1
|
Eid F, El Ahmad P, Khoury R, El Masri D, El Zoghby Y, Sahlloul Y, Fadel J, Haddad Z, Mezher A, Ghayad LM, El Sabbagh Y, Gerges L, Lakis M, Sahyoun C, El Khoury G, Stephan JS, Sleiman SF. α-Ketoglutarate Is a Circulatory Exercise Factor That Promotes Learning and Memory Recall and Has Antidepressant Properties. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100477. [PMID: 40248276 PMCID: PMC12005275 DOI: 10.1016/j.bpsgos.2025.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
Background Depression poses a significant societal burden, necessitating effective treatment options. Conventional approaches often fall short, highlighting the need for alternatives. Exercise has emerged as a promising nonpharmacological strategy for improving mental health outcomes. Exercise promotes memory recall and alleviates depression by modulating BDNF (brain-derived neurotrophic factor) expression. The effects of exercise on BDNF are influenced by circulatory metabolites known as exercise factors. Methods Associative and spatial memory were evaluated in mice receiving α-ketoglutarate (aKG) and in exercise mice given a glutaminase inhibitor. To prevent and treat depression-like behaviors, male mice underwent daily defeat sessions by a CD1 aggressor for 10 days. Behavior was assessed on day 11 using social interaction and open-field tests. Mice received aKG for 5 days prior to the stress paradigm or as treatment for 14 days following the stress paradigm, after which social behavior was reassessed. BDNF signaling was examined via Western blots. Results aKG was identified as a metabolite released into the bloodstream following exercise in male mice. aKG was shown to mediate the positive effects of exercise on spatial learning and memory formation. aKG was also shown to have prophylactic and antidepressant effects in a chronic social defeat stress model of depression. Conclusions aKG acts as a prophylactic and antidepressant to effectively counteract social avoidance behaviors by modulating BDNF levels in the hippocampus and nucleus accumbens.
Collapse
Affiliation(s)
- Fady Eid
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Perla El Ahmad
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Reine Khoury
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Diala El Masri
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Yara El Zoghby
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Yasmin Sahlloul
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Joanna Fadel
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Zena Haddad
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Amar Mezher
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Litsa Maria Ghayad
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Yorgo El Sabbagh
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Lea Gerges
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Mahmoud Lakis
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Christopher Sahyoun
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Ghinwa El Khoury
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Joseph S. Stephan
- School of Medicine, Lebanese American University, Lebanon, Byblos, Lebanon
| | - Sama F. Sleiman
- Biological Sciences Program, Department of Natural Sciences, Lebanese American University, Lebanon, Byblos, Lebanon
| |
Collapse
|
2
|
Zheng M, Zhang B, Yau SSY, So KF, Zhang L, Ou H. Exercise preconditioning alleviates ischemia-induced memory deficits by increasing circulating adiponectin. Neural Regen Res 2025; 20:1445-1454. [PMID: 39075911 PMCID: PMC11624881 DOI: 10.4103/nrr.nrr-d-23-01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00027/figure1/v/2024-07-28T173839Z/r/image-tiff Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy. Physical exercise enhances neurogenesis and synaptogenesis, and has been widely used for functional rehabilitation after stroke. In this study, we determined whether exercise training before disease onset can alleviate the severity of cerebral ischemia. We also examined the role of exercise-induced circulating factors in these effects. Adult mice were subjected to 14 days of treadmill exercise training before surgery for middle cerebral artery occlusion. We found that this exercise pre-conditioning strategy effectively attenuated brain infarct area, inhibited gliogenesis, protected synaptic proteins, and improved novel object and spatial memory function. Further analysis showed that circulating adiponectin plays a critical role in these preventive effects of exercise. Agonist activation of adiponectin receptors by AdipoRon mimicked the effects of exercise, while inhibiting receptor activation abolished the exercise effects. In summary, our results suggest a crucial role of circulating adiponectin in the effects of exercise pre-conditioning in protecting against cerebral ischemia and supporting the health benefits of exercise.
Collapse
Affiliation(s)
- Meifeng Zheng
- Department of Rehabilitation Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Rehabilitation Medicine, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Borui Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Haining Ou
- Department of Rehabilitation Medicine, Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Rehabilitation Medicine, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
4
|
Sánchez-Martín T, Costa-Miserachs D, Coll-Andreu M, Portell-Cortés I, García-Brito S, Torras-Garcia M. Treating Traumatic Brain Injury with Exercise: Onset Delay and Previous Training as Key Factors Determining its Efficacy. Neurorehabil Neural Repair 2024; 38:715-728. [PMID: 39143847 DOI: 10.1177/15459683241270023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
PURPOSE Exercise reduces cognitive deficits in traumatic brain injury (TBI), but early post-trauma exercise is often discouraged due to potential harm. The purpose was to evaluate the interaction between pre- and post-injury physical exercise on cognition, neuronal survival and inflammation. METHODS Rats were either sham-operated and kept sedentary (Sham) or subjected to controlled cortical impact injury and then distributed into sedentary (Tbi), pre-injury exercise (Pre-Tbi), post-injury exercise with early (24 hours, Tbi-early) or late (6 days, Tbi-late) onset, and a combination of pre- and post-injury exercise with early (Pre-Tbi-early) or late (Pre-Tbi-late) onset. Object recognition memory, hippocampal volume, neuronal survival (NeuN+) in the hippocampus and perirhinal cortex, and microglial activity (Iba-1) in the hippocampus were evaluated. RESULTS All exercise conditions, except TBI-early, attenuated the significant memory impairment at 24-hour retention caused by TBI. Additionally, Pre-TBI-early treatment led to memory improvement at 3-hour retention. Pre-TBI reduced neuronal death and microglial activation in the hippocampus. TBI-late, but not TBI-early, mitigated hippocampal volume loss, loss of mature neurons in the hippocampus, and inflammation. Combining pre-injury and early-onset exercise reduced memory deficits but did not affect neuronal death or microglial activation. Combining pre-injury and late-onset exercise had a similar memory-enhancing effect than late post-injury treatment alone, albeit with reduced effects on neuronal density and neuroinflammation. CONCLUSIONS Pre-TBI physical exercise reduces the necessary onset delay of post-TBI exercise to obtain cognitive benefits, yet the exact mechanisms underlying this reduction require further research.
Collapse
Affiliation(s)
- Tanit Sánchez-Martín
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Costa-Miserachs
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Margalida Coll-Andreu
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isabel Portell-Cortés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Soleil García-Brito
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Torras-Garcia
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Rafie F, Khaksari M, Amiresmaili S, Soltani Z, Pourranjbar M, Shirazpour S, Jafari E. Protective effects of early exercise on neuroinflammation, and neurotoxicity associated by traumatic brain injury: a behavioral and neurochemical approach. Int J Neurosci 2024; 134:700-713. [PMID: 36379667 DOI: 10.1080/00207454.2022.2144294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The benefits of exercise in TBI have been proven. However, the time-dependent effects of exercise initiation and the involved mechanisms are controversial. We investigated the effects of preconditioning, continuous, early, and delayed treadmill exercise on motor behavior, brain edema, inflammation, and oxidative stress in experimental traumatic brain injury (TBI). MATERIALS AND METHODS 48 male rats were assigned into two groups: sedentary control (Sham and TBI) and exercise groups: 1MB (preconditioning, initiation beginning at 1 month before trauma), 1MBA (continuous, initiation beginning at 1 month before and continuing 1 month after trauma), 24hA (early, initiation beginning at 24 h after trauma), and 1WA (delay, initiation beginning at 1 week after trauma). The rats in exercise groups were forced to run on a treadmill five days a week for 30 min per day. Rotarod and open file were used to assess motor behavior. ELISA was also used to measure total antioxidant capacity (TAC), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) in serum and CSF. RESULTS Exercise significantly decreased neurological impairments, motor deficits, and apoptosis compared with the sedentary group. Early (within 24 h) and ongoing (1 MBA) exercise significantly improved motor behavior after TBI. In addition, these exercise programs inhibited brain edema and the number of apoptotic cells. MDA and TNF-α levels increased in all exercise groups, but the effects were greater after early exercise than after delayed exercise, resulting in a significant decrease in TAC levels in serum and CSF. We discovered a positive correlation between MDA, TAC, and TNF-α concentration in serum and CSF. CONCLUSION Our finding suggests that early exercise (24hA) and 1MBA groups afford neuroprotection and reduce the second injury consequence, probably by reducing neuronal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Forouzan Rafie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Soltani
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pourranjbar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Shirazpour
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center and Department of pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
6
|
Wang YL, Chen CC, Chang CP. Effect of stress on the rehabilitation performance of rats with repetitive mild fluid percussion-induced traumatic brain injuries. Cogn Neurodyn 2024; 18:283-297. [PMID: 38406191 PMCID: PMC10881937 DOI: 10.1007/s11571-023-09961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 02/27/2024] Open
Abstract
Animal models of traumatic brain injury (TBI) have shown that impaired motor and cognitive function can be improved by physical exercise. However, not each animal with TBI can be well rehabilitated at the same training intensity due to a high inter-subject variability. Hence, this paper presents a two-stage wheel-based mixed-mode rehabilitation mechanism by which the effect of stress on the rehabilitation performance was investigated. The mixed-mode rehabilitation mechanism consists of a two-week adaptive and a one-week voluntary rehabilitation program as Stages 1 and 2, respectively. In Stage 1, the common over and undertraining problem were completely resolved due to the adaptive design, and rats ran voluntarily over a 30-min duration in Stage 2. The training intensity adapted to the physical condition of all the TBI rats at all times in Stage 1, and then the self-motivated running rats were further rehabilitated under the lowest level of stress in Stage 2. For comparison purposes, another group of rats took a 3-week adaptive rehabilitation program. During the 3-week program, the rehabilitation performance of the rats were assessed using modified neurologic severity score (mNSS) and an 8-arm radial maze. Surprisingly, the group taking the mixed mode program turned out to outperform its counterpart in terms of mNSS. The mixed-mode rehabilitation mechanism was validated as an effective and efficient way to help rats restore motor, neurological and cognitive function after TBI. It was validated that the rehabilitation performance can be optimized under the lowest level of stress.
Collapse
Affiliation(s)
- Yu-Lin Wang
- Center of General Education, Southern Taiwan University of Science and Technology, Tainan, 710301 Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, 710 Taiwan
| | - Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, 41170 Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710 Taiwan
| |
Collapse
|
7
|
Khoury R, Saad J, Jabre V, Ghayad LM, Khalifeh M, Houbeika R, El Ahmad P, Mezher A, El Masri D, Haddad Z, Eid F, Barmo N, Nasrallah P, Sleiman SF, Stephan JS. Autophagy regulates the release of exercise factors and their beneficial effects on spatial memory recall. Heliyon 2023; 9:e14705. [PMID: 37025840 PMCID: PMC10070545 DOI: 10.1016/j.heliyon.2023.e14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Exercise promotes learning and memory recall as well as rescues cognitive decline associated with aging. The positive effects of exercise are mediated by circulatory factors that predominantly increase Brain Derived Neurotrophic Factor (BDNF) signaling in the hippocampus. Identifying the pathways that regulate the release of the circulatory factors by various tissues during exercise and that mediate hippocampal Mus musculus Bdnf expression will allow us to harness the therapeutic potential of exercise. Here, we report that two weeks of voluntary exercise in male mice activates autophagy in the hippocampus by increasing LC3B protein levels (p = 0.0425) and that autophagy is necessary for exercise-induced spatial learning and memory retention (p < 0.001; exercise + autophagy inhibitor chloroquine CQ versus exercise). We place autophagy downstream of hippocampal BDNF signaling and identify a positive feedback activation between the pathways. We also assess whether the modulation of autophagy outside the nervous system is involved in mediating exercise's effect on learning and memory recall. Indeed, plasma collected from young exercise mice promote spatial learning (p = 0.0446; exercise versus sedentary plasma) and memory retention in aged inactive mice (p = 0.0303; exercise versus sedentary plasma), whereas plasma collected from young exercise mice that received the autophagy inhibitor chloroquine diphosphate failed to do so. We show that the release of exercise factors that reverse the symptoms of aging into the circulation is dependent on the activation of autophagy in young animals. Indeed, we show that the release of the exercise factor, beta-hydroxybutyrate (DBHB), into the circulation, is autophagy-dependent and that DBHB promotes spatial learning and memory formation (p = 0.0005) by inducing hippocampal autophagy (p = 0.0479). These results implicate autophagy in peripheral tissues and in the hippocampus in mediating the effects of exercise on learning and memory recall and identify DBHB as a candidate endogenous exercise factor whose release and positive effects are autophagy-dependent.
Collapse
|
8
|
Hu X, Ou Y, Li J, Sun M, Ge Q, Pan Y, Cai Z, Tan R, Wang W, An J, Lu H. Voluntary Exercise to Reduce Anxiety Behaviour in Traumatic Brain Injury Shown to Alleviate Inflammatory Brain Response in Mice. Int J Mol Sci 2023; 24:ijms24076365. [PMID: 37047351 PMCID: PMC10093932 DOI: 10.3390/ijms24076365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury is a leading cause of neuroinflammation and anxiety disorders in young adults. Immune-targeted therapies have garnered attention for the amelioration of TBI-induced anxiety. A previous study has indicated that voluntary exercise intervention following TBI could reduce neuroinflammation. It is essential to determine the effects of voluntary exercise after TBI on anxiety via inhibiting neuroinflammatory response. Mice were randomly divided into four groups (sham, TBI, sham + voluntary wheel running (VWR), and TBI + VWR). One-week VWR was carried out on the 2nd day after trauma. The neurofunction of TBI mice was assessed. Following VWR, anxiety behavior was evaluated, and neuroinflammatory responses in the perilesional cortex were investigated. Results showed that after one week of VWR, neurofunctional recovery was enhanced, while the anxiety behavior of TBI mice was significantly alleviated. The level of pro-inflammatory factors decreased, and the level of anti-inflammatory factors elevated. Activation of nucleotide oligomerization domain-like thermal receptor protein domain associated protein 3 (NLRP3) inflammasome was inhibited significantly. All these alterations were consistent with reduced microglial activation at the perilesional site and positively correlated with the amelioration of anxiety behavior. This suggested that timely rehabilitative exercise could be a useful therapeutic strategy for anxiety resulting from TBI by targeting neuroinflammation.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yuhang Ou
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jiashuo Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Qian Ge
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yongqi Pan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Wenyu Wang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (J.A.); (H.L.)
| |
Collapse
|
9
|
Javed AR, Khan HU, Alomari MKB, Sarwar MU, Asim M, Almadhor AS, Khan MZ. Toward explainable AI-empowered cognitive health assessment. Front Public Health 2023; 11:1024195. [PMID: 36969684 PMCID: PMC10033697 DOI: 10.3389/fpubh.2023.1024195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Explainable artificial intelligence (XAI) is of paramount importance to various domains, including healthcare, fitness, skill assessment, and personal assistants, to understand and explain the decision-making process of the artificial intelligence (AI) model. Smart homes embedded with smart devices and sensors enabled many context-aware applications to recognize physical activities. This study presents XAI-HAR, a novel XAI-empowered human activity recognition (HAR) approach based on key features identified from the data collected from sensors located at different places in a smart home. XAI-HAR identifies a set of new features (i.e., the total number of sensors used in a specific activity), as physical key features selection (PKFS) based on weighting criteria. Next, it presents statistical key features selection (SKFS) (i.e., mean, standard deviation) to handle the outliers and higher class variance. The proposed XAI-HAR is evaluated using machine learning models, namely, random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep learning models such as deep neural network (DNN), convolution neural network (CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments demonstrate the superior performance of XAI-HAR using RF classifier over all other machine learning and deep learning models. For explainability, XAI-HAR uses Local Interpretable Model Agnostic (LIME) with an RF classifier. XAI-HAR achieves 0.96% of F-score for health and dementia classification and 0.95 and 0.97% for activity recognition of dementia and healthy individuals, respectively.
Collapse
Affiliation(s)
- Abdul Rehman Javed
- Department of Cyber Security, Air University, Islamabad, Pakistan
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
- *Correspondence: Abdul Rehman Javed
| | - Habib Ullah Khan
- Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar
| | - Mohammad Kamel Bader Alomari
- Department of Accounting and Information Systems, College of Business and Economics, Qatar University, Doha, Qatar
- Mohammad Kamel Bader Alomari
| | | | - Muhammad Asim
- Department of Cyber Security, National University of Computer and Emerging Science, Islamabad, Pakistan
| | - Ahmad S. Almadhor
- College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia
| | - Muhammad Zahid Khan
- Department of Computer Science & IT, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
10
|
Fakhoury M, Eid F, El Ahmad P, Khoury R, Mezher A, El Masri D, Haddad Z, Zoghbi Y, Ghayad LM, Sleiman SF, Stephan JS. Exercise and Dietary Factors Mediate Neural Plasticity Through Modulation of BDNF Signaling. Brain Plast 2022; 8:121-128. [DOI: 10.3233/bpl-220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
The term “neural plasticity” was first used to describe non-pathological changes in neuronal structure. Today, it is generally accepted that the brain is a dynamic system whose morphology and function is influenced by a variety of factors including stress, diet, and exercise. Neural plasticity involves learning and memory, the synthesis of new neurons, the repair of damaged connections, and several other compensatory mechanisms. It is altered in neurodegenerative disorders and following damage to the central or peripheral nervous system. Understanding the mechanisms that regulate neural plasticity in both healthy and diseased states is of significant importance to promote cognition and develop rehabilitation techniques for functional recovery after injury. In this minireview, we will discuss the mechanisms by which environmental factors promote neural plasticity with a focus on exercise- and diet-induced factors. We will highlight the known circulatory factors that are released in response to exercise and discuss how all factors activate pathways that converge in part on the activation of BDNF signaling. We propose to harness the therapeutic potential of exercise by using BDNF as a biomarker to identify novel endogenous factors that promote neural plasticity. We also discuss the importance of combining exercise factors with dietary factors to develop a lifestyle pill for patients afflicted by CNS disorders.
Collapse
Affiliation(s)
- Marc Fakhoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Fady Eid
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Perla El Ahmad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Reine Khoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Amar Mezher
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Diala El Masri
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Zena Haddad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Yara Zoghbi
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Litsa Maria Ghayad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Sama F. Sleiman
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
11
|
Shokouhi G, Ahmadiasl N, Roshangar L, Ghorbanihaghjo A, Sheikhzadeh F, Mesgari M, Kosari-Nasab M. Long term treadmill exercise affects age-related oxidative stress in the spinal cord of rats. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-induced apoptosis is believed to be caused by the imbalance between production of reactive oxygen species (ROS) and human body antioxidant defence. Regular aerobic treadmill-exercise has been suggested to enhance the antioxidant defence. This study aimed to investigate the effects of long-term treadmill exercise on age-related oxidative stress and the apoptosis of oligodendrocytes in the spinal cord of the rat. Sixty male rats were divided into six groups: three exercised groups, which underwent 6, 9 and 12 months of mild-to-moderate treadmill exercise and three non-exercised control groups. Spinal cord white or grey matter tissue sampling was done through mid-thoracic laminectomy. The malondialdehyde (MDA; indicator of oxidative stress) levels, the number of apoptotic oligodendrocytes and ultrastructural alterations were also evaluated. Our data showed that treadmill exercise resulted in decreased lipid peroxidation and the number of apoptotic oligodendrocytes in the spinal cord of rats, as compared to non-exercised animals. These results were confirmed by TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) staining and electron microscope. This study suggests that the long-term treadmill exercise can affect oxidative stress and oligodendrocytes apoptosis in the spinal cord of aged rats and further studies are needed to validate these findings in humans.
Collapse
Affiliation(s)
- G. Shokouhi
- Drug Applied Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - N. Ahmadiasl
- Neurosciences Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - L. Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - A. Ghorbanihaghjo
- Drug Applied Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - F. Sheikhzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - M. Mesgari
- Drug Applied Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| | - M. Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, 29 Bahman Blvd., 51656-65811 Tabriz, Iran
| |
Collapse
|
12
|
Stephan JS, Sleiman SF. Exercise Factors Released by the Liver, Muscle, and Bones Have Promising Therapeutic Potential for Stroke. Front Neurol 2021; 12:600365. [PMID: 34108925 PMCID: PMC8181424 DOI: 10.3389/fneur.2021.600365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world. Stroke not only affects the patients, but also their families who serve as the primary caregivers. Discovering novel therapeutic targets for stroke is crucial both from a quality of life perspective as well as from a health economic perspective. Exercise is known to promote neuroprotection in the context of stroke. Indeed, exercise induces the release of blood-borne factors that promote positive effects on the brain. Identifying the factors that mediate the positive effects of exercise after ischemic stroke is crucial for the quest for novel therapies. This approach will yield endogenous molecules that normally cross the blood brain barrier (BBB) and that can mimic the effects of exercise. In this minireview, we will discuss the roles of exercise factors released by the liver such as beta-hydroxybutyrate (DBHB), by the muscle such as lactate and irisin and by the bones such as osteocalcin. We will also address their therapeutic potential in the context of ischemic stroke.
Collapse
Affiliation(s)
- Joseph S Stephan
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sama F Sleiman
- Biology Program, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
13
|
Toth L, Czigler A, Horvath P, Kornyei B, Szarka N, Schwarcz A, Ungvari Z, Buki A, Toth P. Traumatic brain injury-induced cerebral microbleeds in the elderly. GeroScience 2021; 43:125-136. [PMID: 33011936 PMCID: PMC8050119 DOI: 10.1007/s11357-020-00280-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) was shown to lead to the development of cerebral microbleeds (CMBs), which are associated with long term cognitive decline and gait disturbances in patients. The elderly is one of the most vulnerable parts of the population to suffer TBI. Importantly, ageing is known to exacerbate microvascular fragility and to promote the formation of CMBs. In this overview, the effect of ageing is discussed on the development and characteristics of TBI-related CMBs, with special emphasis on CMBs associated with mild TBI. Four cases of TBI-related CMBs are described to illustrate the concept that ageing exacerbates the deleterious microvascular effects of TBI and that similar brain trauma may induce more CMBs in old patients than in young ones. Recommendations are made for future prospective studies to establish the mechanistic effects of ageing on the formation of CMBs after TBI, and to determine long-term consequences of CMBs on clinically relevant outcome measures including cognitive performance, gait and balance function.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Peter Horvath
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Balint Kornyei
- Department of Radiology, University of Pecs, Medical School, Pecs, Hungary
| | - Nikolett Szarka
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary
| | - Peter Toth
- Department of Neurosurgery, University of Pecs, Medical School, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, University of Pecs, Medical School, Pecs, Hungary.
- Reynolds Oklahoma Center on Aging, Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Public Health, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary.
| |
Collapse
|
14
|
Ferguson L, Giza CC, Serpa RO, Greco T, Folkerts M, Prins ML. Recovery From Repeat Mild Traumatic Brain Injury in Adolescent Rats Is Dependent on Pre-injury Activity State. Front Neurol 2021; 11:616661. [PMID: 33488505 PMCID: PMC7820072 DOI: 10.3389/fneur.2020.616661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adolescents and young adults have the highest incidence of mild traumatic brain injury (mTBI); sport-related activities are a major contributor. Roughly a third of these patients diagnosed with mTBI are estimated to have received a subsequent repeat mTBI (rTBI). Previously, animal studies have only modeled mTBI in sedentary animals. This study utilizes physical activity as a dependent variable prior to rTBI in adolescent rats by allowing voluntary exercise in males, establishing the rat athlete (rathlete). Rats were given access to locked or functional running wheels for 10 d prior to sham or rTBI injury. Following rTBI, rathletes were allowed voluntary access to running wheels beginning on different days post-injury: no run (rTBI+no run), immediate run (rTBI+Immed), or 3 day delay (rTBI+3dd). Rats were tested for motor and cognitive-behavioral (anxiety, social, memory) and mechanosensory (allodynia) dysfunction using a novel rat standardized concussion assessment tool on post-injury days 1,3,5,7, and 10. Protein expression of brain derived neurotrophic factor (BDNF) and proliferator-activated gamma coactivator 1-alpha (PGC1α) was measured in the parietal cortex, hippocampus, and gastrocnemius muscle. Sedentary shams displayed lower anxiety-like behaviors compared to rathlete shams on all testing days. BDNF and PGC1α levels increased in the parietal cortex and hippocampus with voluntary exercise. In rTBI rathletes, the rTBI+Immed group showed impaired social behavior, memory impairment in novel object recognition, and increased immobility compared to rathlete shams. All rats showed greater neuropathic mechanosensory sensitivity than previously published uninjured adults, with rTBI+3dd showing greatest sensitivity. These results demonstrate that voluntary exercise changes baseline functioning of the brain, and that among rTBI rathletes, delayed return to activity improved cognitive recovery.
Collapse
Affiliation(s)
- Lindsay Ferguson
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Christopher C Giza
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Rebecka O Serpa
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Tiffany Greco
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Michael Folkerts
- Department of Psychology, Seaver College, Pepperdine University, Malibu, CA, United States
| | - Mayumi L Prins
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| |
Collapse
|
15
|
He Q, Li Z, Li T, Zhang Z, Zhao J. ATP Stimulation Promotes Functional Recovery after Intracerebral Haemorrhage by Increasing the mBDNF/proBDNF Ratio. Neuroscience 2021; 459:104-117. [PMID: 33421569 DOI: 10.1016/j.neuroscience.2020.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), including mature BDNF (mBDNF) and precursor BDNF (proBDNF), plays a pivotal role in neuronal survival, synaptic plasticity and neurogenesis. However, the functional effect of the mBDNF/proBDNF ratio in haemorrhagic stroke remains unclear. ATP is a known mediator of BDNF production in neurons and glia. Therefore, we hypothesized that ATP could facilitate BDNF production, increase the mBDNF/proBDNF ratio and thereby alleviate cerebral haemorrhage-induced injury. In this experiment, a model of intracerebral haemorrhage (ICH) was produced by injecting 50 μL autologous blood into the right corpus striatum in healthy male rats. ATP was injected to promote BDNF production and increase the mBDNF/proBDNF ratio. After ATP pretreatment, P2X4R-shRNA and SB203580 were used to inhibit P2X4R and p38-MAPK, respectively. We provide direct evidence that ATP administration was successful in promoting mBDNF expression and increasing the mBDNF/proBDNF ratio after ICH injury. Additionally, ATP stimulation could significantly improve cerebral neurological function and alleviate neuronal damage. Furthermore, ATP injection was able to upregulate the expression of P2X4R and p-p38-MAPK. Moreover, both P2X4R-shRNA and SB203580 could effectively abolish the effect of ATP injection on the levels of P2X4R and p-p38-MAPK and the mBDNF/proBDNF ratio. Together, these findings show that ATP stimulation contributes to functional recovery after cerebral haemorrhage and that neuroprotection induced by ATP administration in ICH rats is accompanied by a strong increase in the mBDNF/proBDNF ratio. Here, we also show a significant role of P2X4R-p38-MAPK signalling in the ATP-induced increase in the mBDNF/proBDNF ratio in ICH.
Collapse
Affiliation(s)
- Qi He
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenyu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tiegang Li
- Institute of Materia Medica, Peking Union Medical College Hospital, Peking, People's Republic of China
| | - Zhiqian Zhang
- The School of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
16
|
Hudson T. Functional Medicine: A View from Physical Medicine and Rehabilitation. Phys Med Rehabil Clin N Am 2020; 31:527-540. [PMID: 32981576 DOI: 10.1016/j.pmr.2020.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using the functional medicine rubric in physical medicine and rehabilitation (PM&R), a physiatrist can capitalize on addressing the root causes and downstream effects in patients with chronic diseases. Similar to the International Classification of Function model in rehabilitation, the functional medicine model uses biopsychosocial understanding with a systems biology approach to find fulcrum points to create the biggest impact on health care. Given the position of rehabilitation medicine with the type and location of patients, both functional medicine and PM&R would benefit from a mutual partnership.
Collapse
Affiliation(s)
- Timothy Hudson
- Veterans Integrative Pain Center, Physical Medicine and Rehabilitation Service, Central Virginia Veterans Healthcare System, Richmond, VA, USA; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
18
|
Editorial: The voluminous axon as an organizing principle for traumatic brain injury therapeutics: novel molecular, metabolic, and circuit strategies. Curr Opin Neurol 2019; 32:783-785. [PMID: 31609737 DOI: 10.1097/wco.0000000000000757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|