1
|
Li M, Tong W, Dai C, Lu G, Jin D, Deng F. Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway. Immunobiology 2025; 230:152862. [PMID: 39733737 DOI: 10.1016/j.imbio.2024.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation. The model of S-AKI induced by LPS (10 mg/kg) was assessed by histological examination. ELISA and Real-time PCR were used to detect the levels of inflammatory cytokines in the renal cortex. The role of shPSMB8 in LPS-induced apoptosis was detected by flow cytometry. Finally, western blot was performed to assess the NF-κB signaling pathway related proteins, and the nuclear translocation of NF-kB P65 was detected by immunofluorescence microscopy. PSMB8 knockdown substantially protected against renal injury by reducing blood urea nitrogen and creatinine levels and ameliorating inflammation. PSMB8 knockdown inhibited renal expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and COX-2 to improve inflammatory response. Mechanistic studies demonstrated that downregulation of PSMB8 blocked LPS-induced S-AKI phosphorylation and nuclear translocation of NF-κB P65. Collectively, our results suggest that inhibition of PSMB8 significantly contributes to S-AKI via regulation of NF-κB. These findings reveal the pathogenic role of PSMB8 in AKI and suggest a novel therapeutic target for the condition.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Wenjia Tong
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chao Dai
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Danqun Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China.
| | - Fang Deng
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China.
| |
Collapse
|
2
|
Smith RN, Rosales IA, Tomaszewski KT, Mahowald GT, Araujo-Medina M, Acheampong E, Bruce A, Rios A, Otsuka T, Tsuji T, Hotta K, Colvin R. Utility of Banff Human Organ Transplant Gene Panel in Human Kidney Transplant Biopsies. Transplantation 2023; 107:1188-1199. [PMID: 36525551 PMCID: PMC10132999 DOI: 10.1097/tp.0000000000004389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Microarray transcript analysis of human renal transplantation biopsies has successfully identified the many patterns of graft rejection. To evaluate an alternative, this report tests whether gene expression from the Banff Human Organ Transplant (B-HOT) probe set panel, derived from validated microarrays, can identify the relevant allograft diagnoses directly from archival human renal transplant formalin-fixed paraffin-embedded biopsies. To test this hypothesis, principal components (PCs) of gene expressions were used to identify allograft diagnoses, to classify diagnoses, and to determine whether the PC data were rich enough to identify diagnostic subtypes by clustering, which are all needed if the B-HOT panel can substitute for microarrays. METHODS RNA was isolated from routine, archival formalin-fixed paraffin-embedded tissue renal biopsy cores with both rejection and nonrejection diagnoses. The B-HOT panel expression of 770 genes was analyzed by PCs, which were then tested to determine their ability to identify diagnoses. RESULTS PCs of microarray gene sets identified the Banff categories of renal allograft diagnoses, modeled well the aggregate diagnoses, showing a similar correspondence with the pathologic diagnoses as microarrays. Clustering of the PCs identified diagnostic subtypes including non-chronic antibody-mediated rejection with high endothelial expression. PCs of cell types and pathways identified new mechanistic patterns including differential expression of B and plasma cells. CONCLUSIONS Using PCs of gene expression from the B-Hot panel confirms the utility of the B-HOT panel to identify allograft diagnoses and is similar to microarrays. The B-HOT panel will accelerate and expand transcript analysis and will be useful for longitudinal and outcome studies.
Collapse
Affiliation(s)
- Rex N Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Kristen T Tomaszewski
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - Grace T Mahowald
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Milagros Araujo-Medina
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ellen Acheampong
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amy Bruce
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Andrea Rios
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takuya Otsuka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
3
|
Vonbrunn E, Angeloni M, Büttner-Herold M, Müller-Deile J, Heller K, Bleich E, Söllner S, Amann K, Ferrazzi F, Daniel C. Can Gene Expression Analysis in Zero-Time Biopsies Predict Kidney Transplant Rejection? Front Med (Lausanne) 2022; 9:793744. [PMID: 35433772 PMCID: PMC9005644 DOI: 10.3389/fmed.2022.793744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Zero-time biopsies are taken to determine the quality of the donor organ at the time of transplantation. Histological analyses alone have so far not been able to identify parameters that allow the prediction of subsequent rejection episodes or graft survival. This study investigated whether gene expression analyses of zero-time biopsies might support this prediction. Using a well-characterized cohort of 26 zero-time biopsies from renal transplant patients that include 4 living donor (LD) and 22 deceased donor (DD) biopsies that later developed no rejection (Ctrl, n = 7), delayed graft function (DGF, n = 4), cellular (T-cell mediated rejection; TCMR, n = 8), or antibody-mediated rejection (ABMR, n = 7), we analyzed gene expression profiles for different types of subsequent renal transplant complication. To this end, RNA was isolated from formalin-fixed, paraffin-embedded (FFPE) sections and gene expression profiles were quantified. Results were correlated with transplant data and B-cell, and plasma cell infiltration was assessed by immunofluorescence microscopy. Both principal component analysis and clustering analysis of gene expression data revealed marked separation between LDs and DDs. Differential expression analysis identified 185 significant differentially expressed genes (adjusted p < 0.05). The expression of 68% of these genes significantly correlated with cold ischemia time (CIT). Furthermore, immunoglobulins were differentially expressed in zero-time biopsies from transplants later developing rejection (TCMR + ABMR) compared to non-rejected (Ctrl + DGF) transplants. In addition, immunoglobulin expression did not correlate with CIT but was increased in transplants with previous acute renal failure (ARF). In conclusion, gene expression profiles in zero-time biopsies derived from LDs are markedly different from those of DDs. Pre-transplant ARF increased immunoglobulin expression, which might be involved in triggering later rejection events. However, these findings must be confirmed in larger cohorts and the role of early immunoglobulin upregulation in zero-biopsies needs further clarification.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Katharina Heller
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Erik Bleich
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Stefan Söllner
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| |
Collapse
|
4
|
Lai C, Yee SY, Ying T, Chadban S. Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int 2021; 34:2431-2441. [PMID: 34626503 DOI: 10.1111/tri.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Delayed graft function (DGF) after kidney transplantation is associated with inferior outcomes and higher healthcare costs. DGF is currently defined as the requirement for dialysis within seven days post-transplant; however, this definition is subjective and nonspecific. Novel biomarkers have potential to improve objectivity and enable earlier diagnosis of DGF. We reviewed the literature to describe the range of novel biomarkers previously studied to predict DGF. We identified marked heterogeneity and low reporting quality of published studies. Among the novel biomarkers, serum NGAL had the greatest potential as a biomarker to predict DGF, but requires further assessment and validation through larger scale studies of diagnostic test performance. Given inadequacies in the dialysis-based definition, coupled with the high incidence and impact of DGF, such studies should be pursued.
Collapse
Affiliation(s)
- Christina Lai
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Seow Yeing Yee
- Nephrology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Tracey Ying
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Steve Chadban
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Batal I, Serban G, Mohan S, Husain SA, Vasilescu ER, Crew RJ, Dube G, Sandoval PR, Coley SM, Santoriello D, Stokes MB, D'Agati VD, Cohen DJ, Markowitz G, Hardy MA, Ratner LE. The clinical significance of receiving a kidney allograft from deceased donor with chronic histologic changes. Mod Pathol 2021; 34:1795-1805. [PMID: 33986461 DOI: 10.1038/s41379-021-00815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022]
Abstract
Allograft survival of deceased donor kidneys with suboptimal histology (DRTx/suboptimal histology: >10% glomerulosclerosis, >10% tubulointerstitial scarring, or >mild vascular sclerosis) is inferior to both DRTx with optimal histology (DRTx/optimal histology) and living donor kidneys irrespective of histologic changes (LRTx). In this report, we explored the reasons behind this guarded outcome with a special focus on the role of alloimmunity. We initially assessed gene expression in 39 time-zero allograft biopsies using the Nanostring 770 genes PanCancer Immune Profiling Panel. Subsequently, we studied 696 consecutive adult kidney allograft recipients that were grouped according to allograft type and histology at time-zero biopsy [DRTx/suboptimal histology (n = 194), DRTx/optimal histology (n = 166), and LRTx (n = 336)]. Part-1: Several immune pathways were upregulated in time-zero biopsies from DRTx/suboptimal histology (n = 11) compared to LRTx (n = 17) but not to DRTx/optimal histology (n = 11). Part-2: Amongst the three groups of recipients, DRTx/suboptimal histology had the highest incidence of acute rejection episodes, most of which occurred during the first year after transplantation (early rejection). This increase was mainly attributed to T cell mediated rejection, while the incidence of antibody-mediated rejection was similar amongst the three groups. Importantly, early acute T cell mediated rejection was a strong independent predictor for allograft failure in DRTx/suboptimal histology (adjusted HR: 2.13, P = 0.005) but not in DRTx/optimal histology nor in LRTx. Our data highlight an increased baseline immunogenicity in DRTx/suboptimal histology compared to LRTx but not to DRTx/optimal histology. However, our results suggest that donor chronic histologic changes in DRTx may help transfer such increased baseline immunogenicity into clinically relevant acute rejection episodes that have detrimental effects on allograft survival. These findings may provide a rationale for enhanced immunosuppression in recipients of DRTx with baseline chronic histologic changes to minimize subsequent acute rejection and to prolong allograft survival.
Collapse
Affiliation(s)
- Ibrahim Batal
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Geo Serban
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sumit Mohan
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA.,Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Syed A Husain
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elena-Rodica Vasilescu
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Russel J Crew
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Geoffrey Dube
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - P Rodrigo Sandoval
- Surgery, Division of Transplantation, Columbia University Irving Medical Center, New York, NY, USA
| | - Shana M Coley
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominick Santoriello
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael B Stokes
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vivette D D'Agati
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Cohen
- Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Glen Markowitz
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark A Hardy
- Surgery, Division of Transplantation, Columbia University Irving Medical Center, New York, NY, USA
| | - Lloyd E Ratner
- Surgery, Division of Transplantation, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Resch T, Hackl H, Esser H, Günther J, Schwelberger H, Ritschl PV, Ebner S, Maglione M, Mellitzer V, Biebl M, Öllinger R, Zoller H, Schneeberger S, Kotsch K. Expression of MICA in Zero Hour Biopsies Predicts Graft Survival After Liver Transplantation. Front Immunol 2021; 12:606146. [PMID: 34354697 PMCID: PMC8329650 DOI: 10.3389/fimmu.2021.606146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
In search for novel biomarkers to assess graft quality, we investigated whether defined candidate genes are predictive for outcome after liver transplantation (LT). Zero-hour liver biopsies were obtained from 88 livers. Gene expression of selected candidate markers was analyzed and correlated with clinical parameters as well as short and long-term outcomes post LT. Whereas both, the calculated Eurotransplant Donor-Risk-Index and the donor body mass index, had either a poor or no predictive value concerning serum levels indicative for liver function (ALT, AST, GGT, bilirubin) after 6 months, chronological donor age was weakly predictive for serum bilirubin (AUC=0.67). In contrast, the major histcompatibility complex class I related chain A (MICA) mRNA expression demonstrated a high predictive value for serum liver function parameters revealing an inverse correlation (e.g. for ALT: 3 months p=0.0332; 6 months p=0.007, 12 months 0.0256, 24 months p=0.0098, 36 months, p=0.0153) and proved significant also in a multivariate regression model. Importantly, high expression of MICA mRNA revealed to be associated with prolonged graft survival (p=0.024; log rank test) after 10 years of observation, whereas low expression was associated with the occurrence of death in patients with transplant related mortality (p=0.031). Given the observed correlation with short and long-term graft function, we suggest MICA as a biomarker for pre-transplant graft evaluation.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannah Esser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Günther
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Schwelberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Susanne Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Vanessa Mellitzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Biebl
- Department of Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Robert Öllinger
- Department of Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Heinz Zoller
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja Kotsch
- Department of General- and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Hruba P, Krejcik Z, Dostalova Merkerova M, Klema J, Stranecky V, Slatinska J, Maluskova J, Honsova E, Viklicky O. Molecular Fingerprints of Borderline Changes in Kidney Allografts Are Influenced by Donor Category. Front Immunol 2020; 11:423. [PMID: 32269565 PMCID: PMC7109293 DOI: 10.3389/fimmu.2020.00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
The fate of transplanted kidneys is substantially influenced by graft quality, with transplantation of kidneys from elderly and expanded criteria donors (ECDs) associated with higher occurrence of delayed graft function, rejection, and inferior long-term outcomes. However, little is known about early molecular fingerprints of these events in different donor categories. Borderline changes represent the most frequent histological finding early after kidney transplantation. Therefore, we examined outcomes and transcriptomic profiles of early-case biopsies diagnosed as borderline changes in different donor categories. In this single-center, retrospective, observational study, we compared midterm outcomes of kidney transplant recipients with early borderline changes as a first pathology between ECD (n = 109), standard criteria donor (SCDs, n = 109), and living donor (LD, n = 51) cohorts. Intragraft gene expression profiling by microarray was performed in part of these ECD, SCD, and LD cohorts. Although 5 year graft survival in patients with borderline changes in early-case biopsies was not influenced by donor category (log-rank P = 0.293), impaired kidney graft function (estimated glomerular filtration rate by Chronic Kidney Disease Epidemiology Collaboration equation) at M3, 1, 2, and 3 years was observed in the ECD cohort (P < 0.001). Graft biopsies from ECD donors had higher vascular intimal fibrosis and arteriolar hyalinosis compared to SCD and LD (P < 0.001), suggesting chronic vascular changes. Increased transcripts typical for ECD, as compared to both LD and SCD, showed enrichment of the inflammatory, defense, and wounding responses and the ECM-receptor interaction pathway. Additionally, increased transcripts in ECD vs. LD showed activation of complement and coagulation and cytokine-cytokine receptor pathways along with platelet activation and cell cycle regulation. Comparative gene expression overlaps of ECD, SCD, and LD using Venn diagrams found 64 up- and 16 down-regulated genes in ECD compared to both LD and SCD. Shared increased transcripts in ECD vs. both SCD and LD included thrombospondin-2 (THBS2), angiopoietin-like 4 (ANGPTL4), collagens (COL6A3, COL1A1), chemokine CCL13, and interleukin IL11, and most significantly, down-regulated transcripts included proline-rich 35 (PRR35) and fibroblast growth factor 9. Early borderline changes in ECD kidney transplantation are characterized by increased regulation of inflammation, extracellular matrix remodeling, and acute kidney injury transcripts in comparison with both LD and SCD grafts.
Collapse
Affiliation(s)
- Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenek Krejcik
- Department of Genomics, Institute of Haematology and Blood Transfusion, Prague, Czechia
| | | | - Jiri Klema
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, Prague, Czechia
| | - Viktor Stranecky
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Janka Slatinska
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jana Maluskova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Eva Honsova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
8
|
Bioinformatics analyses on the immune status of renal transplant patients, a systemic research of renal transplantation. BMC Med Genomics 2020; 13:24. [PMID: 32046717 PMCID: PMC7014750 DOI: 10.1186/s12920-020-0673-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Kidney transplantation is the most effective treatment for end-stage renal disease. Allograft rejections severely affect survivals of allograft kidneys and recipients. METHODS Using bioinformatics approaches, the present study was designed to investigate immune status in renal transplant recipients. Fifteen datasets from Gene Expression Omnibus (GEO) were collected and analysed. Analysis of gene enrichment and protein-protein interactions were also used. RESULTS There were 40 differentially expressed genes (DEGs) identified in chronic rejection group when compared with stable recipients, which were enriched in allograft rejection module. There were 135 DEGs identified in acute rejection patients, compared with stable recipients, in which most genes were enriched in allograft rejection and immune deficiency. There were 288 DEGs identified in stable recipients when compared to healthy subjects. Most genes were related to chemokine signalling pathway. In integrated comparisons, expressions of MHC molecules and immunoglobulins were increased in both acute and chronic rejection; expressions of LILRB and MAP 4 K1 were increased in acute rejection patients, but not in stable recipients. There were no overlapping DEGs in blood samples of transplant recipients. CONCLUSION By performing bioinformatics analysis on the immune status of kidney transplant patients, the present study reports several DEGs in the renal biopsy of transplant recipients, which are requested to be validated in clinical practice.
Collapse
|
9
|
The Small RNA Repertoire of Small Extracellular Vesicles Isolated From Donor Kidney Preservation Fluid Provides a Source for Biomarker Discovery for Organ Quality and Posttransplantation Graft Function. Transplant Direct 2019; 5:e484. [PMID: 31579812 PMCID: PMC6739040 DOI: 10.1097/txd.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. Delayed graft function (DGF) after kidney transplantation is negatively associated with long-term graft function and survival. Kidney function after transplantation depends on multiple factors, both donor- and recipient-associated. Prediction of posttransplantation graft function would allow timely intervention to optimize patient care and survival. Currently, graft-based predictions can be made based on histological and molecular analyses of 0-hour biopsy samples. However, such analyses are currently not implemented, as biopsy samples represent only a very small portion of the entire graft and are not routinely analyzed in all transplantation centers. Alternatives are thus required.
Collapse
|
10
|
Sigdel TK, Yang JYC, Bestard O, Schroeder A, Hsieh SC, Liberto JM, Damm I, Geraedts ACM, Sarwal MM. A urinary Common Rejection Module (uCRM) score for non-invasive kidney transplant monitoring. PLoS One 2019; 14:e0220052. [PMID: 31365568 PMCID: PMC6668802 DOI: 10.1371/journal.pone.0220052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
A Common Rejection Module (CRM) consisting of 11 genes expressed in allograft biopsies was previously reported to serve as a biomarker for acute rejection (AR), correlate with the extent of graft injury, and predict future allograft damage. We investigated the use of this gene panel on the urine cell pellet of kidney transplant patients. Urinary cell sediments collected from patients with biopsy-confirmed acute rejection, borderline AR (bAR), BK virus nephropathy (BKVN), and stable kidney grafts with normal protocol biopsies (STA) were analyzed for expression of these 11 genes using quantitative polymerase chain reaction (qPCR). We assessed these 11 CRM genes for their abundance, autocorrelation, and individual expression levels. Expression of 10/11 genes were elevated in AR when compared to STA. Psmb9 and Cxcl10could classify AR versus STA as accurately as the 11-gene model (sensitivity = 93.6%, specificity = 97.6%). A uCRM score, based on the geometric mean of the expression levels, could distinguish AR from STA with high accuracy (AUC = 0.9886) and correlated specifically with histologic measures of tubulitis and interstitial inflammation rather than tubular atrophy, glomerulosclerosis, intimal proliferation, tubular vacuolization or acute glomerulitis. This urine gene expression-based score may enable the non-invasive and quantitative monitoring of AR.
Collapse
Affiliation(s)
- Tara K. Sigdel
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua Y. C. Yang
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Oriol Bestard
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Kidney Transplant Unit, Bellvitge University Hospital, UB, Barcelona, Spain
| | - Andrew Schroeder
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Szu-Chuan Hsieh
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Juliane M. Liberto
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Izabella Damm
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Anna C. M. Geraedts
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Minnie M. Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ritschl PV, Günther J, Hofhansel L, Kühl AA, Sattler A, Ernst S, Friedersdorff F, Ebner S, Weiss S, Bösmüller C, Weissenbacher A, Oberhuber R, Cardini B, Öllinger R, Schneeberger S, Biebl M, Denecke C, Margreiter C, Resch T, Aigner F, Maglione M, Pratschke J, Kotsch K. Graft Pre-conditioning by Peri-Operative Perfusion of Kidney Allografts With Rabbit Anti-human T-lymphocyte Globulin Results in Improved Kidney Graft Function in the Early Post-transplantation Period-a Prospective, Randomized Placebo-Controlled Trial. Front Immunol 2018; 9:1911. [PMID: 30197644 PMCID: PMC6117415 DOI: 10.3389/fimmu.2018.01911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Although prone to a higher degree of ischemia reperfusion injury (IRI), the use of extended criteria donor (ECD) organs has become reality in transplantation. We therefore postulated that peri-operative perfusion of renal transplants with anti-human T-lymphocyte globulin (ATLG) ameliorates IRI and results in improved graft function. Methods: We performed a randomized, single-blinded, placebo-controlled trial involving 50 kidneys (KTx). Prior to implantation organs were perfused and incubated with ATLG (AP) (n = 24 kidney). Control organs (CP) were perfused with saline only (n = 26 kidney). Primary endpoint was defined as graft function reflected by serum creatinine at day 7 post transplantation (post-tx). Results: AP-KTx recipients illustrated significantly better graft function at day 7 post-tx as reflected by lower creatinine levels, whereas no treatment effect was observed after 12 months surveillance. During the early hospitalization phase, 16 of the 26 CP-KTx patients required dialysis during the first 7 days post-tx, whereas only 10 of the 24 AP-KTx patients underwent dialysis. No treatment-specific differences were detected for various lymphocytes subsets in the peripheral blood of patients. Additionally, mRNA analysis of 0-h biopsies post incubation with ATLG revealed no changes of intragraft inflammatory expression patterns between AP and CP organs. Conclusion: We here present the first clinical study on peri-operative organ perfusion with ATLG illustrating improved graft function in the early period post kidney transplantation. Clinical Trial Registration:www.ClinicalTrials.gov, NCT03377283
Collapse
Affiliation(s)
- Paul V Ritschl
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.,BIH Charité Clinical Scientist Program, Berlin Institute of Health, Berlin, Germany
| | - Julia Günther
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Hofhansel
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ernst
- Biostatistics Unit, Clinical Research Unit, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Susanne Ebner
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sascha Weiss
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bösmüller
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Öllinger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Biebl
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Denecke
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Aigner
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manuel Maglione
- Department of Visceral, Center for Operative Medicine, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Abstract
Zero-time kidney biopsies, obtained at time of transplantation, are performed in many transplant centers worldwide. Decisions on kidney discard, kidney allocation, and choice of peritransplant and posttransplant treatment are sometimes based on the histological information obtained from these biopsies. This comprehensive review evaluates the practical considerations of performing zero-time biopsies, the predictive performance of zero-time histology and composite histological scores, and the clinical utility of these biopsies. The predictive performance of individual histological lesions and of composite scores for posttransplant outcome is at best moderate. No single histological lesion or composite score is sufficiently robust to be included in algorithms for kidney discard. Dual kidney transplantation has been based on histological assessment of zero-time biopsies and improves outcome in individual patients, but the waitlist effects of this strategy remain obscure. Zero-time biopsies are valuable for clinical and translational research purposes, providing insight in risk factors for posttransplant events, and as baseline for comparison with posttransplant histology. The molecular phenotype of zero-time biopsies yields novel therapeutic targets for improvement of donor selection, peritransplant management and kidney preservation. It remains however highly unclear whether the molecular expression variation in zero-time biopsies could become a better predictor for posttransplant outcome than donor/recipient baseline demographic factors.
Collapse
|
13
|
van Balkom BW, Gremmels H, Ooms LS, Toorop RJ, Dor FJ, de Jong OG, Michielsen LA, de Borst GJ, de Jager W, Abrahams AC, van Zuilen AD, Verhaar MC. Proteins in Preservation Fluid as Predictors of Delayed Graft Function in Kidneys from Donors after Circulatory Death. Clin J Am Soc Nephrol 2017; 12:817-824. [PMID: 28476951 PMCID: PMC5477220 DOI: 10.2215/cjn.10701016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Kidney transplantation is the preferred treatment for ESRD, and donor kidney shortage urges proper donor-recipient matching. Zero-hour biopsies provide predictive values for short- and long-term transplantation outcomes, but are invasive and may not reflect the entire organ. Alternative, more representative methods to predict transplantation outcome are required. We hypothesized that proteins accumulating in preservation fluid during cold ischemic storage can serve as biomarkers to predict post-transplantation graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Levels of 158 proteins were measured in preservation fluids from kidneys donated after circulatory death (Maastricht category III) collected in two Dutch centers (University Medical Center Utrecht and Erasmus Medical Center Rotterdam) between 2013 and 2015. Five candidate biomarkers identified in a discovery set of eight kidneys with immediate function (IF) versus eight with delayed graft function (DGF) were subsequently analyzed in a verification set of 40 additional preservation fluids to establish a prediction model. RESULTS Variables tested for their contribution to a prediction model included five proteins (leptin, periostin, GM-CSF, plasminogen activator inhibitor-1, and osteopontin) and two clinical parameters (recipient body mass index [BMI] and dialysis duration) that distinguished between IF and DGF in the discovery set. Stepwise multivariable logistic regression provided a prediction model on the basis of leptin and GM-CSF. Receiver operating characteristic analysis showed an area under the curve (AUC) of 0.87, and addition of recipient BMI generated a model with an AUC of 0.89, outperforming the Kidney Donor Risk Index and the DGF risk calculator, showing AUCs of 0.55 and 0.59, respectively. CONCLUSIONS We demonstrate that donor kidney preservation fluid harbors biomarkers that, together with information on recipient BMI, predict short-term post-transplantation kidney function. Our approach is safe, easy, and performs better than current prediction algorithms, which are only on the basis of clinical parameters.
Collapse
Affiliation(s)
| | | | - Liselotte S.S. Ooms
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | | | - Frank J.M.F. Dor
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
- Directorate of Renal and Transplant Services, Imperial College Healthcare National Health Service Trust, London, United Kingdom; and
| | - Olivier G. de Jong
- Departments of Nephrology and Hypertension and
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Wilco de Jager
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
14
|
Identification of the activating cytotoxicity receptor NKG2D as a senescence marker in zero-hour kidney biopsies is indicative for clinical outcome. Kidney Int 2017; 91:1447-1463. [PMID: 28233611 DOI: 10.1016/j.kint.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022]
Abstract
The definition of biological donor organ age rather than chronological age seems obvious for the establishment of a valid pre-transplant risk assessment. Therefore, we studied gene expression for candidate markers in 60 zero-hour kidney biopsies. Compared with 29 younger donors under age 55, 31 elderly donors age 55 and older had significant mRNA expression for immunoproteasome subunits (PSMB8, PSMB9 and PSMB10), HLA-DRB, and transcripts of the activating cytotoxicity receptor NKG2D. Gene expression was validated in an independent donor cohort consisting of 37 kidneys from donors 30 years and under (Group I), 75 kidneys from donors age 31-54 years (Group II) and 75 kidneys from donors age 55 and older (Group III). Significant gene induction was confirmed in kidneys from Group III for PSMB9 and PSMB10. Strikingly, transcripts of NKG2D had the significantly highest gene induction in Group III versus Group II and Group I. Similar results were obtained for CDKN2A, but not for telomere length. Both NKG2D and CDKN2A mRNA expression were significantly correlated with creatinine levels at 24 months after transplantation. Univariate regression analysis showed significant predictive power regarding graft function at 6 and 12 months for NKG2D and CDKN2A. However, only NKG2D remained significantly predictive in the multivariate model at 12 months. Thus, our results reveal novel candidate markers in aged renal allografts, which could be helpful in the assessment of organ quality.
Collapse
|
15
|
Valiño-Rivas L, Gonzalez-Lafuente L, Sanz AB, Ruiz-Ortega M, Ortiz A, Sanchez-Niño MD. Non-canonical NFκB activation promotes chemokine expression in podocytes. Sci Rep 2016; 6:28857. [PMID: 27353019 PMCID: PMC4926283 DOI: 10.1038/srep28857] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Laura Gonzalez-Lafuente
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana B Sanz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
16
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
17
|
Mourão TB, Mine KL, Campos EF, Medina-Pestana JO, Tedesco-Silva H, Gerbase-DeLima M. Predicting delayed kidney graft function with gene expression in preimplantation biopsies and first-day posttransplant blood. Hum Immunol 2016; 77:353-7. [PMID: 26851369 DOI: 10.1016/j.humimm.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/25/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate possible markers for predicting delayed graft function (DGF). To this end we analyzed, in pre-implantation biopsies (PIB) and in first-day post-Tx peripheral blood mononuclear cells (PBMC), the expression of five genes (ACSL4, CUBN, DEFB1, FABP3, GK) through real-time TaqMan PCR assays. These genes were selected from a large scale gene expression study in PIB. DEFB1, FABP3 and GK expression levels in PIB were lower in cases with DGF and, in a multivariate analysis which included these genes and clinical variables, only FABP3 expression remained independently associated with DGF. FABP3 expression lower than -1.32 units of relative expression conferred an odds ratio for DGF of 41.1. Compared to the PBMC of recipients without DGF, recipients with prolonged DGF (pDGF) had lower ACSL4 and higher DEFB1 expression levels. In a multivariate analysis, including PBMC gene expression levels of ACSL4, DEFB1 and TLR4 (data from a previous study with the same patients) and clinical variables, only TLR4 remained independently associated with pDGF. In summary, this study revealed FABP3 expression in PIB as a marker for DGF and disclosed new genes possibly involved in the pathogenesis of DGF.
Collapse
Affiliation(s)
- Tuíla B Mourão
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina L Mine
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil
| | - Erika F Campos
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jose O Medina-Pestana
- Universidade Federal de São Paulo, São Paulo, SP, Brazil; Hospital do Rim e Hipertensão, São Paulo, SP, Brazil
| | | | - Maria Gerbase-DeLima
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Investigation of apoptosis-related gene expression levels in preimplantation biopsies as predictors of delayed kidney graft function. Transplantation 2014; 97:1260-5. [PMID: 24503763 DOI: 10.1097/01.tp.0000442579.12285.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the expression of the gene coding for the antiapoptotic molecule Bcl-2, the proapoptotic molecule Bax, and the apoptosis executor enzyme caspase-3 in preimplantation renal biopsies (PIB) as markers for delayed graft function. METHODS In this prospective single-center study, gene expression levels were evaluated using real-time TaqMan polymerase chain reaction in PIB of kidneys from 72 deceased donors (DDs) and 18 living donors (LDs). RESULTS CASP3 and BAX expression levels were higher, whereas those of BCL2 were lower, in DD than in LD PIB. In biopsies from DD, BCL2 levels were lower in cases with DGF, whereas no differences were observed concerning CASP3 and BAX. The BAX/BCL2 gene expression ratio greater than 2.29 associated with DGF with an odds ratio of 2.00. A multiple regression analysis including data of TLR4 expression in the first day posttransplant PB from a previous study of our group conducted in the same patients revealed a very strong association of the combination of BAX/BCL2 greater than 2.3 in PIB and TLR4 of 0.95 uRE or lesser in PB with the occurrence of DGF, with OR of 120 and positive and negative predictive values of 91% and 92%, respectively. CONCLUSIONS The power to predict DGF of the combination of high BAX/BCL2 expression in PIB and low TLR4 expression in the first day posttransplant peripheral blood observed in the present study is extremely high, in comparison to any other marker or combinations of markers so far published in the literature.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To provide an up-to-date overview about the assessment of donor biopsies and to discuss the current problems and chances of preimplantation biopsies for transplant allocation with a focus on the technical work up and the histological variables scored. RECENT FINDINGS Preimplantation biopsy results are the major reason for discarding procured extended donor criteria kidneys in the USA. There is neither a consensus on the work up, nor the reporting of preimplantation donor biopsies, nor the importance of the biopsy findings in the process of allocation. The best available data have been collected in the context of single vs. double kidney transplantation. A clinical risk factor score may help to define kidneys when a preimplantation biopsy is warranted. Punch biopsies using a skin punch device appear to be a reasonable alternative for surgeons fearing needle biopsies. SUMMARY Donor biopsies are very useful as zero-hour biopsies establishing baseline information for comparison with subsequent transplant biopsies. As none of the histological variables and scores provides perfect prediction, preimplantation biopsy results have to be interpreted in the context of all available donor and recipient information.
Collapse
|
20
|
Serum aminoacylase-1 is a novel biomarker with potential prognostic utility for long-term outcome in patients with delayed graft function following renal transplantation. Kidney Int 2013; 84:1214-25. [PMID: 23739232 PMCID: PMC3898105 DOI: 10.1038/ki.2013.200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/28/2022]
Abstract
Early identification and prognostic stratification of delayed graft function following renal transplantation has significant potential to improve outcome. Mass spectrometry analysis of serum samples, before and on day 2 post transplant from five patients with delayed graft function and five with an uncomplicated transplant, identified aminoacylase-1 (ACY-1) as a potential outcome biomarker. Following assay development, analysis of longitudinal samples from an initial validation cohort of 55 patients confirmed that the ACY-1 level on day 1 or 2 was a moderate predictor of delayed graft function, similar to serum creatinine, complementing the strongest predictor cystatin C. A further validation cohort of 194 patients confirmed this association with area under ROC curves (95% CI) for day 1 serum (138 patients) of 0.74 (0.67-0.85) for ACY-1, 0.9 (0.84-0.95) for cystatin C, and 0.93 (0.88-0.97) for both combined. Significant differences in serum ACY-1 levels were apparent between delayed, slow, and immediate graft function. Analysis of long-term follow-up for 54 patients with delayed graft function showed a highly significant association between day 1 or 3 serum ACY-1 and dialysis-free survival, mainly associated with the donor-brain-dead transplant type. Thus, proteomic analysis provides novel insights into the potential clinical utility of serum ACY-1 levels immediately post transplantation, enabling subdivision of patients with delayed graft function in terms of long-term outcome. Our study requires independent confirmation.
Collapse
|
21
|
Choi H, Park K, Lee J, Cho E, Jo S, Cho W, Kim H. Urine Neutrophil Gelatinase-Associated Lipocalin Predicts Graft Outcome up to 1 Year After Kidney Transplantation. Transplant Proc 2013; 45:122-8. [DOI: 10.1016/j.transproceed.2012.05.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 05/09/2012] [Accepted: 05/30/2012] [Indexed: 01/07/2023]
|
22
|
Scian MJ, Maluf DG, Archer KJ, Turner SD, Suh JL, David KG, King AL, Posner MP, Brayman KL, Mas VR. Identification of biomarkers to assess organ quality and predict posttransplantation outcomes. Transplantation 2012; 94:851-858. [PMID: 22992769 PMCID: PMC3927314 DOI: 10.1097/tp.0b013e318263702b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED The increased disparity between organ supply and need has led to the use of extended criteria donors and donation after cardiac death donors with other comorbidities. METHODS We have examined the preimplantation transcriptome of 112 kidney transplant recipient samples from 100 deceased-donor kidneys by microarray profiling. Subject groups were segregated based on estimated glomerular filtration rate (eGFR) at 1 month after transplantation: the GFR-high group (n=74) included patients with eGFR 45 mL/min per 1.73 m(2), whereas the GFR-low group (n=35) included patients with eGFR 45 mL/min or less per 1.73 m(2). RESULTS Gene expression profiling identified higher expression of 160 probe sets (140 genes) in the GFR-low group, whereas expression of 37 probe sets (33 genes) was higher in the GFR-high group (P<0.01, false discovery rate <0.2). Four genes (CCL5, CXCR4, ITGB2, and EGF) were selected based on fold change and P value and further validated using an independent set of samples. A random forest analysis identified three of these genes (CCL5, CXCR4, and ITGB2) as important predictors of graft function after transplantation. CONCLUSIONS Inclusion of pretransplantation molecular gene expression profiles in donor quality assessment systems may provide the necessary information for better donor organ selection and function prediction. These biomarkers would further allow a more objective and complete assessment of procured renal allografts at pretransplantation time.
Collapse
Affiliation(s)
- Mariano J Scian
- Division of Transplantation, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908-0679, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Acute kidney injury occurs with kidney transplantation and too frequently progresses to the clinical diagnosis of delayed graft function (DGF). Poor kidney function in the first week of graft life is detrimental to the longevity of the allograft. Challenges to understand the root cause of DGF include several pathologic contributors derived from the donor (ischemic injury, inflammatory signaling) and recipient (reperfusion injury, the innate immune response and the adaptive immune response). Progressive demand for renal allografts has generated new organ categories that continue to carry high risk for DGF for deceased donor organ transplantation. New therapies seek to subdue the inflammatory response in organs with high likelihood to benefit from intervention. Future success in suppressing the development of DGF will require a concerted effort to anticipate and treat tissue injury throughout the arc of the transplantation process.
Collapse
Affiliation(s)
- Andrew Siedlecki
- Nephrology Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St Louis, MO
| | - William Irish
- CTI, Clinical Trial and Consulting Services, Raleigh, NC
| | - Daniel C. Brennan
- Nephrology Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St Louis, MO
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The considerable demand in kidney transplantation against a persisting organ donor shortage has forced most centers to nowadays accept of suboptimal donor kidneys. RECENT FINDINGS Despite the substantial increase in the past decade in kidney transplantation with grafts retrieved from living donors and after donation from deceased brain dead (DBD) and extended criteria donation (ECD) donors, the supply of donor kidneys still does not meet the actual numbers needed. Moreover, older and more marginal kidney donors following the physiologically abnormal state of brain death do function less well and have a shorter graft survival. SUMMARY In this review, we present an overview of the current knowledge of renal injury induced by pathophysiological effects of brain death and its relevance for renal transplant outcome.The better insight in the role of brain death induced renal injury has clearly demonstrated its detrimental effect on outcome but, also, offers new opportunities for donor management and evaluation of new biomarkers to assess kidney graft quality in the brain dead donor. The option to intervene and selectively block or enhance a pathway as well as identify specific parameters for graft quality at time of organ retrieval in the deceased brain dead donor will ultimately benefit early function and long-term survival.
Collapse
|
25
|
Towards cytoprotection in the peritransplant period. Semin Immunol 2011; 23:209-13. [DOI: 10.1016/j.smim.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/10/2011] [Indexed: 01/26/2023]
|