevent alloreactions in a murine histoincompatibility model. Oral administration of azithromycin to recipient mice for 5 days during major-histoincompatible BMT suppressed lethal GVHD significantly, whereas ex-vivo lymphocyte function was not affected by the drug. These data suggest that azithromycin has potential as a novel prophylactic drug for lethal GVHD.
Collapse
Affiliation(s)
- S Iwamoto
- Department of Pediatrics and Cell Transplantation, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Okamoto A, Fujio K, Okamura T, Iwasaki Y, Yamamoto K. JAK inhibition and modulation of T cell function. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Mod Rheumatol 2012; 23:415-24. [PMID: 23212593 DOI: 10.1007/s10165-012-0799-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/05/2012] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is a representative autoimmune disease characterized by chronic and destructive inflammatory synovitis. The multiple cytokines play pivotal roles in RA pathogenesis by inducing intracellular signaling, and members of the Janus kinase (JAK) family are essential for such signal transduction. An orally available JAK3 inhibitor, tofacitinib, has been applied for RA, with satisfactory effects and acceptable safety in multiple clinical examinations. From phase 2 dose-finding studies, tofacitinib 5 mg and 10 mg twice a day appear suitable for further evaluation. Subsequently, multiple phase 3 studies were carried out, and tofacitinib with or without methotrexate (MTX) is efficacious and has a manageable safety profile in active RA patients who are MTX naïve or show inadequate response to methotrexate (MTX-IR), disease-modifying antirheumatic drugs (DMARD)-IR, or tumor necrosis factor (TNF)-inhibitor-IR. The common adverse events were infections, such as nasopharyngitis; increases in cholesterol, transaminase, and creatinine; and decreases in neutrophil counts. Although the mode of action of tofacitinib remains unclear, we clarified that the inhibitory effects of tofacitinib could be mediated through suppression of interleukin (IL)-17 and interferon (IFN)-γ production and proliferation of CD4(+) T cells in the inflamed synovium. Taken together, an orally available kinase inhibitor tofacitinib targeting JAK-mediated signals would be expected to be a new option for RA treatment.
Collapse
|
31
|
Klamer G, Shen S, Song E, Rice AM, Knight R, Lindeman R, O'Brien TA, Dolnikov A. GSK3 inhibition prevents lethal GVHD in mice. Exp Hematol 2012; 41:39-55.e10. [PMID: 22999867 DOI: 10.1016/j.exphem.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
Graft-versus-host disease (GVHD) is a major contributor to transplant-related mortality and morbidity after allogeneic stem cell transplantation. Despite advancements in tissue-typing techniques, conditioning regimens, and therapeutic intervention, the incidence rate of GVHD remains high. GVHD is caused by alloreactive donor T cells that infiltrate and destroy host tissues (e.g., skin, liver, and gut). Therefore, GVHD is prevented and treated with therapeutics that suppress proinflammatory cytokines and T-cell function (e.g., cyclosporine, glucocorticoids). Here we report that the small molecule inhibitor of glycogen synthase kinase 3, 6-bromoindirubin 3'-oxime (BIO), prevents lethal GVHD in a humanized xenograft model in mice. BIO treatment did not affect donor T-cell engraftment, but suppressed their activation and attenuated bone marrow and liver destruction mediated by activated donor T cells. Glycogen synthase kinase 3 inhibition modulated the Th1/Th2 cytokine profile in vitro and suppressed activation of signal transducers and activators of transcription 1 and 3 signaling pathways both in vitro and in vivo. Importantly, human T cells derived from BIO-treated mice were able to mediate anti-tumor effects in vitro, and BIO did not affect stem cell engraftment and multilineage reconstitution in a mouse model of transplantation. These data demonstrate that inhibition of glycogen synthase kinase 3 can potentially abrogate GVHD without compromising the efficacy of transplantation.
Collapse
Affiliation(s)
- Guy Klamer
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
McLornan DP, Mead AJ, Jackson G, Harrison CN. Allogeneic stem cell transplantation for myelofibrosis in 2012. Br J Haematol 2012; 157:413-25. [PMID: 22463701 DOI: 10.1111/j.1365-2141.2012.09107.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Myelofibrosis (MF) is a heterogeneous disease for which long-term, effective medical therapeutic options are currently limited. The role of allogeneic haematopoietic stem cell transplant (AHSCT) in this population, many of whom are elderly, often provides a challenge with regard to the identification of suitable candidates, timing of transplantation in the disease course and choice of conditioning regimen. This review summarizes key findings from published data concerning AHSCT in MF and attempts to provide a state of the art approach to MF-AHSCT in 2012. In addition, we postulate on how the era of JAK inhibition might impact on transplantation for MF.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK.
| | | | | | | |
Collapse
|
33
|
Castor MGM, Pinho V, Teixeira MM. The role of chemokines in mediating graft versus host disease: opportunities for novel therapeutics. Front Pharmacol 2012; 3:23. [PMID: 22375119 PMCID: PMC3285883 DOI: 10.3389/fphar.2012.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Bone marrow transplantation (BMT) is the current therapy of choice for several malignancies and severe autoimmune diseases. Graft versus host disease (GVHD) is the major complication associated with BMT. T lymphocytes and other leukocytes migrate into target organs during GVHD, become activated and mediate tissue damage. Chemokines are well known inducers of leukocyte trafficking and activation and contribute to the pathogenesis of GVHD. Here, we review the major animal models used to study GVHD and the role of chemokines in mediating tissue damage in these models. The role of these molecules in promoting potential beneficial effects of the graft, especially graft versus leukemia, is also discussed. Finally, the various pharmacological strategies to block the chemokine system or downstream signaling events in the context of GVHD are discussed.
Collapse
Affiliation(s)
- Marina G M Castor
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | |
Collapse
|
34
|
Tang SN, Fu J, Shankar S, Srivastava RK. EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS One 2012; 7:e31067. [PMID: 22348037 PMCID: PMC3278426 DOI: 10.1371/journal.pone.0031067] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 01/01/2012] [Indexed: 01/04/2023] Open
Abstract
Background Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer. Methodology/Principal Findings Cell viability and apoptosis were measured by XTT assay and TUNEL staining, respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to inhibit cell viability and induce apoptosis in pancreatic cancer cells. Conclusions/Significance Overall, these results suggest that EGCG suppresses the growth, invasion and migration of pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG further enhanced the therapeutic potential of gemcitabine and CP690550 against pancreatic cancer.
Collapse
Affiliation(s)
- Su-Ni Tang
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Maeshima K, Yamaoka K, Kubo S, Nakano K, Iwata S, Saito K, Ohishi M, Miyahara H, Tanaka S, Ishii K, Yoshimatsu H, Tanaka Y. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human CD4+ T cells. ACTA ACUST UNITED AC 2011; 64:1790-8. [PMID: 22147632 DOI: 10.1002/art.34329] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Tofacitinib (CP-690,550) is a novel JAK inhibitor that is currently in clinical trials for the treatment of rheumatoid arthritis (RA). The aim of this study was to examine the effects of tofacitinib in vitro and in vivo in RA, in order to elucidate the role of JAK in the disease process. METHODS CD4+ T cells, CD14+ monocytes, and synovial fibroblasts (SFs) were purified from the synovium and peripheral blood of patients with RA and were evaluated for the effect of tofacitinib on cytokine production and cell proliferation. For in vivo analysis, synovium and cartilage samples obtained from patients with RA were implanted in immunodeficient mice (SCID-HuRAg mice), and tofacitinib was administered via an osmotic minipump. RESULTS Tofacitinib treatment of CD4+ T cells originating from synovium and peripheral blood inhibited the production of interleukin-17 (IL-17) and interferon-γ (IFNγ) in a dose-dependent manner, affecting both proliferation and transcription, but had no effect on IL-6 and IL-8 production. Tofacitinib did not affect IL-6 and IL-8 production by RASFs and CD14+ monocytes. However, conditioned medium from CD4+ T cells cultured with tofacitinib inhibited IL-6 production by RASFs and IL-8 production by CD14+ monocytes. Treatment of SCID-HuRAg mice with tofacitinib decreased serum levels of human IL-6 and IL-8 and markedly suppressed invasion of synovial tissue into cartilage. CONCLUSION Tofacitinib directly suppressed the production of IL-17 and IFNγ and the proliferation of CD4+ T cells, resulting in inhibition of IL-6 production by RASFs and IL-8 production by CD14+ cells and decreased cartilage destruction. In CD4+ T cells, presumably Th1 and Th17 cells, JAK plays a crucial role in RA synovitis.
Collapse
|
36
|
Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, Warner JD, Tanaka M, Steward-Tharp SM, Gadina M, Thomas CJ, Minnerly JC, Storer CE, LaBranche TP, Radi ZA, Dowty ME, Head RD, Meyer DM, Kishore N, O'Shea JJ. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). THE JOURNAL OF IMMUNOLOGY 2011; 186:4234-43. [PMID: 21383241 DOI: 10.4049/jimmunol.1003668] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|