1
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|
2
|
Shir D, Pham NTT, Botha H, Koga S, Kouri N, Ali F, Knopman DS, Petersen RC, Boeve BF, Kremers WK, Nguyen AT, Murray ME, Reichard RR, Dickson DW, Graff-Radford N, Josephs KA, Whitwell J, Graff-Radford J. Clinicoradiologic and Neuropathologic Evaluation of Corticobasal Syndrome. Neurology 2023; 101:e289-e299. [PMID: 37268436 PMCID: PMC10382268 DOI: 10.1212/wnl.0000000000207397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) is a clinical phenotype characterized by asymmetric parkinsonism, rigidity, myoclonus, and apraxia. Originally believed secondary to corticobasal degeneration (CBD), mounting clinicopathologic studies have revealed heterogenous neuropathologies. The objectives of this study were to determine the pathologic heterogeneity of CBS, the clinicoradiologic findings associated with different underlying pathologies causing CBS, and the positive predictive value (PPV) of current diagnostic criteria for CBD among patients with a CBS. METHODS Clinical data, brain MRI, and neuropathologic data of patients followed at Mayo Clinic and diagnosed with CBS antemortem were reviewed according to neuropathology category at autopsy. RESULTS The cohort consisted of 113 patients with CBS, 61 (54%) female patients. Mean ± SD disease duration was 7 ± 3.7 years; mean ± SD age at death was 70.5 ± 9.1 years. The primary neuropathologic diagnoses were 43 (38%) CBD, 27 (24%) progressive supranuclear palsy (PSP), 17 (15%) Alzheimer disease (AD), 10 (9%) frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP) inclusions, 7 (6%) diffuse Lewy body disease (DLBD)/AD, and 9 (8%) with other diagnoses. Patients with CBS-AD or CBS-DLBD/AD were youngest at death (median [interquartile range]: 64 [13], 64 [11] years) while CBS-PSP were oldest (77 [12.5] years, p = 0.024). Patients with CBS-DLBD/AD had the longest disease duration (9 [6] years), while CBS-other had the shortest (3 [4.25] years, p = 0.04). Posterior cortical signs and myoclonus were more characteristic of patients with CBS-AD and patients with CBS-DLBD/AD. Patients with CBS-DLBD/AD displayed more features of Lewy body dementia. Voxel-based morphometry revealed widespread cortical gray matter loss characteristic of CBS-AD, while CBS-CBD and CBS-PSP predominantly involved premotor regions with greater amount of white matter loss. Patients with CBS-DLBD/AD showed atrophy in a focal parieto-occipital region, and patients with CBS-FTLD-TDP had predominant prefrontal cortical loss. Patients with CBS-PSP had the lowest midbrain/pons ratio (p = 0.012). Of 67 cases meeting clinical criteria for possible CBD at presentation, 27 were pathology-proven CBD, yielding a PPV of 40%. DISCUSSION A variety of neurodegenerative disorders can be identified in patients with CBS, but clinical and regional imaging differences aid in predicting underlying neuropathology. PPV analysis of the current CBD diagnostic criteria revealed suboptimal performance. Biomarkers adequately sensitive and specific for CBD are needed.
Collapse
Affiliation(s)
- Dror Shir
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Nha Trang Thu Pham
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Naomi Kouri
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Farwa Ali
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Aivi T Nguyen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Melissa E Murray
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - R Ross Reichard
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| | - Keith Anthony Josephs
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jennifer Whitwell
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
3
|
Cselényi Z, Wallin J, Tjerkaski J, Bloth B, Svensson S, Nennesmo I, Sunnemark D, Jelic V, Farde L, Svenningsson P. [ 11 C]PBB3 binding in Aβ(-) or Aβ(+) corticobasal syndrome. Synapse 2023; 77:e22269. [PMID: 36951466 DOI: 10.1002/syn.22269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Corticobasal syndrome (CBS) is associated with 4-repeat tauopathy and/or Alzheimer's disease pathologies. To examine tau and amyloid-β (Aβ) deposits in CBS patients using positron emission tomography (PET). Eight CBS patients and three healthy individuals lacking amyloid pathology underwent PET with [11 C]PBB3 for tau imaging, and [11 C]AZD2184 for Aβ. Subcortical and cortical binding of [11 C]PBB3 was compared between Aβ(-) and Aβ(+) CBS patients and reference group. Postmortem analysis was done in one CBS patient. Three CBS patients were considered Aβ(+). Total binding was higher in all patients compared to the reference group. Similar regional binding profiles of [11 C]PBB3 in Aβ(+) and Aβ(-) CBS patients were found. Elevated [11 C]PBB3 binding in pallidum was observed in all CBS patients. Cortical [11 C]PBB3 binding was higher in Aβ(+) compared to Aβ(-) patients. Postmortem analysis of a CBS patient revealed corticobasal degeneration neuropathology and [11 C]PBB3 autofluorescence in some tau-positive structures. [11 C]PBB3 is elevated in CBS patients with binding in relevant areas capturing some, but not all, 4-repeat tauopathy in CBS.
Collapse
Affiliation(s)
- Zsolt Cselényi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Johan Wallin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Tjerkaski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Björn Bloth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dan Sunnemark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Khosousi S, Hye A, Velayudhan L, Bloth B, Tsitsi P, Markaki I, Svenningsson P. Complement system changes in blood in Parkinson's disease and progressive Supranuclear Palsy/Corticobasal Syndrome. Parkinsonism Relat Disord 2023; 108:105313. [PMID: 36739794 DOI: 10.1016/j.parkreldis.2023.105313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's Disease (PD) is diagnosed clinically, and early PD is often challenging to differentiate from atypical parkinsonian disorders such as the Four-repeat (4R-) Tauopathies Progressive Supranuclear Palsy and Corticobasal Syndrome. Diagnostic biomarkers are needed, and proteomic studies have suggested that the plasma complement system is altered in PD, but validation studies are lacking. In this study, plasma from 148 individuals (PD, 4R-Tauopathies, and healthy controls (HC)) were used to quantify 12 complement proteins with immunoassays, and CH50 classical pathway complement activity was quantified in sera from further 78 individuals (PD and HC). Complement factors C1q and C3 in plasma were lower in individuals with 4R-Tauopathies (ANOVA, p = 0.0041, p = 0.0057 respectively) compared to both PD and HC. None of the complement proteins were altered between PD and HC, however a few proteins correlated with clinical parameters within the PD group. Notably, levels of C3 correlated with non-motor symptoms in female patients. Classical pathway complement activity was not altered in PD serum, but did correlate with mental fatigue. In conclusion, individuals with 4R-Tauopathies showed lower plasma C1q and C3 compared PD and HC. Neither complement levels nor CH50 activity were significantly altered in PD versus HC but may associate with PD symptom severity.
Collapse
Affiliation(s)
- Shervin Khosousi
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom; Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden.
| | - Abdul Hye
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Latha Velayudhan
- Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| | - Björn Bloth
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden
| | - Panagiota Tsitsi
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Ioanna Markaki
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, Bioclinicum, J5:20, 171 64, Solna, Sweden; Center for Neurology, Academic Specialist Center, Stockholm, Solnavägen 1E, 11365, Stockholm, Sweden; Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, SE5 9NU, London, United Kingdom
| |
Collapse
|
5
|
A Patient with Corticobasal Syndrome and Progressive Non-Fluent Aphasia (CBS-PNFA), with Variants in ATP7B, SETX, SORL1, and FOXP1 Genes. Genes (Basel) 2022; 13:genes13122361. [PMID: 36553628 PMCID: PMC9778325 DOI: 10.3390/genes13122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our aim was to analyze the phenotypic-genetic correlations in a patient diagnosed with early onset corticobasal syndrome with progressive non-fluent aphasia (CBS-PNFA), characterized by predominant apraxia of speech, accompanied by prominent right-sided upper-limb limb-kinetic apraxia, alien limb phenomenon, synkinesis, myoclonus, mild cortical sensory loss, and right-sided hemispatial neglect. Whole-exome sequencing (WES) identified rare single heterozygous variants in ATP7B (c.3207C>A), SORL1 (c.352G>A), SETX (c.2385_2387delAAA), and FOXP1 (c.1762G>A) genes. The functional analysis revealed that the deletion in the SETX gene changed the splicing pattern, which was accompanied by lower SETX mRNA levels in the patient's fibroblasts, suggesting loss-of-function as the underlying mechanism. In addition, the patient's fibroblasts demonstrated altered mitochondrial architecture with decreased connectivity, compared to the control individuals. This is the first association of the CBS-PNFA phenotype with the most common ATP7B pathogenic variant p.H1069Q, previously linked to Wilson's disease, and early onset Parkinson's disease. This study expands the complex clinical spectrum related to variants in well-known disease genes, such as ATP7B, SORL1, SETX, and FOXP1, corroborating the hypothesis of oligogenic inheritance. To date, the FOXP1 gene has been linked exclusively to neurodevelopmental speech disorders, while our study highlights its possible relevance for adult-onset progressive apraxia of speech, which guarantees further study.
Collapse
|
6
|
Pizzini FB, Conti E, Bianchetti A, Splendiani A, Fusco D, Caranci F, Bozzao A, Landi F, Gandolfo N, Farina L, Miele V, Trabucchi M, Frisoni GB, Bastianello S. Radiological assessment of dementia: the Italian inter-society consensus for a practical and clinically oriented guide to image acquisition, evaluation, and reporting. LA RADIOLOGIA MEDICA 2022; 127:998-1022. [PMID: 36070064 PMCID: PMC9508052 DOI: 10.1007/s11547-022-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. RESULTS We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.
Collapse
Affiliation(s)
- Francesca B. Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Piazzale L.A. Scuro, 10, 37100 Verona, Italy
| | - Enrico Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angelo Bianchetti
- Department of Medicine and Rehabilitation, Clinical Institute S. Anna-Gruppo San Donato, Brescia, Italy
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Domenico Fusco
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ferdinando Caranci
- Department of Medicine of Precision, School of Medicine, “Luigi Vanvitelli” University of Campania, 80147 Naples, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Francesco Landi
- Foundation Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, Genoa, Italy
| | - Lisa Farina
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Vittorio Miele
- Dipartimento Di Radiodiagnostica Emergenza-Urgenza, Azienda Universitaria Careggi, Florence, Italy
| | - Marco Trabucchi
- Italian Society of Gerontology and Geriatrics (SIGG), Florence, Italy
- Italian Association of Psychogeriatrics (AIP), Brescia, Italy
- University of “Tor Vergata”, Rome, Italy
| | - Giovanni B. Frisoni
- Centre de La Mémoire, Geneva University and University Hospitals, 1205 Geneva, Switzerland
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
9
|
Golan H, Volkov O, Shalom E. Nuclear imaging in Parkinson's disease: The past, the present, and the future. J Neurol Sci 2022; 436:120220. [DOI: 10.1016/j.jns.2022.120220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023]
|
10
|
Ferrea S, Junker FB, Hartmann CJ, Dinkelbach L, Eickhoff SB, Moldovan AS, Südmeyer M, Schnitzler A, Schmidt‐Wilcke T. Brain volume patterns in corticobasal syndrome versus idiopathic Parkinson's disease. J Neuroimaging 2022; 32:720-727. [DOI: 10.1111/jon.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/25/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Frederick Benjamin Junker
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM‐7) Research Center Jülich Jülich Germany
| | - Alexia Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Department of Neurology Ernst von Bergmann Hospital Potsdam Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Tobias Schmidt‐Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Center of Neurology Bezirksklinikum Mainkofen Deggendorf Germany
| |
Collapse
|
11
|
Lo R. Epidemiology of atypical parkinsonian syndromes. Tzu Chi Med J 2022; 34:169-181. [PMID: 35465274 PMCID: PMC9020244 DOI: 10.4103/tcmj.tcmj_218_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/04/2022] Open
|
12
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Ando T, Yokoi F, Riku Y, Akagi A, Miyahara H, Hasegawa M, Katsuno M, Yoshida M, Iwasaki Y. The hot cross bun sign in corticobasal degeneration. Neuropathology 2021; 41:376-380. [PMID: 34320693 DOI: 10.1111/neup.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/01/2022]
Abstract
The hot cross bun (HCB) sign encompasses a cross-shaped hyperintensity area in the pons on axial T2-weighted magnetic resonance imaging (MRI). The HCB sign is characteristic of multiple system atrophy (MSA) and has occasionally been observed in other neurological disorders. Here, we report an autopsied case of corticobasal degeneration (CBD) that showed the HCB sign. A female patient presented with progressive gait disturbance and cognitive impairment at the age of 60 years. A neurological examination revealed dysarthria, muscle rigidity of the limbs, akinesia, truncal ataxia, urinary incontinence, and dementia. The HCB sign was observed on a brain MRI at the age of 65 years, and a clinical diagnosis of possible MSA was made. She died of pneumonia at the age of 67 years. A postmortem observation, provided neuropathological findings characteristic of CBD, including the presence of astrocytic plaques, pretangles, neuropil threads, and ballooned neurons in association with four-repeat-tau aggregation. Interestingly, the pons displayed severe neuronal loss and astrogliosis that were prominent in the pontine and raphe nuclei. Myelin sheath depletion was prominent in the transverse fibers of the pontine base and the myelinated fibers of the pontine tegmentum in contrast to relative sparing of the pontine corticospinal tract and medial lemniscus. The cerebellar dentate nucleus exhibited neuronal loss and grumose degeneration. Western blot analysis of sarkosyl-insoluble fractions from brain tissue lysates using an anti-phosphorylated tau antibody identified immunoreactive signal bands in approximately 37-40, 43, 64, and 68 kDa, consistent with CBD. Genetic analysis did not reveal any known pathogenic mutations in the microtubule-associated protein tau gene (MAPT). Our case was characterized by the HCB sign and concordant neuropathological changes in the pons. CBD should be considered an underlying pathology of the HCB sign, even though the pontocerebellar changes would be unusual in CBD cases.
Collapse
Affiliation(s)
- Takashi Ando
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Fuji Yokoi
- Department of Neurology, Narita Memorial Hospital, Toyohashi, Japan.,Department of Neurology, Atsumi Hospital, Tahara, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
14
|
Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22115606. [PMID: 34070609 PMCID: PMC8198163 DOI: 10.3390/ijms22115606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where misfolded alpha-synuclein-enriched aggregates called Lewy bodies are central in pathogenesis. No neuroprotective or disease-modifying treatments are currently available. Parkinson’s disease is considered a multifactorial disease and evidence from multiple patient studies and animal models has shown a significant immune component during the course of the disease, highlighting immunomodulation as a potential treatment strategy. The immune changes occur centrally, involving microglia and astrocytes but also peripherally with changes to the innate and adaptive immune system. Here, we review current understanding of different components of the PD immune response with a particular emphasis on the leukotriene pathway. We will also describe evidence of montelukast, a leukotriene receptor antagonist, as a possible anti-inflammatory treatment for PD.
Collapse
|
15
|
Paslawski W, Bergström S, Zhang X, Remnestål J, He Y, Boxer A, Månberg A, Nilsson P, Svenningsson P. Cerebrospinal Fluid Proteins Altered in Corticobasal Degeneration. Mov Disord 2021; 36:1278-1280. [PMID: 33660876 DOI: 10.1002/mds.28543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wojciech Paslawski
- Department of Clinical Neuroscience, Neuro Svenningsson, J5:20 Bioclinicum, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Neuro Svenningsson, J5:20 Bioclinicum, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Yachao He
- Department of Clinical Neuroscience, Neuro Svenningsson, J5:20 Bioclinicum, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, J5:20 Bioclinicum, Karolinska Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
16
|
Vasilevskaya A, Taghdiri F, Multani N, Anor C, Misquitta K, Houle S, Burke C, Tang-Wai D, Lang AE, Fox S, Slow E, Rusjan P, Tartaglia MC. PET Tau Imaging and Motor Impairments Differ Between Corticobasal Syndrome and Progressive Supranuclear Palsy With and Without Alzheimer's Disease Biomarkers. Front Neurol 2020; 11:574. [PMID: 32754109 PMCID: PMC7366127 DOI: 10.3389/fneur.2020.00574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Frontotemporal lobar degeneration (FTLD)-related syndrome includes progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). PSP is usually caused by a tauopathy but can have associated Alzheimer's disease (AD) while CBS can be caused by tauopathy, transactive response DNA binding protein 43 kDa, or AD pathology. Our aim was to compare the parkinsonian syndromes presenting without AD biomarkers (CBS/PSP-non-AD) to parkinsonian syndromes with AD biomarkers (CBS/PSP-AD). Materials and Methods: Twenty-four patients [11 males, 13 females; age (68.46 ± 7.23)] were recruited for this study. The whole cohort was divided into parkinsonian syndromes without AD biomarkers [N = 17; diagnoses (6 CBS, 11 PSP)] and parkinsonian syndromes with AD biomarkers [N = 7; diagnoses (6 CBS-AD, 1 PSP-AD)]. Anatomical MRI and PET imaging with tau ligand [18F]-AV1451 tracer was completed. Cerebrospinal fluid analysis or [18F]-AV1451 PET imaging was used to assess for the presence of AD biomarkers. Progressive supranuclear palsy rating scale (PSPRS) and unified Parkinson's disease rating scale (UPDRS) motor exam were implemented to assess for motor disturbances. Language and cognitive testing were completed. Results: The CBS/PSP-non-AD group [age (70.18 ± 6.65)] was significantly older (p = 0.028) than the CBS/PSP-AD group [age (64.29 ± 7.32)]. There were no differences between the groups in terms of gender, education, years of disease duration, and disease severity as measured with the Clinical Dementia Rating scale. The CBS/PSP-non-AD group had significantly lower PET Tau Standard Volume Uptake Ratio (SUVR) values compared to the CBS/PSP-AD group in multiple frontal and temporal areas, and inferior parietal (all p < 0.03). The CBS/PSP-non-AD group had significantly higher scores compared to the CBS/PSP-AD group on PSPRS (p = 0.004) and UPDRS motor exam (p = 0.045). The CBS/PSP-non-AD group had higher volumes of inferior parietal, precuneus, and hippocampus (all p < 0.02), but lower volume of midbrain (p = 0.02), compared to the CBS/PSP-AD group. Discussion: The CBS/PSP-non-AD group had higher motor disturbances compared to the CBS/PSP-AD group; however, both groups performed similarly on neuropsychological measures. The AD biomarker group had increased global uptake of PET Tau SUVR and lower volumes in AD-specific areas. These results show that the presenting phenotype of CBS and PSP syndromes and the distribution of injury are strongly affected by the presence of AD biomarkers.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Cassandra Anor
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sylvain Houle
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Charles Burke
- School of Medicine and Dentistry, Western University, Windsor, ON, Canada
| | - David Tang-Wai
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anthony E Lang
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Susan Fox
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Elizabeth Slow
- Edmond J. Safra Program for Parkinson Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Pablo Rusjan
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Matsuda K, Satoh M, Tabei KI, Ueda Y, Taniguchi A, Matsuura K, Asahi M, Ii Y, Niwa A, Tomimoto H. Impairment of intermediate somatosensory function in corticobasal syndrome. Sci Rep 2020; 10:11155. [PMID: 32636419 PMCID: PMC7340789 DOI: 10.1038/s41598-020-67991-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Corticobasal syndrome (CBS) is characterized by unilateral atrophy of the brain. New diagnostic criteria for CBS include intermediate somatosensory dysfunction. Here, we aimed to carefully examine intermediate somatosensory function to identify tests which can assess impairment in CBS patients. Using voxel-based morphometry (VBM), we also aimed to show the anatomical bases of these impairments. Subjects included 14 patients diagnosed with CBS and 14 patients with Parkinson's disease (PD). Patients were evaluated using intermediate somatosensory tests and neuropsychological assessments. VBM was used to analyze differences in gray matter volumes between CBS and PD patients. In the PD group, no tests showed a significant difference between the dominant-side onset and the non-dominant-side onset. In the CBS group, all tests showed worse scores on the affected side. For detecting intermediate somatosensory dysfunction in CBS, two tests are recommended: tactile object naming and 2-point discrimination. VBM analysis showed that the volume of the left post- and pre-central gyrus, and both sides of the supplementary motor area were significantly decreased in the CBS group compared to the PD group. Although CBS remains untreatable, early and correct diagnosis is possible by performing close examination of intermediate somatosensory function.
Collapse
Affiliation(s)
- Kana Matsuda
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Rehabilitation, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ken-Ichi Tabei
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yukito Ueda
- Department of Rehabilitation, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaru Asahi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsushi Niwa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
18
|
Baldacci F, Mazzucchi S, Della Vecchia A, Giampietri L, Giannini N, Koronyo-Hamaoui M, Ceravolo R, Siciliano G, Bonuccelli U, Elahi FM, Vergallo A, Lista S, Giorgi FS. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn 2020; 20:421-441. [PMID: 32066283 PMCID: PMC7445079 DOI: 10.1080/14737159.2020.1731306] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Introduction: The postmortem examination still represents the reference standard for detecting the pathological nature of chronic neurodegenerative diseases (NDD). This approach displays intrinsic conceptual limitations since NDD represent a dynamic spectrum of partially overlapping phenotypes, shared pathomechanistic alterations that often give rise to mixed pathologies.Areas covered: We scrutinized the international clinical diagnostic criteria of NDD and the literature to provide a roadmap toward a biomarker-based classification of the NDD spectrum. A few pathophysiological biomarkers have been established for NDD. These are time-consuming, invasive, and not suitable for preclinical detection. Candidate screening biomarkers are gaining momentum. Blood neurofilament light-chain represents a robust first-line tool to detect neurodegeneration tout court and serum progranulin helps detect genetic frontotemporal dementia. Ultrasensitive assays and retinal scans may identify Aβ pathology early, in blood and the eye, respectively. Ultrasound also represents a minimally invasive option to investigate the substantia nigra. Protein misfolding amplification assays may accurately detect α-synuclein in biofluids.Expert opinion: Data-driven strategies using quantitative rather than categorical variables may be more reliable for quantification of contributions from pathophysiological mechanisms and their spatial-temporal evolution. A systems biology approach is suitable to untangle the dynamics triggering loss of proteostasis, driving neurodegeneration and clinical evolution.
Collapse
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
| | - Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fanny M. Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|