1
|
Schaenman JM, Pickering H, Reed EF, Rossetti M, Seligman B, Weigt SS, Shino M, Sayah D, Belperio J, Hu A, Prosper A, Ruchalski K, Ardehali A, Biniwale R. T cell immune senescence is associated with frailty and sarcopenia in lung transplant candidates. JHLT OPEN 2025; 7:100199. [PMID: 40144851 PMCID: PMC11935382 DOI: 10.1016/j.jhlto.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Backgound Older lung transplant recipients experience increased rates of adverse clinical outcomes, including infection compared with younger patients, potentially related to impaired cell-mediated immunity, frailty, and sarcopenia. Methods Patients over age 55 years undergoing evaluation for lung transplantation were evaluated for sarcopenia by cross-sectional area and average attenuation of the pectoralis major muscle on chest computed tomography. Frailty was measured using the Fried Frailty Phenotype. Immune phenotyping was performed using multichannel flow cytometry of peripheral blood mononuclear cells (PBMC) in a total of 26 lung transplant candidates. Results The median patient age was 65, primarily with restrictive lung disease (76.9%). Hospital readmission was associated with lower frequency of naïve CD4 (p = 0.004) and CD8 T cells (p = 0.026). Senescent CD4 (KLRG1+/CD28-) and CD8 T cells were also associated with readmission (p = 0.014 and p = 0.013, respectively), and senescent CD4 T cells were predictive of total hospital time (p = 0.003). TEMRA CD4 T cells were significantly associated with frailty (p = 0.015) and sarcopenia (p = 0.011). Senescent CD4 and CD8 T cells were significantly associated with sarcopenia (p = 0.009 and p = 0.006, respectively). Conclusions These findings suggest that impaired cell-mediated immunity may underlie the associations between frailty and sarcopenia and poor clinical outcomes. A multifaceted approach to evaluation of older patients has the potential to improve risk stratification and inform management of immunosuppression.
Collapse
Affiliation(s)
- Joanna M. Schaenman
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, Los Angeles, California
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Benjamin Seligman
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, Los Angeles, California
| | - S. Samuel Weigt
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Michael Shino
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - David Sayah
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - John Belperio
- Department of Medicine, Division of Pulmonary Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Hu
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Ashley Prosper
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Kathleen Ruchalski
- Department of Radiology, David Geffen School of Medicine, Los Angeles, California
| | - Abbas Ardehali
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Reshma Biniwale
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
2
|
LaHue SC, Fuentealba M, Roa Diaz S, Seetharaman S, Garcia T, Furman D, Lai JC, Newman JC. Association of biological aging with frailty and post-transplant outcomes among adults with cirrhosis. GeroScience 2024; 46:3287-3295. [PMID: 38246968 PMCID: PMC11009173 DOI: 10.1007/s11357-024-01076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Frailty is classically associated with advanced age but is also an important predictor of clinical outcomes in comparatively young adults with cirrhosis. We examined the association of biological aging with frailty and post-transplant outcomes in a pilot of adults with cirrhosis undergoing liver transplantation (LT). Frailty was measured via the Liver Frailty Index (LFI). The primary epigenetic clock DNA methylation (DNAm) PhenoAge was calculated from banked peripheral blood mononuclear cells; we secondarily explored two first-generation clocks (Hannum; Horvath) and two additional second-generation clocks (GrimAge; GrimAge2). Twelve adults were included: seven frail (LFI ≥ 4.4, mean age 55 years) and five robust (LFI < 3.2, mean age 55 years). Mean PhenoAge age acceleration (AgeAccel) was + 2.5 years (P = 0.23) for frail versus robust subjects. Mean PhenoAge AgeAccel was + 2.7 years (P = 0.19) for subjects who were readmitted or died within 30 days of discharge post-LT versus those without this outcome. When compared with first-generation clocks, the second-generation clocks demonstrated greater average AgeAccel for subjects with frailty or poor post-LT outcomes. Measuring biological age using DNAm-derived epigenetic clocks is feasible in adults undergoing LT. While frail and robust subjects had the same average chronological age, average biological age as measured by second-generation epigenetic clocks tended to be accelerated among those who were frail or experienced a poor post-LT outcome. These results suggest that frailty in these relatively young subjects with cirrhosis may involve similar aging mechanisms as frailty classically observed in chronologically older adults and warrant validation in a larger cohort.
Collapse
Affiliation(s)
- Sara C LaHue
- Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA.
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, 505 Parnassus Ave, Box 0114, San Francisco, CA, 94143, USA.
- Buck Institute for Research On Aging, Novato, CA, USA.
| | | | - Stephanie Roa Diaz
- Buck Institute for Research On Aging, Novato, CA, USA
- Division of Geriatrics, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | - Srilakshmi Seetharaman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Thelma Garcia
- Buck Institute for Research On Aging, Novato, CA, USA
- Division of Geriatrics, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA
| | - David Furman
- Buck Institute for Research On Aging, Novato, CA, USA
- Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, 1629, Pilar, Argentina
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer C Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - John C Newman
- Buck Institute for Research On Aging, Novato, CA, USA
- Division of Geriatrics, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
4
|
Kapse B, Budev MM, Singer JP, Greenland JR. Immune aging: biological mechanisms, clinical symptoms, and management in lung transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1356948. [PMID: 38993782 PMCID: PMC11235310 DOI: 10.3389/frtra.2024.1356948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 07/13/2024]
Abstract
While chronologic age can be precisely defined, clinical manifestations of advanced age occur in different ways and at different rates across individuals. The observed phenotype of advanced age likely reflects a superposition of several biological aging mechanisms which have gained increasing attention as the world contends with an aging population. Even within the immune system, there are multiple age-associated biological mechanisms at play, including telomere dysfunction, epigenetic dysregulation, immune senescence programs, and mitochondrial dysfunction. These biological mechanisms have associated clinical syndromes, such as telomere dysfunction leading to short telomere syndrome (STS), and optimal patient management may require recognition of biologically based aging syndromes. Within the clinical context of lung transplantation, select immune aging mechanisms are particularly pronounced. Indeed, STS is increasingly recognized as an indication for lung transplantation. At the same time, common aging phenotypes may be evoked by the stress of transplantation because lung allografts face a potent immune response, necessitating higher levels of immune suppression and associated toxicities, relative to other solid organs. Age-associated conditions exacerbated by lung transplant include bone marrow suppression, herpes viral infections, liver cirrhosis, hypogammaglobulinemia, frailty, and cancer risk. This review aims to dissect the molecular mechanisms of immune aging and describe their clinical manifestations in the context of lung transplantation. While these mechanisms are more likely to manifest in the context of lung transplantation, this mechanism-based approach to clinical syndromes of immune aging has broad relevance to geriatric medicine.
Collapse
Affiliation(s)
- Bhavya Kapse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marie M. Budev
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jonathan P. Singer
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- San Francisco VA Health Care System, Medicine, San Francisco, CA, United States
| |
Collapse
|
5
|
Cremen S, Santiago RM, Robinson MW, Gallagher TK. Biomarkers of biological aging in recipients of solid organ transplantation and clinical outcomes: A scoping review. Transpl Immunol 2023; 79:101851. [PMID: 37182719 DOI: 10.1016/j.trim.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Biological aging is the accumulation of cellular and molecular damage within an individual over time. The biological age of a donor organ is known to influence clinical outcomes of solid organ transplantation, including delayed graft function and frequency of rejection episodes. While much research has focused on the biological age of donor organs, the recipient's biological age may also influence transplantation outcomes. The aim of this scoping review was to identify and provide an overview of the existing evidence regarding biological aging in solid organ transplant recipients and the impact on patient outcomes post-transplant. METHODS Literature searches were carried out on PubMed, Web of Science, Google Scholar, Embase and TRIP using the phrases 'solid organ transplant', 'cell senescence', 'cell aging' and 'outcomes', using boolean 'and/or' phrases and MeSH terms. Duplicates were removed and abstracts were reviewed by two independent reviewers. Full papers were then screened for inclusion by two reviewers. Data extraction was carried out using a standardised proforma agreed on prior to starting. RESULTS 32 studies, including data on a total of 7760 patients, were identified for inclusion in this review; 23 relating to kidney transplant recipients, three to liver transplant, five to lung transplant and one to heart transplantation. A wide range of biomarkers of biological aging have been assessed in kidney transplant recipients, whereas studies of liver, lung and heart transplant have predominantly assessed recipient telomere length. The most robust associations with clinical outcomes are observed in kidney transplant recipients, possibly influenced by the larger number of studies and the use of a wider range of biomarkers of biological aging. In kidney transplant recipients reduced thymic function and accumulation of terminally differentiated T cell populations was associated with reduced risk of acute rejection but increased risk of infection and mortality. CONCLUSION Studies to date on biological aging in transplant recipients have been heavily biased to kidney transplant recipients. The results from these studies suggest recipient biological age can influence clinical outcomes and future research is needed to prioritise robust biomarkers of biological aging in transplant recipients.
Collapse
Affiliation(s)
- S Cremen
- Department of Hepatobiliary and Transplant Surgery, St Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - R M Santiago
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Kildare, Ireland
| | - M W Robinson
- Department of Biology, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Kildare, Ireland.
| | - T K Gallagher
- Department of Hepatobiliary and Transplant Surgery, St Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Smyth LJ, Kerr KR, Kilner J, McGill ÁE, Maxwell AP, McKnight AJ. Longitudinal Epigenome-Wide Analysis of Kidney Transplant Recipients Pretransplant and Posttransplant. Kidney Int Rep 2023; 8:330-340. [PMID: 36815102 PMCID: PMC9939425 DOI: 10.1016/j.ekir.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Kidney transplantation remains the gold standard of treatment for end-stage renal disease (ESRD), with improved patient outcomes compared with dialysis. Epigenome-Wide Association Analysis (EWAS) of DNA methylation may identify markers that contribute to an individual's risk of adverse transplant outcomes, yet only a limited number of EWAS have been conducted in kidney transplant recipients. This EWAS aimed to interrogate the methylation profile of a kidney transplant recipient cohort with minimal posttransplant complications, exploring differences in samples pretransplant and posttransplant. Methods We compared differentially methylated cytosine-phosphate-guanine sites (dmCpGs) in samples derived from peripheral blood mononuclear cells of the same kidney transplant recipients, collected both pretransplant and posttransplant (N = 154), using the Infinium MethylationEPIC microarray (Illumina, San Diego, CA). Recipients received kidneys from deceased donors and had a mean of 17 years of follow-up. Results Five top-ranked dmCpGs were significantly different at false discovery rate (FDR) adjusted P ≤ 9 × 10-8; cg23597162 within JAZF1, cg25187293 within BTNL8, cg17944885, located between ZNF788P and ZNF625-ZNF20, cg14655917 located between ASB4 and PDK4 and cg09839120 located between GIMAP6 and EIF2AP3. Conclusion Five dmCpGs were identified at the generally accepted EWAS critical significance level of FDR adjusted P (P FDRadj) ≤ 9 × 10-8, including cg23597162 (within JAZF1) and cg17944885, which have prior associations with chronic kidney disease (CKD). Comparing individuals with no evidence of posttransplant complications (N = 105) demonstrated that 693,555 CpGs (89.57%) did not display any significant difference in methylation (P FDRadj ≥ 0.05), thereby this study establishes an important reference for future epigenetic studies that seek to identify markers of posttransplant complications.
Collapse
Affiliation(s)
- Laura J. Smyth
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Katie R. Kerr
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Jill Kilner
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Áine E. McGill
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Alexander P. Maxwell
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
7
|
Koons B, Anderson MR, Smith PJ, Greenland JR, Singer JP. The Intersection of Aging and Lung Transplantation: its Impact on Transplant Evaluation, Outcomes, and Clinical Care. CURRENT TRANSPLANTATION REPORTS 2022; 9:149-159. [PMID: 36341000 PMCID: PMC9632682 DOI: 10.1007/s40472-022-00365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Purpose Older adults (age ≥ 65 years) are the fastest growing age group undergoing lung transplantation. Further, international consensus document for the selection of lung transplant candidates no longer suggest a fixed upper age limit. Although carefully selected older adults can derive great benefit, understanding which older adults will do well after transplant with improved survival and health-related qualiy of life is key to informed decision-making. Herein, we review the epidemiology of aging in lung transplantation and its impact on outcomes, highlight selected physiological measures that may be informative when evaluating and managing older lung transplant patients, and identify directions for future research. Recent Findings In general, listing and transplanting older, sicker patients has contributed to worse clinical outcomes and greater healthcare use. Emerging evidence suggest that measures of physiological age, such as frailty, body composition, and neurocognitive and psychosocial function, may better identify risk for poor transplant outcomes than chronlogical age. Summary The evidence base to inform transplant decision-making and improvements in care for older adults is small but growing. Multipronged efforts at the intersection of aging and lung transplantation are needed to improve the clinical and patient centered outcomes for this large and growing cohort of patients. Future research should focus on identifying novel and ideally modifiable risk factors for poor outcomes specific to older adults, better approaches to measuring physiological aging (e.g., frailty, body composition, neurocognitive and psychosocial function), and the underlying mechanisms of physiological aging. Finally, interventions that can improve clinical and patient centered outcomes for older adults are needed.
Collapse
Affiliation(s)
- Brittany Koons
- M. Louise Fitzpatrick College of Nursing, Villanova University, 800 Lancaster Avenue, Driscoll Hall Room 350, Villanova, PA 19085, USA
| | - Michaela R. Anderson
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Medicine and Neurosciences, Duke University Medical Center, Durham, NC, USA
| | - John R. Greenland
- Department of Medicine, University of California, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Greenland JR, Tullius SG, Schaenman J. Editorial: Immune Aging: Implications for Transplantation. Front Immunol 2022; 13:953185. [PMID: 35812424 PMCID: PMC9258625 DOI: 10.3389/fimmu.2022.953185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Division of Transplant Surgery, Department of Surgery, San Francisco Veterans Affairs (VA) Health Care System, San Francisco, CA, United States
- *Correspondence: John R. Greenland,
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joanna Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
9
|
Cristoferi I, Giacon TA, Boer K, van Baardwijk M, Neri F, Campisi M, Kimenai HJAN, Clahsen-van Groningen MC, Pavanello S, Furian L, Minnee RC. The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review. Clin Epigenetics 2022; 14:20. [PMID: 35130936 PMCID: PMC8822833 DOI: 10.1186/s13148-022-01241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although kidney transplantation improves patient survival and quality of life, long-term results are hampered by both immune- and non-immune-mediated complications. Current biomarkers of post-transplant complications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expression and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, allowing a deep and interesting study of cells' activity and function. Therefore, DNA methylation has the potential to become an important biomarker for prediction and monitoring in kidney transplantation. PURPOSE OF THE STUDY The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of graft survival and complications development in kidney transplantation. MATERIAL AND METHODS: A systematic review of several databases has been conducted. The Newcastle-Ottawa scale and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively. RESULTS Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from different tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia-reperfusion injury and chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment for regulatory T cells isolation and expansion for future tolerance induction-oriented therapies. CONCLUSIONS Studies included in this review are heterogeneous in study design, biological samples, and outcome. More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important for prevention, monitoring, and intervention.
Collapse
Affiliation(s)
- Iacopo Cristoferi
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
| | - Tommaso Antonio Giacon
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Environmental and Respiratory Physiology Laboratory, Department of Biomedical Sciences, Padua University, Via Marzolo 3, 35131, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Department of Medicine - DIMED, Padua University Hospital, Via Cesare Battisti 267, 35128, Padua, Italy
| | - Karin Boer
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Hendrikus J A N Kimenai
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Dugger DT, Calabrese DR, Gao Y, Deiter F, Tsao T, Maheshwari J, Hays SR, Leard L, Kleinhenz ME, Shah R, Golden J, Kukreja J, Gordon ED, Singer JP, Greenland JR. Lung Allograft Epithelium DNA Methylation Age Is Associated With Graft Chronologic Age and Primary Graft Dysfunction. Front Immunol 2021; 12:704172. [PMID: 34691018 PMCID: PMC8528961 DOI: 10.3389/fimmu.2021.704172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Advanced donor age is a risk factor for poor survival following lung transplantation. However, recent work identifying epigenetic determinants of aging has shown that biologic age may not always reflect chronologic age and that stressors can accelerate biologic aging. We hypothesized that lung allografts that experienced primary graft dysfunction (PGD), characterized by poor oxygenation in the first three post-transplant days, would have increased biologic age. We cultured airway epithelial cells isolated by transbronchial brush at 1-year bronchoscopies from 13 subjects with severe PGD and 15 controls matched on age and transplant indication. We measured epigenetic age using the Horvath epigenetic clock. Linear models were used to determine the association of airway epigenetic age with chronologic ages and PGD status, adjusted for recipient PGD risk factors. Survival models assessed the association with chronic lung allograft dysfunction (CLAD) or death. Distributions of promoter methylation within pathways were compared between groups. DNA methyltransferase (DNMT) activity was quantified in airway epithelial cells under hypoxic or normoxic conditions. Airway epigenetic age appeared younger but was strongly associated with the age of the allograft (slope 0.38 per year, 95% CI 0.27–0.48). There was no correlation between epigenetic age and recipient age (P = 0.96). Epigenetic age was 6.5 years greater (95% CI 1.7–11.2) in subjects who had experienced PGD, and this effect remained significant after adjusting for donor and recipient characteristics (P = 0.03). Epigenetic age was not associated with CLAD-free survival risk (P = 0.11). Analysis of differential methylation of promoters of key biologic pathways revealed hypomethylation in regions related to hypoxia, inflammation, and metabolism-associated pathways. Accordingly, airway epithelial cells cultured in hypoxic conditions showed suppressed DNMT activity. While airway methylation age was primarily determined by donor chronologic age, early injury in the form of PGD was associated with increased allograft epigenetic age. These data show how PGD might suppress key promoter methylation resulting in long-term impacts on the allograft.
Collapse
Affiliation(s)
- Daniel T Dugger
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R Calabrese
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - Ying Gao
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Fred Deiter
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Tasha Tsao
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Julia Maheshwari
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Steven R Hays
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lorriana Leard
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Ellen Kleinhenz
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rupal Shah
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeff Golden
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jasleen Kukreja
- Department of Surgery, University of California at San Francisco, San Francisco, CA, United States
| | - Erin D Gordon
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jonathan P Singer
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - John R Greenland
- Pulmonary, Critical Care, Allergy and Sleep Medicine Division, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|