1
|
Cui J, Xu H, Yu J, Ran S, Zhang X, Li Y, Chen Z, Niu Y, Wang S, Ye W, Chen W, Wu J, Xia J. Targeted depletion of PD-1-expressing cells induces immune tolerance through peripheral clonal deletion. Sci Immunol 2024; 9:eadh0085. [PMID: 38669317 DOI: 10.1126/sciimmunol.adh0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Thymic negative selection of the T cell receptor (TCR) repertoire is essential for establishing self-tolerance and acquired allograft tolerance following organ transplantation. However, it is unclear whether and how peripheral clonal deletion of alloreactive T cells induces transplantation tolerance. Here, we establish that programmed cell death protein 1 (PD-1) is a hallmark of alloreactive T cells and is associated with clonal expansion after alloantigen encounter. Moreover, we found that diphtheria toxin receptor (DTR)-mediated ablation of PD-1+ cells reshaped the TCR repertoire through peripheral clonal deletion of alloreactive T cells and promoted tolerance in mouse transplantation models. In addition, by using PD-1-specific depleting antibodies, we found that antibody-mediated depletion of PD-1+ cells prevented heart transplant rejection and the development of experimental autoimmune encephalomyelitis (EAE) in humanized PD-1 mice. Thus, these data suggest that PD-1 is an attractive target for peripheral clonal deletion and induction of immune tolerance.
Collapse
Affiliation(s)
- Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenhao Chen
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute and Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Chen Y, Liu Z, Liu F, Xu L, Li G, Qiao W, Wang Y, Dong N. T cell specific deletion of IRF4 with Ox40-Cre impairs effector and memory T cell responses in heart transplantation. Clin Immunol 2023; 252:109647. [PMID: 37211291 DOI: 10.1016/j.clim.2023.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND IRF4 is the pioneer factor for effector T cell maturation. Here we investigated the function of IRF4 in maintaining OX40-related T cell responses following alloantigen activation in a mouse heart transplantation model. METHODS Irf4flox/flox mice were bred with Ox40cre/+ mice to generate Irf4flox/floxOx40cre/+ mice. Wild type C57BL/6, Irf4flox/floxOx40cre/+ mice were transplanted with BALB/c heart allografts, with or without BALB/c skin-sensitization. CD4+ TEa T cells co-transfer experiments and flow cytometric analysis were conducted to investigate the amount of CD4+ T cells and the percentage of the T effector subset. RESULTS Irf4flox/floxOx40cre/+ and Irf4flox/floxOx40cre/+ TEa mice were constructed successfully. IRF4 ablation in activated OX40-mediated alloantigen specific CD4+ TEa T cells reduced effector T cell differentiation (CD44hiCD62Llo, Ki67, IFN-γ), which caused long-term allograft survival (> 100 d) in the chronic rejection model. In the donor skin-sensitized heart transplantation model, the formation and function of alloantigen-specific memory CD4+ TEa cells were also impaired in Irf4flox/floxOx40cre/+ mice. Additionally, deletion of IRF4 after T cell activation in Irf4flox/floxOx40cre/+ mice reduced T cell reactivation in vitro. CONCLUSIONS IRF4 ablation after OX40-related T cell activation could reduce effector and memory T cell formation and inhibit their function in response to alloantigen stimulation. These findings could have significant implications in targeting activated T cells to induce transplant tolerance.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Fayuan Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Cui J, Yu J, Xu H, Zou Y, Zhang H, Chen S, Le S, Zhao J, Jiang L, Xia J, Wu J. Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation. Theranostics 2020; 10:8051-8060. [PMID: 32724457 PMCID: PMC7381746 DOI: 10.7150/thno.43507] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/19/2020] [Indexed: 01/31/2023] Open
Abstract
Background: The immune checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4), induced upon T cell activation but degraded quickly, has been targeted in the clinical therapy of advanced cancers and autoimmune diseases. However, whether inhibiting CTLA-4 degradation ameliorates transplant rejection remains unknown. Methods: The CTLA-4 expression in activated murine T cells treated with the inhibitors mediating protein degradation was detected by flow cytometry (FCM). CD45.1 mice, which received TEa T cells and underwent heart transplantation, were administrated with the inhibitor. Subsequently, CTLA-4 expression of TEa T cells was analyzed. Murine skin and heart transplantation models were built, then the survival and histopathology of the allografts, and T cell subsets in the spleens of each group were compared. Results: Chloroquine (CQ) was identified as an inhibitor of CTLA-4 degradation, which augmented both surface and total CTLA-4 expression in T cells. It considerably prolonged the skin and heart allograft survival time and reduced the infiltration of inflammatory cells in allografts. Besides decreasing the frequencies of the CD4+ and CD8+ effector T cells, especially IFN-γ producing T cells, CQ also increased the proportion of regulatory T cells in the spleen. The CTLA-4 blockade abrogated the benefits of CQ on the survival of heart allografts. Moreover, CQ enhanced CTLA-4 expression in activated human T cells and reduced the secretion of IFN-γ in human mixed lymphocyte reaction. Conclusion: Targeting CTLA-4 degradation provides a novel means to prevent transplant rejection and induce transplant tolerance.
Collapse
|
5
|
Wu J, Zhang H, Shi X, Xiao X, Fan Y, Minze LJ, Wang J, Ghobrial RM, Xia J, Sciammas R, Li XC, Chen W. Ablation of Transcription Factor IRF4 Promotes Transplant Acceptance by Driving Allogenic CD4 + T Cell Dysfunction. Immunity 2017; 47:1114-1128.e6. [PMID: 29221730 DOI: 10.1016/j.immuni.2017.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.
Collapse
Affiliation(s)
- Jie Wu
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hedong Zhang
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Xiaomin Shi
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Yihui Fan
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Laurie J Minze
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Rafik M Ghobrial
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Roger Sciammas
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Center for Comparative Medicine, University of California Davis, Davis, CA 95616, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Takasato F, Morita R, Schichita T, Sekiya T, Morikawa Y, Kuroda T, Niimi M, Yoshimura A. Prevention of allogeneic cardiac graft rejection by transfer of ex vivo expanded antigen-specific regulatory T-cells. PLoS One 2014; 9:e87722. [PMID: 24498362 PMCID: PMC3912059 DOI: 10.1371/journal.pone.0087722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/30/2013] [Indexed: 01/09/2023] Open
Abstract
The rate of graft survival has dramatically increased using calcineurin inhibitors, however chronic graft rejection and risk of infection are difficult to manage. Induction of allograft-specific regulatory T-cells (Tregs) is considered an ideal way to achieve long-term tolerance for allografts. However, efficient in vitro methods for developing allograft-specific Tregs which is applicable to MHC full-mismatched cardiac transplant models have not been established. We compared antigen-nonspecific polyclonal-induced Tregs (iTregs) as well as antigen-specific iTregs and thymus-derived Tregs (nTregs) that were expanded via direct and indirect pathways. We found that iTregs induced via the indirect pathway had the greatest ability to prolong graft survival and suppress angiitis. Antigen-specific iTregs generated ex vivo via both direct and indirect pathways using dendritic cells from F1 mice also induced long-term engraftment without using MHC peptides. In antigen-specific Treg transferred models, activation of dendritic cells and allograft-specific CTL generation were suppressed. The present study demonstrated the potential of ex vivo antigen-specific Treg expansion for clinical cell-based therapeutic approaches to induce lifelong immunological tolerance for allogeneic cardiac transplants.
Collapse
Affiliation(s)
- Fumika Takasato
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Takashi Schichita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Takashi Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Yasuhide Morikawa
- Department of Pediatric Surgery, International University Medical Welfare Hospital, Nasushiobara, Tochigi, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Niimi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Sagoo P, Lombardi G, Lechler RI. Relevance of regulatory T cell promotion of donor-specific tolerance in solid organ transplantation. Front Immunol 2012; 3:184. [PMID: 22811678 PMCID: PMC3395995 DOI: 10.3389/fimmu.2012.00184] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/29/2023] Open
Abstract
Current clinical strategies to control the alloimmune response after transplantation do not fully prevent induction of the immunological processes which lead to acute and chronic immune-mediated graft rejection, and as such the survival of a solid organ allograft is limited. Experimental research on naturally occurring CD4+CD25highFoxP3+ Regulatory T cells (Tregs) has indicated their potential to establish stable long-term graft acceptance, with the promise of providing a more effective therapy for transplant recipients. Current approaches for clinical use are based on the infusion of freshly isolated or ex vivo polyclonally expanded Tregs into graft recipients with an aim to redress the in vivo balance of T effector cells to Tregs. However mounting evidence suggests that regulation of donor-specific immunity may be central to achieving immunological tolerance. Therefore, the next stages in optimizing translation of Tregs to organ transplantation will be through the refinement and development of donor alloantigen-specific Treg therapy. The altering kinetics and intensity of alloantigen presentation pathways and alloimmune priming following transplantation may indeed influence the specificity of the Treg required and the timing or frequency at which it needs to be administered. Here we review and discuss the relevance of antigen-specific regulation of alloreactivity by Tregs in experimental and clinical studies of tolerance and explore the concept of delivering an optimal Treg for the induction and maintenance phases of achieving transplantation tolerance.
Collapse
Affiliation(s)
- Pervinder Sagoo
- Department Transplantation, Immunoregulation and Mucosal Biology, MRC Centre for Transplantation, King's College London London, UK
| | | | | |
Collapse
|
8
|
Abstract
Regulatory T cells (Tregs) are long-lived cells that suppress immune responses in vivo in a dominant and antigen-specific manner. Therefore, therapeutic application of Tregs to control unwanted immune responses is an active area of investigation. Tregs can confer long-term protection against auto-inflammatory diseases in mouse models. They have also been shown to be effective in suppressing alloimmunity in models of graft-versus-host disease and organ transplantation. Building on extensive research in Treg biology and preclinical testing of therapeutic efficacy over the past decade, we are now at the point of evaluating the safety and efficacy of Treg therapy in humans. This review focuses on developing therapy for transplantation using CD4(+)Foxp3(+) Tregs, with an emphasis on the studies that have informed clinical approaches that aim to maximize the benefits while overcoming the challenges and risks of Treg cell therapy.
Collapse
Affiliation(s)
- Qizhi Tang
- Division of Transplantation, Department of Surgery, University of California San Francisco, San Francisco, CA 94143-0780, USA.
| | | | | |
Collapse
|