1
|
Miyamoto E, Vosoughi D, Wang J, Al-Refaee J, Berra G, Daigneault T, Duong A, Joe B, Moshkelgosha S, Keshavjee S, Tinckam K, Hwang D, Chruscinski A, Juvet S, Martinu T. Local intragraft humoral immune responses in chronic lung allograft dysfunction. J Heart Lung Transplant 2025; 44:105-117. [PMID: 39097215 DOI: 10.1016/j.healun.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Donor human leukocyte antigen (HLA)-specific antibodies (DSA) and non-HLA antibodies can cause allograft injury, possibly leading to chronic lung allograft dysfunction (CLAD) after lung transplantation. It remains unclear whether these antibodies are produced locally in the graft or derived solely from circulation. We hypothesized that DSA and non-HLA antibodies are produced in CLAD lungs. METHODS Lung tissue was prospectively collected from 15 CLAD patients undergoing retransplantation or autopsy. 0.3 g of fresh lung tissue was cultured for 4 days without or with lipopolysaccharide or CD40L: lung culture supernatant (LCS) was sampled. Protein eluate was obtained from 0.3 g of frozen lung tissue. The mean fluorescence intensity (MFI) of DSA and non-HLA antibodies was measured by Luminex and antigen microarray, respectively. RESULTS LCS from all 4 patients who had serum DSA at lung isolation were positive for DSA, with higher levels measured after CD40L stimulation (CD40L+LCS). Of these, only 2 had detectable DSA in lung eluate. MFI of non-HLA antibodies from CD40L+LCS correlated with those from lung eluate but not with those from sera. Flow cytometry showed higher frequencies of activated lung B cells in patients whose CD40L+LCS was positive for DSA (n = 4) or high non-HLA antibodies (n = 6) compared to those with low local antibodies (n = 5). Immunofluorescence staining showed CLAD lung lymphoid aggregates with local antibodies contained larger numbers of IgG+ plasma cells and greater IL-21 expression. CONCLUSIONS We show that DSA and non-HLA antibodies can be produced within activated B cell-rich lung allografts.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Jinguo Wang
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Jamal Al-Refaee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Gregory Berra
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Tina Daigneault
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Tinckam
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Department of Pathology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | | | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Panicker AJ, Prokop LJ, Hacke K, Jaramillo A, Griffiths LG. Outcome-based Risk Assessment of Non-HLA Antibodies in Heart Transplantation: A Systematic Review. J Heart Lung Transplant 2024; 43:1450-1467. [PMID: 38796046 DOI: 10.1016/j.healun.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Current monitoring after heart transplantation (HT) employs repeated invasive endomyocardial biopsies (EMB). Although positive EMB confirms rejection, EMB fails to predict impending, subclinical, or EMB-negative rejection events. While non-human leukocyte antigen (non-HLA) antibodies have emerged as important risk factors for antibody-mediated rejection after HT, their use in clinical risk stratification has been limited. A systematic review of the role of non-HLA antibodies in rejection pathologies has the potential to guide efforts to overcome deficiencies of EMB in rejection monitoring. METHODS Databases were searched to include studies on non-HLA antibodies in HT recipients. Data collected included the number of patients, type of rejection, non-HLA antigen studied, association of non-HLA antibodies with rejection, and evidence for synergistic interaction between non-HLA antibodies and donor-specific anti-human leukocyte antigen antibody (HLA-DSA) responses. RESULTS A total of 56 studies met the inclusion criteria. Strength of evidence for each non-HLA antibody was evaluated based on the number of articles and patients in support versus against their role in mediating rejection. Importantly, despite previous intense focus on the role of anti-major histocompatibility complex class I chain-related gene A (MICA) and anti-angiotensin II type I receptor antibodies (AT1R) in HT rejection, evidence for their involvement was equivocal. Conversely, the strength of evidence for other non-HLA antibodies supports that differing rejection pathologies are driven by differing non-HLA antibodies. CONCLUSIONS This systematic review underscores the importance of identifying peri-HT non-HLA antibodies. Current evidence supports the role of non-HLA antibodies in all forms of HT rejection. Further investigations are required to define the mechanisms of action of non-HLA antibodies in HT rejection.
Collapse
Affiliation(s)
- Anjali J Panicker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Larry J Prokop
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota
| | - Katrin Hacke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Andrés Jaramillo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Leigh G Griffiths
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Goldberg JF, Truby LK, Agbor-Enoh S, Jackson AM, deFilippi CR, Khush KK, Shah P. Selection and Interpretation of Molecular Diagnostics in Heart Transplantation. Circulation 2023; 148:679-694. [PMID: 37603604 PMCID: PMC10449361 DOI: 10.1161/circulationaha.123.062847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The number of heart transplants performed annually in the United States and worldwide continues to increase, but there has been little change in graft longevity and patient survival over the past 2 decades. The reference standard for diagnosis of acute cellular and antibody-mediated rejection includes histologic and immunofluorescence evaluation of endomyocardial biopsy samples, despite invasiveness and high interrater variability for grading histologic rejection. Circulating biomarkers and molecular diagnostics have shown substantial predictive value in rejection monitoring, and emerging data support their use in diagnosing other posttransplant complications. The use of genomic (cell-free DNA), transcriptomic (mRNA and microRNA profiling), and proteomic (protein expression quantitation) methodologies in diagnosis of these posttransplant outcomes has been evaluated with varying levels of evidence. In parallel, growing knowledge about the genetically mediated immune response leading to rejection (immunogenetics) has enhanced understanding of antibody-mediated rejection, associated graft dysfunction, and death. Antibodies to donor human leukocyte antigens and the technology available to evaluate these antibodies continues to evolve. This review aims to provide an overview of biomarker and immunologic tests used to diagnose posttransplant complications. This includes a discussion of pediatric heart transplantation and the disparate rates of rejection and death experienced by Black patients receiving a heart transplant. This review describes diagnostic modalities that are available and used after transplant and the landscape of future investigations needed to enhance patient outcomes after heart transplantation.
Collapse
Affiliation(s)
- Jason F Goldberg
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
- Department of Pediatrics, Inova L.J. Murphy Children's Hospital, Falls Church, VA (J.F.G.)
| | - Lauren K Truby
- Department of Medicine, University of Texas Southwestern, Dallas (L.K.T.)
| | - Sean Agbor-Enoh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (S.A.-E.)
- Applied Precision Genomics, National Heart, Lung and Blood Institute, Bethesda, MD (S.A.-E.)
| | - Annette M Jackson
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.M.J.)
| | - Christopher R deFilippi
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (K.K.K.)
| | - Palak Shah
- Department of Heart Failure and Transplantation, Inova Heart and Vascular Institute, Falls Church, VA (J.F.G., C.R.d., P.S.)
| |
Collapse
|
4
|
Pang XL, Du HF, Nie F, Yang XG, Xu Y. Tubulin Alpha-1b as a Potential Biomarker for Lung Adenocarcinoma Diagnosis and Prognosis. Technol Cancer Res Treat 2023; 22:15330338231178391. [PMID: 37489256 PMCID: PMC10369087 DOI: 10.1177/15330338231178391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023] Open
Abstract
Background: Because lung cancer is the main cause of cancer deaths and lung adenocarcinoma (LUAD) accounts for more than 40% of all lung malignancies, it is essential to develop clinically useful biomarkers for the disease. The aim of this investigation is to assess the potential application of tubulin alpha-1b (TUBA1B) as a biomarker for diagnosing and monitoring the outcome of LUAD. Methods: The clinical data of the LUAD patients was retrospectively analyzed. Immunohistochemistry (IHC) analysis of a tissue microarray containing 90 LUAD cases was implemented to examine the expression of TUBA1B. The protein and mRNA levels of TUBA1B in serum were detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) analysis respectively. UALCAN was employed to confirm the expression levels and survival probability of TUBA1B in LUAD patients. Results: Compared to adjacent non-cancerous tissues in the microarray, the expression of TUBA1B in LUAD tissues was much higher. The expression of TUBA1B in LUAD was statistically correlated with lymph node status (P = .031). Moreover, patients with higher TUBA1B expression had shorter overall survival (P < .0001). Furthermore, cox multi-factor analysis also suggested that TUBA1B may be an independent predictor for LUAD prognosis (P = .030). The results of TCGA data analysis by UALCAN were consistent with the microarray results, except for that TUBA1B was also significantly correlated with clinical tumor stages. Protein levels of TUBA1B in serum were obviously elevated in LUAD patients than control (P < .0001), and the area under the ROC curve was 0.99. TUBA1B also showed better sensitivity of 92.9% for LUAD than common clinical biomarkers. Conclusion: TUBA1B may be a non-invasive prognostic and diagnostic biomarker for LUAD patients.
Collapse
Affiliation(s)
- Xue-Li Pang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong-Fei Du
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Nie
- Department of Clinical Laboratory, Second People's Hospital of Chengdu, Chengdu, China
| | - Xiang-Gui Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Park S, Yang SH, Kim J, Cho S, Yang J, Min SI, Ha J, Jeong CW, Bhoo SH, Kim YC, Kim DK, Oh KH, Joo KW, Kim YS, Moon KC, Song EY, Lee H. Clinical Significances of Anti-Collagen Type I and Type III Antibodies in Antibody-Mediated Rejection. Transpl Int 2022; 35:10099. [PMID: 35634584 PMCID: PMC9131656 DOI: 10.3389/ti.2022.10099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 12/02/2022]
Abstract
It is important to determine the clinical significance of non-human leukocyte antigen (HLA) antibodies and their association with antibody-mediated rejection (ABMR) of kidney allografts. We collected post-transplant sera from 68 ABMR patients, 67 T-cell mediated rejection (TCMR) patients, and 83 control subjects without rejection, and determined the titers of 39 non-HLA antibodies including antibodies for angiotensin II receptor type I and MICA. We compared all these non-HLA antibody titers among the study groups. Then, we investigated their association with the risk of death-censored graft failure in ABMR cases. Among the antibodies evaluated, anti-collagen type I (p = 0.001) and type III (p < 0.001) antibody titers were significantly higher in ABMR cases than in both TCMR cases and no-rejection controls. Both anti-collagen type I [per 1 standard deviation (SD), adjusted odds ratio (OR), 11.72 (2.73-76.30)] and type III [per 1 SD, adjusted OR, 6.22 (1.91-31.75)] antibodies were significantly associated with the presence of ABMR. Among ABMR cases, a higher level of anti-collagen type I [per 1 SD, adjusted hazard ratio (HR), 1.90 (1.32-2.75)] or type III per 1 SD, [adjusted HR, 1.57 (1.15-2.16)] antibody was associated with a higher risk of death-censored graft failure. In conclusion, post-transplant anti-collagen type I and type III antibodies may be novel non-HLA antibodies related to ABMR of kidney allografts.
Collapse
Affiliation(s)
- Sehoon Park
- Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam-si, South Korea,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, South Korea
| | - Jiyeon Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea
| | - Semin Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jaeseok Yang
- Transplantation Center, Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Sang-Il Min
- Transplantation Center, Department of Surgery, Seoul National University Hospital, Seoul, South Korea,Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jongwon Ha
- Transplantation Center, Department of Surgery, Seoul National University Hospital, Seoul, South Korea,Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Seong Hee Bhoo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwon Wook Joo
- Kidney Research Institute, Seoul National University, Seoul, South Korea,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Eun Young Song, , orcid.org/0000-0003-1286-9611; Hajeong Lee, , orcid.org/0000-0002-1873-1587
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea,Deparment of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Eun Young Song, , orcid.org/0000-0003-1286-9611; Hajeong Lee, , orcid.org/0000-0002-1873-1587
| |
Collapse
|
6
|
Zorn E, See SB. Antibody Responses to Minor Histocompatibility Antigens After Solid Organ Transplantation. Transplantation 2022; 106:749-753. [PMID: 34699457 PMCID: PMC8957520 DOI: 10.1097/tp.0000000000003969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antibody-mediated rejection (AMR) is a major barrier to long-term graft survival following solid organ transplantation (SOT). Major histocompatibility antigens mismatched between donor and recipient are well-recognized targets of humoral alloimmunity in SOT and thought to drive most cases of AMR. In contrast, the implication of minor histocompatibility antigens (mHAs) in AMR has not been fully investigated, and their clinical relevance remains controversial. Recent technological advances, allowing for genome-wide comparisons between donors and recipients, have uncovered novel, polymorphic mHA targets with potential influence on the graft outcome following SOT. Here, we review these latest studies relating to mHAs and discuss their clinical significance.
Collapse
Affiliation(s)
- Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Sarah B. See
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
7
|
Shotgun Immunoproteomics for Identification of Nonhuman Leukocyte Antigens Associated With Cellular Dysfunction in Heart Transplant Rejection. Transplantation 2021; 106:1376-1389. [PMID: 34923540 DOI: 10.1097/tp.0000000000004012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The International Society for Heart and Lung Transplant consensus panel notes that too little data exist regarding the role of non-HLA in allograft rejection. We developed a novel shotgun immunoproteomic approach to determine the identities and potential roles non-HLA play in antibody-mediated rejection (AMR) in heart transplant recipients. METHODS Serum was collected longitudinally from heart transplant recipients experiencing AMR in the absence of donor-specific anti-HLA antibodies (n = 6) and matched no rejection controls (n = 7). Antidonor heart affinity chromatography columns were formed by recipient immunoglobulin G immobilization at transplantation, acute rejection, and chronic postrejection time points. Affinity chromatography columns were used to capture antigens from individual patient's donor heart biopsies collected at transplantation. Captured proteins were subjected to quantitative proteomic analysis and the longitudinal response was calculated. RESULTS Overlap in antigen-specific response between AMR and non-AMR patients was only 8.3%. In AMR patients, a total of 155 non-HLAs were identified, with responses toward 43 high prevalence antigens found in ≥50% of patients. Immunofluorescence staining for representative high prevalence antigens demonstrated that their abundance increased at acute rejection, correlating with their respective non-HLA antibody response. Physiological changes in cardiomyocyte and endothelial cell function, following in vitro culture with patient immunoglobulin G, correlated with response toward several high prevalence antigens. CONCLUSIONS This work demonstrates a novel high-throughput strategy to identify clinically relevant non-HLA from donor endomyocardial biopsy. Such a technique has the potential to improve understanding of longitudinal timing of antigen-specific responses and their cause and effect relationship in graft rejection.
Collapse
|
8
|
Kardol-Hoefnagel T, Otten HG. A Comprehensive Overview of the Clinical Relevance and Treatment Options for Antibody-mediated Rejection Associated With Non-HLA Antibodies. Transplantation 2021; 105:1459-1470. [PMID: 33208690 PMCID: PMC8221725 DOI: 10.1097/tp.0000000000003551] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Although solid organ transplant results have improved significantly in recent decades, a pivotal cause of impaired long-term outcome is the development of antibody-mediated rejection (AMR), a condition characterized by the presence of donor-specific antibodies to HLA or non-HLA antigens. Highly HLA-sensitized recipients are treated with desensitization protocols to rescue the transplantation. These and other therapies are also applied for the treatment of AMR. Therapeutic protocols include removal of antibodies, depletion of plasma and B cells, inhibition of the complement cascade, and suppression of the T-cell-dependent antibody response. As mounting evidence illustrates the importance of non-HLA antibodies in transplant outcome, there is a need to evaluate the efficacy of treatment protocols on non-HLA antibody levels and graft function. Many reviews have been recently published that provide an overview of the literature describing the association of non-HLA antibodies with rejection in transplantation, whereas an overview of the treatment options for non-HLA AMR is still lacking. In this review, we will therefore provide such an overview. Most reports showed positive effects of non-HLA antibody clearance on graft function. However, monitoring non-HLA antibody levels after treatment along with standardization of therapies is needed to optimally treat solid organ transplant recipients.
Collapse
Affiliation(s)
- Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lefaucheur C, Louis K, Philippe A, Loupy A, Coates PT. The emerging field of non-human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int 2021; 100:787-798. [PMID: 34186057 DOI: 10.1016/j.kint.2021.04.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The major medical advances in our knowledge of the human leukocyte antigen (HLA) system have allowed us to uncover several gaps in our understanding of alloimmunity. Although the non-HLA system has long sparked the interest of the transplant community, recognition of the role of immunity to non-HLA antigenic targets has only emerged recently. In this review, we will provide a comprehensive summary of the paradigm-changing concept of immunity to the non-HLA angiotensin II type 1 receptor (AT1R), discovered by Duška Dragun et al., that began from careful bedside clinical observations, to validated detection of anti-AT1R antibodies and lead to clinical intervention. This scientific approach has also allowed the recognition of broader pathogenicity of anti-AT1R antibodies across multiple organ transplants and in other human diseases, the integration of both non-HLA and HLA systems to understand their immunologic effects on organ allografts, and the identification of future directions for therapeutic intervention to modulate immunity to AT1R. Rationally designed successful interventions to target AT1R system provide an exemplar for other non-HLA antibodies to cross borders between medical specialties, will generate new avenues in translational research beyond transplantation, and will foster the development of new and reliable tools to improve our understanding of non-HLA immunity and ultimately allow us to improve patient care.
Collapse
Affiliation(s)
- Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la santé et de la recherche médicale UMR-976, Université de Paris, Paris, France
| | - Aurélie Philippe
- Department of Nephrology and Critical Care Medicine, Campus Virchow Klinikum, Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Department of Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
See SB, Mantell BS, Clerkin KJ, Ray B, Vasilescu ER, Marboe CC, Naka Y, Restaino S, Colombo PC, Addonizio LJ, Farr MA, Zorn E. Profiling non-HLA antibody responses in antibody-mediated rejection following heart transplantation. Am J Transplant 2020; 20:2571-2580. [PMID: 32190967 PMCID: PMC8117249 DOI: 10.1111/ajt.15871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) driven by the development of donor-specific antibodies (DSA) directed against mismatched donor human leukocyte antigen (HLA) is a major risk factor for graft loss in cardiac transplantation. Recently, the relevance of non-HLA antibodies has become more prominent as AMR can be diagnosed in the absence of circulating DSA. Here, we assessed a single-center cohort of 64 orthotopic heart transplant recipients transplanted between 1994 and 2014. Serum collected from patients with ≥ pAMR1 (n = 43) and non-AMR (n = 21) were tested for reactivity against a panel of 44 non-HLA autoantigens. The AMR group had a significantly greater percentage of patients with elevated reactivity to autoantigens compared to non-AMR (P = .002) and healthy controls (n = 94, P < .0001). DSA-positive AMR patients exhibited greater reactivity to autoantigens compared to DSA-negative (P < .0001) and AMR patients with DSA and PRA > 10% were identified as the subgroup with significantly elevated responses. Reactivity to 4 antigens, vimentin, beta-tubulin, lamin A/C, and apolipoprotein L2, was significantly different between AMR and non-AMR patients. Moreover, increased reactivity to these antigens was associated with graft failure. These results suggest that antibodies to non-HLA are associated with DSA-positive AMR although their specific role in mediating allograft injury is not yet understood.
Collapse
Affiliation(s)
- Sarah B. See
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Benjamin S. Mantell
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY,Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Kevin J. Clerkin
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | | | - E. Rodica Vasilescu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Charles C. Marboe
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Yoshifumi Naka
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University Irving Medical Center, New York, NY
| | - Susan Restaino
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Paolo C. Colombo
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Linda J. Addonizio
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Maryjane A. Farr
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
11
|
Abstract
The role of anti-HLA antibodies in solid organ rejection is well established and these antibodies are routinely monitored both in patients in the waiting list and in the post-transplant setting. More recently, the presence of other antibodies directed towards non-HLA antigens, or the so-called minor histocompatibility antigens, has drawn the attention of the transplant community; however, their possible involvement in the graft outcome remains uncertain. These antibodies have been described to possibly have a role in rejection and allograft failure. This review focuses on the most studied non-HLA antibodies and their association with different clinical outcomes considered in solid organ transplantation with the aim of clarifying their clinical implication and potential relevance for routine testing.
Collapse
|
12
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
13
|
Nonhuman leukocyte antigen antibodies that have impact in the heart transplant patient. Curr Opin Organ Transplant 2019; 24:279-285. [DOI: 10.1097/mot.0000000000000642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Abstract
PURPOSE OF REVIEW B cells have recently emerged as important immune players in solid organ rejection, especially in cardiac allograft vasculopathy (CAV), a chronic form of rejection following heart transplantation. B cells can exert either regulatory or effector functions. This review will provide an update on effector B cells in CAV. RECENT FINDINGS Independent studies reported the abundance of B cells in graft infiltrates during CAV, especially around coronary arteries. Infiltrates comprise CD20+ CD27+ memory B cells together with differentiated CD20-CD138+ plasma cells, which are almost always associated with T cells and macrophages. The structure of some of these infiltrates evokes that of germinal centers, suggesting the generation of tertiary lymphoid organs in the graft. Remarkably, B-cell infiltrates are most often detected in the absence of circulating donor human leukocyte antigen-specific antibodies, strongly suggesting that the two components are unrelated. Characterization of B-cell clones isolated from explanted human cardiac graft infiltrates revealed the prevalence of polyreactive innate, B1-like B cells. Accumulating evidence suggests that these cells act primarily as antigen-presenting cells in situ. Additional effector functions, such as local antibody secretion and pro-inflammatory cytokine production, promoting T-cell polarization, macrophage activation and fibrosis are also considered. SUMMARY Converging observations made through animal and human studies add substantial support for an effector B-cell role in the pathophysiology of CAV. On the basis of these collective findings, a therapeutic strategy targeting B cells could reasonably be envisaged to prevent or treat this complication.
Collapse
Affiliation(s)
- Emmanuel Zorn
- Columbia Center for Translational Immunology, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Not All Antibodies Are Created Equal: Factors That Influence Antibody Mediated Rejection. J Immunol Res 2017; 2017:7903471. [PMID: 28373996 PMCID: PMC5360970 DOI: 10.1155/2017/7903471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Consistent with Dr. Paul Terasaki's "humoral theory of rejection" numerous studies have shown that HLA antibodies can cause acute and chronic antibody mediated rejection (AMR) and decreased graft survival. New evidence also supports a role for antibodies to non-HLA antigens in AMR and allograft injury. Despite the remarkable efforts by leaders in the field who pioneered single antigen bead technology for detection of donor specific antibodies, a considerable amount of work is still needed to better define the antibody attributes that are associated with AMR pathology. This review highlights what is currently known about the clinical context of pre and posttransplant antibodies, antibody characteristics that influence AMR, and the paths after donor specific antibody production (no rejection, subclinical rejection, and clinical dysfunction with AMR).
Collapse
|
16
|
Mehra NK, Baranwal AK. Clinical and immunological relevance of antibodies in solid organ transplantation. Int J Immunogenet 2016; 43:351-368. [DOI: 10.1111/iji.12294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/10/2016] [Accepted: 10/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- N. K. Mehra
- National Chair and Former Dean (Research); All India Institute of Medical Sciences; New Delhi India
| | - A. K. Baranwal
- Department of Transplant Immunology and Immunogenetics; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
17
|
Seifert ME, Gunasekaran M, Horwedel TA, Daloul R, Storch GA, Mohanakumar T, Brennan DC. Polyomavirus Reactivation and Immune Responses to Kidney-Specific Self-Antigens in Transplantation. J Am Soc Nephrol 2016; 28:1314-1325. [PMID: 27821629 DOI: 10.1681/asn.2016030285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Humoral immune responses against donor antigens are important determinants of long-term transplant outcomes. Reactivation of the polyomavirus BK has been associated with de novo antibodies against mismatched donor HLA antigens in kidney transplantation. The effect of polyomavirus reactivation (BK viremia or JC viruria) on antibodies to kidney-specific self-antigens is unknown. We previously reported excellent 5-year outcomes after minimization of immunosuppression for BK viremia and after no intervention for JC viruria. Here, we report the 10-year results of this trial (n=193) along with a nested case-control study (n=40) to explore associations between polyomavirus reactivation and immune responses to the self-antigens fibronectin (FN) and collagen type-IV (Col-IV). Consistent with 5-year findings, subjects taking tacrolimus, compared with those taking cyclosporin, had less acute rejection (11% versus 22%, P=0.05) and graft loss (9% versus 22%, P=0.01) along with better transplant function (eGFR 65±19 versus 50±24 ml/min per 1.73 m2, P<0.001) at 10 years. Subjects undergoing immunosuppression reduction for BK viremia had 10-year outcomes similar to those without viremia. In the case-control study, antibodies to FN/Col-IV were more prevalent during year 1 in subjects with polyomavirus reactivation than in those without reactivation (48% versus 11%, P=0.04). Subjects with antibodies to FN/Col-IV had more acute rejection than did those without these antibodies (38% versus 8%, P=0.02). These data demonstrate the long-term safety and effectiveness of minimizing immunosuppression to treat BK viremia. Furthermore, these results indicate that polyomavirus reactivation associates with immune responses to kidney-specific self-antigens that may increase the risk for acute rejection through unclear mechanisms.
Collapse
Affiliation(s)
- Michael E Seifert
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama; .,Departments of Pediatrics
| | - Muthukumar Gunasekaran
- Surgery, and.,Pathology and Immunology, and.,Norton Thoracic Institute, St. Joseph's Hospital, Phoenix, Arizona
| | - Timothy A Horwedel
- Renal Division, Department of Medicine, Washington University, St. Louis, Missouri; and
| | - Reem Daloul
- Renal Division, Department of Medicine, Washington University, St. Louis, Missouri; and
| | | | - Thalachallour Mohanakumar
- Surgery, and.,Pathology and Immunology, and.,Norton Thoracic Institute, St. Joseph's Hospital, Phoenix, Arizona
| | - Daniel C Brennan
- Renal Division, Department of Medicine, Washington University, St. Louis, Missouri; and
| |
Collapse
|
18
|
Focosi D. Advances in Pretransplant Donor-Specific Antibody Testing in Solid Organ Transplantation: From Bench to Bedside. Int Rev Immunol 2016; 35:351-368. [PMID: 27120091 DOI: 10.3109/08830185.2016.1154051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Immunological risk stratification has a central role in determining both the feasibility of solid organ transplantation and the type (and amount) of induction and maintenance immunosuppressive therapy. Currently there is poor consensus on how to exactly estimate the global immunological risk, and most transplant centers adopt complicated internal guidelines for risk stratification. Here we systematically review published evidences that should drive appropriateness in risk stratification, focusing on donor-specific antibodies against HLA and other antigens.
Collapse
Affiliation(s)
- Daniele Focosi
- a Department of Translational Research , University of Pisa , Pisa , Italy
| |
Collapse
|
19
|
Abstract
The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia-reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival.
Collapse
|
20
|
Hoffman WH, Sharma M, Cihakova D, Talor MV, Rose NR, Mohanakumar T, Passmore GG. Cardiac antibody production to self-antigens in children and adolescents during and following the correction of severe diabetic ketoacidosis. Autoimmunity 2016; 49:188-96. [PMID: 26911924 DOI: 10.3109/08916934.2015.1134509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DC) is an independent phenotype of diabetic cardiovascular disease. The understanding of the pathogenesis of DC in young patients with type 1 diabetes (T1D) is limited. The cardiac insults of diabetic ketoacidosis (DKA) and progression of DC could include development of antibodies (Abs) to cardiac self-antigens (SAgs) such as: myosin (M), vimentin (V) and k-alpha 1 tubulin (Kα1T). The goal of this study is to determine if the insults of severe DKA and its inflammatory cascade are associated with immune responses to SAgs. Development of Abs to the SAgs were determined by an ELISA using sera collected at three time points in relation to severe DKA (pH < 7.2). Results demonstrate significant differences between the development of Abs to VIM and a previously reported diastolic abnormality (DA) during DKA and its treatment and a NDA group at 2-3 months post DKA (p = 0.0452). A significant association is present between T1D duration (<3 years) and Abs to Kα1T (p = 0.0134). Further, Abs to MYO and VIM are associated with inflammatory cytokines. We propose that severe DKA initiates the synthesis of Abs to cardiac SAgs that are involved in the early immunopathogenesis of DC in young patients with T1D.
Collapse
Affiliation(s)
- William H Hoffman
- a Department of Pediatrics , Georgia Regents University (Medical College of Georgia) , Augusta , GA , USA
| | - Monal Sharma
- b Department of Surgery , Washington University School of Medicine , St. Louis, MO , USA
| | - Daniela Cihakova
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Monica V Talor
- d Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Noel R Rose
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - T Mohanakumar
- e Departments of Surgery , Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA , and
| | - Gregory G Passmore
- f Medical Laboratory, Imaging and Radiologic Sciences, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
21
|
Vallin P, Désy O, Béland S, Wagner E, De Serres SA. Clinical relevance of circulating antibodies and B lymphocyte markers in allograft rejection. Clin Biochem 2016; 49:385-93. [PMID: 26721422 DOI: 10.1016/j.clinbiochem.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
The main challenge in solid organ transplantation remains to tackle antibody-mediated rejection. Our understanding of the antibody-mediated response and the capacity to detect it has improved in the last decade. However, the sensitivity and specificity of the current clinical tools to monitor B cell activation are perfectible. New strategies, including the refinement in the characterization of HLA and non-HLA antibodies, as well as a better understanding of the circulating B cell phenotype will hopefully help to non-invasively identify patients at risk or undergoing antibody-mediated allograft damage. The current review discusses the current knowledge of the B cell biomarkers in solid organ transplantation, with a focus on circulating antibodies and peripheral B cells.
Collapse
Affiliation(s)
- Patrice Vallin
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Eric Wagner
- Immunology and Histocompatibility Laboratory, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Sacha A De Serres
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec, Faculty of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
22
|
Time-dependent specificity of immunopathologic (C4d-CD68) and histologic criteria of antibody-mediated rejection for donor-specific antibodies and allograft dysfunction in heart transplantation. Transplantation 2015; 99:586-93. [PMID: 24983305 DOI: 10.1097/tp.0000000000000246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In heart transplantation, antibody-mediated rejection (AMR) is diagnosed and graded on the basis of immunopathologic (C4d-CD68) and histopathologic criteria found on endomyocardial biopsies (EMB). Because some pathologic AMR (pAMR) grades may be associated with clinical AMR, and because humoral responses may be affected by the intensity of immunosuppression during the first posttransplantation year, we investigated the incidence and positive predictive values (PPV) of C4d-CD68 and pAMR grades for clinical AMR as a function of time. METHODS All 564 EMB from 40 adult heart recipients were graded for pAMR during the first posttransplantation year. Clinical AMR was diagnosed by simultaneous occurrence of pAMR on EMB, donor specific antibodies and allograft dysfunction. RESULTS One patient demonstrated clinical AMR at postoperative day 7 and one at 6 months (1-year incidence 5%). C4d-CD68 was found on 4,7% EMB with a "decrescendo" pattern over time (7% during the first 4 months vs. 1.2% during the last 8 months; P < 0.05). Histopathologic criteria of AMR occurred on 10.3% EMB with no particular time pattern. Only the infrequent (1.4%) pAMR2 grade (simultaneous histopathologic and immunopathologic markers) was predictive for clinical AMR, particularly after the initial postoperative period (first 4 months and last 8 months PPV = 33%-100%; P < 0.05). CONCLUSION In the first posttransplantation year, AMR immunopathologic and histopathologic markers were relatively frequent, but only their simultaneous occurrence (pAMR2) was predictive of clinical AMR. Furthermore, posttransplantation time may modulate the occurrence of C4d-CD68 on EMB and thus the incidence of pAMR2 and its relevance to the diagnosis of clinical AMR.
Collapse
|
23
|
van Besouw NM, Caliskan K, Peeters AMA, Klepper M, Dieterich M, Maat LPWM, Weimar W, Manintveld OC, Baan CC. Interleukin-17-producing CD4(+) cells home to the graft early after human heart transplantation. J Heart Lung Transplant 2014; 34:933-40. [PMID: 25682556 DOI: 10.1016/j.healun.2014.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) is regarded as a major effector cytokine with pro-inflammatory actions. It has pleiotropic and environment-specific functions by promoting adaptive cytotoxic T-lymphocyte responses during inflammation. Therefore, it is tempting to speculate that IL-17 plays a major role in inflammatory responses in transplant recipients. We questioned whether IL-17 is expressed in the transplanted heart during acute rejection (AR), or during immunologic quiescence, and which graft-infiltrating lymphocytes produce IL-17. In addition, we analyzed donor-specific IL-17-producing cells in peripheral blood cells in comparable periods after transplantation. METHODS Endomyocardial biopsies from heart transplant recipients with early or late AR or in an immunologic quiescence period were analyzed for the presence of IL-17 mRNA. In addition, the capacity of graft-infiltrating lymphocytes (GILs) to produce IL-17 was analyzed. Moreover, we determined the frequency of donor-reactive IL-17-producing peripheral blood mononuclear cells (PBMCs) using an Elispot assay. RESULTS Twenty-one percent (14 of 67) of the biopsies assessed were positive for IL-17 mRNA. Thirteen of 41 biopsies were observed in the early period (≤3 months) after transplantation. One (of 26) of the late biopsies expressed IL-17 (p = 0.006). Specifically, IL-17 was expressed during early AR (57%, or 8 of 14), whereas biopsies from late AR (0 of 5) did not express IL-17 mRNA (p = 0.02). During AR, IL-17 is derived from IL-17-producing CD4(+)CD161(+), and not CD8(+), GILs. In contrast to the graft findings, we detected circulating donor-reactive IL-17-producing cells mostly during immunologic quiescence. CONCLUSIONS Particularly early after heart transplantation, IL-17-producing CD4(+) T cells home to the graft, which contributes to the AR process.
Collapse
Affiliation(s)
| | | | | | | | | | - Lex P W M Maat
- Department of Thoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Carla C Baan
- Department of (a)Internal Medicine-Transplantation
| |
Collapse
|
24
|
Budding K, van de Graaf E, Otten H. Humoral immunity and complement effector mechanisms after lung transplantation. Transpl Immunol 2014; 31:260-5. [DOI: 10.1016/j.trim.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 11/28/2022]
|
25
|
Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol 2014; 34:1609-14. [PMID: 24903097 DOI: 10.1161/atvbaha.114.302818] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac allograft vasculopathy is the major cause of late graft loss in heart transplant recipients. Histological studies of characteristic end-stage lesions reveal arterial changes consisting of a diffuse, confluent, and concentric intimal expansion containing graft-derived cells expressing smooth muscle markers, extracellular matrix, penetrating microvessels, and a host mononuclear cell infiltrate concentrated subjacent to an intact graft-derived luminal endothelial cell lining with little evidence of acute injury. This intimal expansion combined with inadequate compensatory outward remodeling produces severe generalized stenosis extending throughout the epicardial and intramyocardial arterial tree that causes ischemic graft failure. Cardiac allograft vasculopathy lesions affect ≥50% of transplant recipients and are both progressive and refractory to treatment, resulting in ≈5% graft loss per year through the first 10 years after transplant. Lesions typically stop at the suture line, implicating alloimmunity as the primary driver, but pathogenesis may be multifactorial. Here, we will discuss 6 potential contributors to lesion formation (1) conventional risk factors of atherosclerosis; (2) pre- or peritransplant injuries; (3) infection; (4) innate immunity; (5) T-cell-mediated immunity; and (6) B-cell-mediated immunity through production of donor-specific antibody. Finally, we will consider how these various mechanisms may interact with each other.
Collapse
Affiliation(s)
- Jordan S Pober
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT.
| | - Dan Jane-wit
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - Lingfeng Qin
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
26
|
Clinical relevance of human leukocyte antigen antibodies in liver, heart, lung and intestine transplantation. Curr Opin Organ Transplant 2013; 18:463-9. [PMID: 23838652 DOI: 10.1097/mot.0b013e3283636c71] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Solid phase assays identify human leukocyte antigen (HLA) antibodies with a great sensitivity. Whether to accept or decline an organ if the virtual crossmatch is positive, when to monitor and whether to treat de-novo donor-specific antibody (DSA) posttransplant remain challenging issues for the transplant clinician. RECENT FINDINGS Technologies that can differentiate which antibodies pose the greatest risk for antibody-mediated rejection (AMR) are evolving. Complement fixing luminex assays have been used to predict high-risk antibodies, but using these assays alone will miss some preformed antibodies. How these technologies fit into the laboratory's testing algorithm will likely need to be individualized. Posttransplant de-novo DSAs are associated with inferior outcomes. In hearts, similar to renal transplantation, acute rejection is a risk factor for developing de-novo DSA. Further data are needed to determine whether other risk factors are similar to those reported for renal transplants. Antibodies to self-antigens are increasingly recognized posttransplant and how the alloimmune response contributes to altered autoregulation is a current research focus. SUMMARY Identification of DSA enables the clinician to make informed decisions regarding whether or not to accept an organ and if augmented immunosuppression is indicated. Monitoring for DSA posttransplant identifies recipients at a greater risk for AMR and can guide management. However, the best approach to dealing with de-novo DSA remains unclear.
Collapse
|
27
|
Non-HLA antibodies in solid organ transplantation: recent concepts and clinical relevance. Curr Opin Organ Transplant 2013; 18:430-5. [PMID: 23838648 DOI: 10.1097/mot.0b013e3283636e55] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Humoral responses beyond major histocompatibility antigens continue to receive the attention of the transplantation community. We report on clinical studies testing clinical relevance of non-human leukocyte antigen (HLA) antigens in solid organ transplantation and provide an update on novel experimental findings. A conceptual framework on the role of graft microenvironment during initiation of non-HLA-related humoral immunity is addressed as well. RECENT FINDINGS Clinical relevance of antibodies targeting angiotensin type 1 receptor (AT1R-Abs) is broadly confirmed in renal and cardiac transplantation, where in addition antibodies against endothelin type A receptor (ETAR-Abs) were found. Obliterative lesions in lung allografts occur more commonly in the presence of antibodies directed against K-α 1 tubulin and collagen-V. Anti-perlecan antibodies are newly identified as accelerators of obliterative vascular lesions. Changes in the intragraft microenvironment, ischemia and alloimmunity seem to represent important permissive factors for non-HLA antibody responses. SUMMARY Confirmed clinical relevance of non-HLA humoral responses in solid organ transplantation emphasizes the need for revision of classical diagnostic approaches based solely on detection of HLA-donor-specific antibodies (DSA). A better understanding of intersections of HLA- and non-HLA-related mechanisms and identification of common effector mechanisms would represent an important step towards targeted therapies.
Collapse
|
28
|
Angaswamy N, Tiriveedhi V, Sarma NJ, Subramanian V, Klein C, Wellen J, Shenoy S, Chapman WC, Mohanakumar T. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection. Hum Immunol 2013; 74:1478-85. [PMID: 23876679 DOI: 10.1016/j.humimm.2013.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/02/2023]
Abstract
Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction.
Collapse
Affiliation(s)
- Nataraju Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu H, Li J, Wang S, Liu K, Wang L, Huang L. γδ T Cell Receptor Deficiency Attenuated Cardiac Allograft Vasculopathy and Promoted Regulatory T cell Expansion. Scand J Immunol 2013; 78:44-9. [PMID: 23659436 DOI: 10.1111/sji.12064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Affiliation(s)
- H. Zhu
- Department of Anesthesiology and The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan; China
| | - J. Li
- Department of Oncology; Wuhan Central Hospital; Wuhan; China
| | - S. Wang
- Department of Cardiovascular Surgery; Union Hospital; Huazhong University of Science and Technology; Wuhan; China
| | - K. Liu
- Department of Anesthesiology and The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan; China
| | - L. Wang
- Department of Anesthesiology and The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan; China
| | - L. Huang
- Department of Anesthesiology and The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan; China
| |
Collapse
|
30
|
Subramanian V, Mohanakumar T. Chronic rejection: a significant role for Th17-mediated autoimmune responses to self-antigens. Expert Rev Clin Immunol 2013; 8:663-72. [PMID: 23078063 DOI: 10.1586/eci.12.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite progress in the field of organ transplantation for improvement in graft survival and function, long-term graft function is still limited by the development of chronic allograft rejection. Various immune-mediated and nonimmune-mediated processes have been postulated in the pathogenesis of chronic rejection. In this review, the authors discuss the important role of alloimmune responses to donor-specific antigens and autoimmune responses to tissue restricted self-antigens in the immunopathogenesis of chronic rejection following solid organ transplantation. In particular, the authors discuss the role of induction of Th17-type autoimmune responses and the crosstalk between autoimmune and alloimmune responses. These self-perpetuate each other leading to activation of profibrotic and proinflammatory cascades that ultimately result in the development of chronic rejection.
Collapse
Affiliation(s)
- Vijay Subramanian
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
31
|
Anti-major histocompatibility complex-induced obliterative airway disease: selective role for CD4 and CD8 T cells in inducing immune responses to self-antigens. J Heart Lung Transplant 2013; 32:714-22. [PMID: 23643508 DOI: 10.1016/j.healun.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The goal of this study was to define the role of T-cell sub-sets in the pathogenesis of autoimmunity-induced obliterative airway disease by passive transfer of CD8+ or CD4+ T cells. METHODS Antibodies to major histocompatibility complex (MHC) class I were administered intrabronchially into C57BL/6 animals. Lungs were analyzed by histopathology and immunohistochemistry. The CD8+ and CD4+ T-cell sub-sets were purified from the lung-infiltrating cells and intrabronchially transferred. Frequency of cells secreting interleukin-17, interferon-γ, or interleukin-10 to self-antigens was enumerated by enzyme-linked immunospot assay. Myeloperoxidase and antibodies to self-antigens were determined by enzyme-linked immunosorbent assay. Cytokine and growth factor expression was determined by quantitative reverse-transcription polymerase chain reaction. RESULTS Passive transfer of lung-infiltrating CD8 T cells isolated after anti-MHC class I administration, along with sub-optimal dose, induced significantly higher cellular infiltration (89.3% ± 7.9% vs 62.8% ± 10.1%, p < 0.05) vs the CD4 transfer group. Further, passive transfer of CD8 cells resulted in infiltration of neutrophils and macrophages, suggesting early injury response. In contrast, passive transfer of CD4+ T cells induced a significantly higher degree of luminal occlusion (29.3% ± 5.6% vs 8.6 ± 2.5%, p < 0.05) and fibrosis (54.4% ± 9.3% vs 10.2% ± 2.4%, p < 0.05) vs the CD8 group and B-cell infiltration, leading to immune responses to lung-associated self-antigens and fibrosis. CONCLUSION Ligation of MHC molecules by its specific antibodies induced early injury with neutrophils, macrophages, and CD8 T cells, which leads to exposure of cryptic self-antigens and their presentation by the infiltrating CD4+ T cells and B cells, leading to the development of immune responses to self-antigens and culminating in obliterative airway disease.
Collapse
|
32
|
Abadja F, Sarraj B, Ansari MJ. Significance of T helper 17 immunity in transplantation. Curr Opin Organ Transplant 2013; 17:8-14. [PMID: 22186097 DOI: 10.1097/mot.0b013e32834ef4e4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of significance of T helper 17 (Th17) immunity in acute, chronic and antibody-mediated allograft rejection. The role of Th17 immunity in development of de-novo autoimmunity following transplantation is outlined. It will also consider the impact of Th17 immunity on transplantation tolerance. Potential therapies to target Th17 immunity are discussed. RECENT FINDINGS Interleukin17 (IL-17) is produced by a wide variety of immune and non-immune cells in response to injury. IL-17 production by tubular epithelial cells in response to complement activation in acute antibody-mediated rejection may perpetuate immune injury. Th17-dependent de-novo autoimmunity contributes to chronic allograft rejection. Targeting IL-17 not only inhibits Th17 immunity but also attenuates Th1 immunity by affecting the initial recruitment of immune cells to sites of inflammation and modulates innate and adaptive immune responses that ultimately lead to tissue destruction. SUMMARY Th17 immunity is now beginning to be appreciated as a set of responses mediated not only by CD4 Th17 cells but a variety of immune cells and a plethora of cytokines that collaborate to mediate immune disorders, including transplant rejection. Development and contribution of de-novo autoimmunity to chronic rejection is increasingly appreciated. The developmental plasticity of Tregs and Th17 cells is a major hurdle to Treg-based cellular therapies for transplantation. Several biologics targeting Th17 immunity are under evaluation for autoimmune disease. It remains to be determined whether these can be used in transplantation to improve outcomes.
Collapse
Affiliation(s)
- Farida Abadja
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
33
|
Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation 2013; 95:19-47. [PMID: 23238534 DOI: 10.1097/tp.0b013e31827a19cc] [Citation(s) in RCA: 614] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The introduction of solid-phase immunoassay (SPI) technology for the detection and characterization of human leukocyte antigen (HLA) antibodies in transplantation while providing greater sensitivity than was obtainable by complement-dependent lymphocytotoxicity (CDC) assays has resulted in a new paradigm with respect to the interpretation of donor-specific antibodies (DSA). Although the SPI assay performed on the Luminex instrument (hereafter referred to as the Luminex assay), in particular, has permitted the detection of antibodies not detectable by CDC, the clinical significance of these antibodies is incompletely understood. Nevertheless, the detection of these antibodies has led to changes in the clinical management of sensitized patients. In addition, SPI testing raises technical issues that require resolution and careful consideration when interpreting antibody results. METHODS With this background, The Transplantation Society convened a group of laboratory and clinical experts in the field of transplantation to prepare a consensus report and make recommendations on the use of this new technology based on both published evidence and expert opinion. Three working groups were formed to address (a) the technical issues with respect to the use of this technology, (b) the interpretation of pretransplantation antibody testing in the context of various clinical settings and organ transplant types (kidney, heart, lung, liver, pancreas, intestinal, and islet cells), and (c) the application of antibody testing in the posttransplantation setting. The three groups were established in November 2011 and convened for a "Consensus Conference on Antibodies in Transplantation" in Rome, Italy, in May 2012. The deliberations of the three groups meeting independently and then together are the bases for this report. RESULTS A comprehensive list of recommendations was prepared by each group. A summary of the key recommendations follows. Technical Group: (a) SPI must be used for the detection of pretransplantation HLA antibodies in solid organ transplant recipients and, in particular, the use of the single-antigen bead assay to detect antibodies to HLA loci, such as Cw, DQA, DPA, and DPB, which are not readily detected by other methods. (b) The use of SPI for antibody detection should be supplemented with cell-based assays to examine the correlations between the two types of assays and to establish the likelihood of a positive crossmatch (XM). (c) There must be an awareness of the technical factors that can influence the results and their clinical interpretation when using the Luminex bead technology, such as variation in antigen density and the presence of denatured antigen on the beads. Pretransplantation Group: (a) Risk categories should be established based on the antibody and the XM results obtained. (b) DSA detected by CDC and a positive XM should be avoided due to their strong association with antibody-mediated rejection and graft loss. (c) A renal transplantation can be performed in the absence of a prospective XM if single-antigen bead screening for antibodies to all class I and II HLA loci is negative. This decision, however, needs to be taken in agreement with local clinical programs and the relevant regulatory bodies. (d) The presence of DSA HLA antibodies should be avoided in heart and lung transplantation and considered a risk factor for liver, intestinal, and islet cell transplantation. Posttransplantation Group: (a) High-risk patients (i.e., desensitized or DSA positive/XM negative) should be monitored by measurement of DSA and protocol biopsies in the first 3 months after transplantation. (b) Intermediate-risk patients (history of DSA but currently negative) should be monitored for DSA within the first month. If DSA is present, a biopsy should be performed. (c) Low-risk patients (nonsensitized first transplantation) should be screened for DSA at least once 3 to 12 months after transplantation. If DSA is detected, a biopsy should be performed. In all three categories, the recommendations for subsequent treatment are based on the biopsy results. CONCLUSIONS A comprehensive list of recommendations is provided covering the technical and pretransplantation and posttransplantation monitoring of HLA antibodies in solid organ transplantation. The recommendations are intended to provide state-of-the-art guidance in the use and clinical application of recently developed methods for HLA antibody detection when used in conjunction with traditional methods.
Collapse
|
34
|
Chih S, Tinckam KJ, Ross HJ. A survey of current practice for antibody-mediated rejection in heart transplantation. Am J Transplant 2013; 13:1069-1074. [PMID: 23414257 DOI: 10.1111/ajt.12162] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 12/23/2012] [Indexed: 01/25/2023]
Abstract
No evidence based management guidelines exist for antibody mediated rejection (AMR) in heart transplantation. The International Society for Heart and Lung Transplantation (ISHLT) recently introduced standardized pathologic based diagnostic criteria for AMR (pAMR 0-3). We evaluated international practice for the management of AMR focusing on pAMR grade, donor specific antibody (DSA) and allograft function. On-line survey data were analyzed from 184 ISHLT members (physicians-78%, surgeons-20%). The majority were from adult-transplant (84%), medium-large volume centres (transplants/year: 10-25, 61%; 25-50, 19%) across North America (60%) and Europe (26%). Irrespective of pAMR grade and DSA, 83-90% treated a drop in ejection fraction (EF≤45% or >25% decrease). In the presence of stable EF, an increasing number elected treatment for progressively severe pAMR grade (p<0.001) and for accompanying DSA (p<0.05, pAMR 1-3). Intravenous steroid was the most commonly used therapy followed by intravenous immunoglobulin (IVIG) or plasmapheresis, rituximab and thymoglobulin. Plasmapheresis and rituximab were favored for positive versus negative DSA (p<0.05). Using a threshold of ≥70% consensus among respondents, treatment for AMR may be considered for a drop in EF, asymptomatic pAMR 3 or asymptomatic pAMR 2 with DSA. Combination steroid, IVIG and plasmapheresis are suggested as initial therapies.
Collapse
Affiliation(s)
- S Chih
- Advanced Heart Failure and Cardiac Transplant Service, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - H J Ross
- Division of Cardiology and Cardiac Transplant, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Coelho V, Saitovitch D, Kalil J, Silva HM. Rethinking the multiple roles of B cells in organ transplantation. Curr Opin Organ Transplant 2013; 18:13-21. [DOI: 10.1097/mot.0b013e32835c8043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Detection of antibodies to self-antigens (K-alpha 1 tubulin, collagen I, II, IV, and V, myosin, and vimentin) by enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 2013; 1034:335-41. [PMID: 23775748 DOI: 10.1007/978-1-62703-493-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a widely used technique for detecting antibodies (Abs) and is employed in clinical laboratories to identify Abs against various self-antigens-autoAb development and quantitation. This method relies on specific antigen-Ab interactions where one of the components is immobilized on a solid surface. Using this method, the concentrations of antigens or Ab present in the serum can be quantified with high specificity and accuracy. Here, we describe the detection of autoAbs to various self-antigens with different tissue restriction patterns which includes collagens, k-α1 tubulin, vimentin, and myosin. We also discuss their relevance in monitoring for rejection following solid organ transplantation.
Collapse
|
37
|
Lacotte S, Borot S, Ferrari-Lacraz S, Villard J, Demuylder-Mischler S, Oldani G, Morel P, Mentha G, Berney T, Toso C. Posttransplant Cellular Immune Reactivity against Donor Antigen Correlates with Clinical Islet Transplantation Outcome: Towards a Better Posttransplant Monitoring. Cell Transplant 2012; 21:2339-50. [DOI: 10.3727/096368912x655000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to assess the efficiency of cell-based immune assays in the detection of alloreactivity after islet transplantation and to correlate these results with clinical outcome. Mixed lymphocyte cultures were performed with peripheral blood mononuclear cells from recipients ( n = 14), donors, or third party. The immune reactivity was assessed by the release of IFN-γ (ELISpot), cell proliferation (FACS analysis for Ki67), and cytokine quantification (Bioplex). Islet function correlated with the number of IFN-γ-secreting cells following incubation with donor cells ( p = 0.007, r = –0.50), but not with third party cells ( p = 0.61). Similarly, a high number of donor-specific proliferating cells was associated with a low islet function ( p = 0.006, r = −0.51). Proliferating cells were mainly CD3+CD4+ lymphocytes and CD3-CD56+ natural killer cells (with low levels of CD3+CD8+ lymphocytes). Patients with low islet function had increased levels of CD4+Ki67+cells ( p ≤ 0.0001), while no difference was observed in CD8+Ki67+ and CD56+Ki67+ cells. IFN-γ, IL-5, and IL-17 levels were increased in patients with low islet function, but IL-10 levels tended to be lower. IFN-γ-ELISpot, proliferation, and cytokines were similarly accurate in predicting clinical outcome (AUC = 0.77 ± 0.088, 0.85 ± 0.084, and 0.88 ± 0.074, respectively). Cellular immune reactivity against donor cells correlates with posttransplant islet function. The tested assays have the potential to be of substantial help in the management of islet graft recipients and deserve prospective validation.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie Borot
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Villard
- Transplant Immunology Unit, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Demuylder-Mischler
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Graziano Oldani
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Mentha
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Department of Surgery, Geneva University Hospitals, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Tiriveedhi V, Takenaka M, Ramachandran S, Gelman AE, Subramanian V, Patterson GA, Mohanakumar T. T regulatory cells play a significant role in modulating MHC class I antibody-induced obliterative airway disease. Am J Transplant 2012; 12:2663-74. [PMID: 22822907 PMCID: PMC3459183 DOI: 10.1111/j.1600-6143.2012.04191.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The molecular mechanisms leading to the development of chronic lung allograft dysfunction following de novo development of antibodies to mismatched donor MHC remain undefined. We demonstrated that intrabronchial administration of antibodies to MHC class I resulted in induction of both innate and adaptive cellular immune responses characterized by a predominance of Th17 specific to lung associated self-antigens Kα1-tubulin and Collagen-V leading to the development of obliterative airway lesions (OAD), correlate of chronic rejection following human lung transplantation. To determine the role of regulatory T cells (Treg) in the pathogenesis of OAD, we administered anti-MHC class I to mice, in which Treg were depleted by conditional ablation of FoxP3+cells. Under this condition, we observed a threefold increase in pulmonary cellular infiltration, luminal occlusion and fibrous deposition when compared anti-MHC class I Ab administered mice maintaining FoxP3. OAD lesions were accompanied with enhanced accumulation of neutrophils along with self-antigen-specific Th17 and humoral responses. However, IL-17-blockade or adoptive transfer of Treg abrogated OAD. We conclude that Treg exerts a suppressive effect on anti-MHC induced IL-8-mediated neutrophil infiltration and innate immune responses that leads to inhibition of Th17 immune responses to lung associated self-antigens which is critical for development of OAD.
Collapse
Affiliation(s)
- V. Tiriveedhi
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - M. Takenaka
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - S. Ramachandran
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - A. E. Gelman
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - V Subramanian
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | | | - T. Mohanakumar
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
,Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
39
|
Antibodies to MHC class II molecules induce autoimmunity: critical role for macrophages in the immunopathogenesis of obliterative airway disease. PLoS One 2012; 7:e42370. [PMID: 22900015 PMCID: PMC3416847 DOI: 10.1371/journal.pone.0042370] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/05/2012] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that intrabronchial administration of antibodies (Abs) to MHC class I resulted in development of obliterative airway disease (OAD), a correlate of chronic human lung allograft rejection. Since development of Abs specific to mismatched donor HLA class II have also been associated with chronic human lung allograft rejection, we analyzed the role of Abs to MHC class II in inducing OAD. Administration of MHC class II Abs (M5/114) to C57BL/6 mice induced the classical features of OAD even though MHC class II expression is absent de novo on murine lung epithelial and endothelial cells. The induction of OAD was accompanied by enhanced cellular and humoral immune responses to self-antigens (Collagen V and K- α1Tubulin). Further, lung-infiltrating macrophages demonstrated a switch in their phenotype predominance from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) following administration of Abs and prior to development of OAD. Passive administration of macrophages harvested from animals with OAD but not from naïve animals induced OAD lesions. We conclude that MHC class II Abs induces a phenotype switch of lung infiltrating macrophages from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) resulting in the breakdown of self-tolerance along with an increase in autoimmune Th17 response leading to OAD.
Collapse
|
40
|
Dragun D, Philippe A, Catar R. Role of non-HLA antibodies in organ transplantation. Curr Opin Organ Transplant 2012; 17:440-5. [DOI: 10.1097/mot.0b013e328355f12b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tiriveedhi V, Sarma N, Mohanakumar T. An important role for autoimmunity in the immunopathogenesis of chronic allograft rejection. Int J Immunogenet 2012; 39:373-80. [PMID: 22486939 DOI: 10.1111/j.1744-313x.2012.01112.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organ transplantation is the treatment of choice for patients with end-stage organ dysfunction. In spite of advances in understanding of donor and recipient physiology, organ preservation, operative techniques and immunosuppression, long-term graft survival still remains a major problem primarily due to chronic rejection. Alloimmune responses to mismatched major histocompatibility antigens have been implicated as an important factor leading to rejection. However, there is increasing evidence pointing towards cross-talk between the alloimmune and autoimmune responses creating a local inflammatory milieu, which eventually leads to fibrosis and occlusion of the lumen in the transplanted organ i.e. chronic rejection. In this review, we will discuss recent studies and emerging concepts for the interdependence of alloimmune and autoimmune responses in the immunopathogenesis of chronic allograft rejection. The role of autoimmunity in the development of chronic rejection is an intriguing and exciting area of research in the field of solid-organ transplantation with a significant potential to develop novel therapeutic strategies towards preventing chronic allograft rejection.
Collapse
Affiliation(s)
- V Tiriveedhi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
42
|
Antibody-mediated rejection: an evolving entity in heart transplantation. J Transplant 2012; 2012:210210. [PMID: 22545200 PMCID: PMC3321610 DOI: 10.1155/2012/210210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/05/2023] Open
Abstract
Antibody-mediated rejection (AMR) is gaining increasing recognition as a major complication after heart transplantation, posing a significant risk for allograft failure, cardiac allograft vasculopathy, and poor survival. AMR results from activation of the humoral immune arm and the production of donor-specific antibodies (DSA) that bind to the cardiac allograft causing myocardial injury predominantly through complement activation. The diagnosis of AMR has evolved from a clinical diagnosis involving allograft dysfunction and the presence of DSA to a primarily pathologic diagnosis based on histopathology and immunopathology. Treatment for AMR is multifaceted, targeting inhibition of the humoral immune system at different levels with emerging agents including proteasome and complement inhibitors showing particular promise. While there have been significant advances in our current understanding of the pathogenesis, diagnosis, and treatment of AMR, further research is required to determine optimal diagnostic tools, therapeutic agents, and timing of treatment.
Collapse
|
43
|
Weber J, Tiriveedhi V, Takenaka M, Lu W, Hachem R, Trulock E, Patterson GA, Mohanakumar T. Inhibition of renin angiotensin aldosterone system causes abrogation of obliterative airways disease through inhibition of tumor necrosis factor-α-dependant interleukin-17. J Heart Lung Transplant 2012; 31:419-26. [PMID: 22289485 DOI: 10.1016/j.healun.2011.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/25/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alloimmune-induced immune responses to self-antigens are involved in the development of chronic lung allograft rejection. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) have been shown to modulate autoimmune diseases. This study investigated the effect of modulation of the renin angiotensin aldosterone system (RAAS) a murine model of obliterative airways disease (OAD). METHODS Major histocompatibility complex (MHC) class I antibodies were administered intrabronchially to C57Bl/6 mice on Days 1, 2, 3, and 6, and weekly thereafter. ACEI/ARB (10 mg/kg/day) were administered in water 5 days before antibody administration. Antibodies were analyzed by enzyme-linked immunosorbent assay, cytokines by Luminex, Th-frequency by enzyme-linked immunosorbent spot, and transcription factors by Western blotting and real-time polymerase chain reaction. RESULTS Significant decreases (50%-70%) in airway lesions and fibrous deposition were noted in lungs at Day 30 in the animals administered ACEI and ARB vs controls. Antibody concentrations to self-antigens also decreased from 14 ± 21 to 62 ± 18 μg/ml for collagen V and from 263 ± 43 to 84 ± 28 μg/ml for K-α1 tubulin. Th-precursor frequency and cytokine analysis showed increased interleukin (IL)-10 (3-fold increase) and decreased levels of IL-6 (3.4-fold) and IL-17 (4-fold decrease; p < 0.05) in ACEI and ARB groups. There was also messenger RNA level downregulation of tumor necrosis factor-α (8.6-fold) and p38/mitogen-activated protein (MAP)kinase (3.1-fold) in the treatment groups. CONCLUSIONS Our results demonstrate that modulation of RAAS leads to downregulation of IL-17 through tumor necrosis factor-α-dependant IL-6 through p38/MAPKinase pathway and thus abrogation of anti-MHC-induced OAD.
Collapse
Affiliation(s)
- Joseph Weber
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ramachandran S, Subramanian V, Mohanakumar T. Immune responses to self-antigens (autoimmunity) in allograft rejection. CLINICAL TRANSPLANTS 2012:261-272. [PMID: 23721031 PMCID: PMC5595349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many lung, heart, and kidney transplant recipients with clinically as well as pathologically diagnosed chronic rejection don't have detectable antibodies directed to the mismatched donor HLA in their sera. This has led to the hypothesis that antibody responses to other tissue-restricted antigens may contribute to the development of chronic rejection. Development of immune responses to self-antigens has been described following all solid organ transplantations. Studies have further presented evidence for a significant cross talk between the alloimmune and autoimmune responses. Experimental results demonstrate that blocking of the immune responses to self-antigens may prevent chronic rejection. In this review, we present recent evidence for an important role of immune responses to self-antigens in the development of chronic rejection following transplantation. Further, we discuss the implications of these findings in developing new therapeutic strategies towards preventing or treating chronic rejection following transplantation.
Collapse
|
45
|
Crudele V, Picascia A, Infante T, Grimaldi V, Maiello C, Napoli C. Repeated immune and non immune insults to the graft after heart transplantation. Immunol Lett 2011; 141:18-27. [DOI: 10.1016/j.imlet.2011.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 01/22/2023]
|
46
|
Montgomery RA, Cozzi E, West LJ, Warren DS. Humoral immunity and antibody-mediated rejection in solid organ transplantation. Semin Immunol 2011; 23:224-34. [PMID: 21958960 DOI: 10.1016/j.smim.2011.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
Abstract
The humoral arm of the immune system provides robust protection against extracellular pathogens via the production of antibody molecules that neutralize or facilitate the destruction of microorganisms. However, the humoral immune system also provides a significant barrier to solid organ transplantation due to the antibody-mediated recognition of non-self proteins and carbohydrates expressed on transplanted organs. Historically, the presence of donor-specific antibodies (DSA) that recognize donor HLA molecules, incompatible ABO blood group antigens and other endothelial or xenogeneic antigens was considered a contraindication to transplantation. However, recent advances in antibody testing and immunosuppressive therapies have made it possible to cross certain antibody barriers successfully. In this article, we review our current understanding of antibody-mediated processes in solid organ transplantation and discuss the clinically available treatment options for preventing and treating antibody-mediated rejection.
Collapse
Affiliation(s)
- Robert A Montgomery
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|