1
|
Zhang C, Guo M, Kong Y, Zhang J, Wang J, Sun S, Li X, Zeng X, Gong H, Fan X. Antifungal mechanism of phenyllactic acid against Mucor investigated through proteomic analysis. Food Chem 2024; 452:139525. [PMID: 38718453 DOI: 10.1016/j.foodchem.2024.139525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
The primary inhibitory targets of phenyllactic acid (PLA, including D-PLA and L-PLA) on Mucor were investigated using Mucor racemosus LD3.0026 isolated from naturally spoiled cherry, as an indicator fungi. The results demonstrated that the minimum inhibitory concentration (MIC) of PLA against Mucor was 12.5 mmol·L-1. Results showed that the growing cells at the tip of the Mucor were not visibly deformed, and there was no damage to the cell wall following PLA treatment; however, PLA damaged the cell membrane and internal structure. The results of isobaric tags for relative and absolute quantification (iTRAQ) indicated that the Mucor mitochondrial respiratory chain may be the target of PLA, potentially inhibiting the energy supply of Mucor. These results indicate that the antifungal mechanism of PLA against mold is independent of its molecular configuration. The growth of Mucor is suppressed by PLA, which destroys the organelle structure in the mycelium and inhibits energy metabolism.
Collapse
Affiliation(s)
- Chaoqi Zhang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Mingmei Guo
- Mudan District Mudan Street Sub-district Office, Heze, Shandong 274000, PR China
| | - Yanhui Kong
- Yantai Landscape Construction and Maintenance Center, Yantai, Shandong 264000, PR China
| | - Juanyue Zhang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Jingyue Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China
| | - Xiulian Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiangquan Zeng
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette 47906, IN, USA
| | - Hansheng Gong
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China.
| | - Xinguang Fan
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong 264025, PR China.
| |
Collapse
|
2
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
3
|
Tomoszková S, Škarda J, Lipina R. Potential Diagnostic and Clinical Significance of Selected Genetic Alterations in Glioblastoma. Int J Mol Sci 2024; 25:4438. [PMID: 38674026 PMCID: PMC11050250 DOI: 10.3390/ijms25084438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is currently considered the most common and, unfortunately, also the most aggressive primary brain tumor, with the highest morbidity and mortality rates. The average survival of patients diagnosed with glioblastoma is 14 months, and only 2% of patients survive 3 years after surgery. Based on our clinical experience and knowledge from extensive clinical studies, survival is mainly related to the molecular biological properties of glioblastoma, which are of interest to the general medical community. Our study examined a total of 71 retrospective studies published from 2016 through 2022 and available on PubMed that deal with mutations of selected genes in the pathophysiology of GBM. In conclusion, we can find other mutations within a given gene group that have different effects on the prognosis and quality of survival of a patient with glioblastoma. These mutations, together with the associated mutations of other genes, as well as intratumoral heterogeneity itself, offer enormous potential for further clinical research and possible application in therapeutic practice.
Collapse
Affiliation(s)
- Silvia Tomoszková
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jozef Škarda
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic
| | - Radim Lipina
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| |
Collapse
|
4
|
Ding Y, Jiang Y, Zeng H, Zhou M, Zhou X, Yu Z, Pan J, Geng X, Zhu Y, Zheng H, Huang S, Gong Y, Huang H, Xiong C, Huang D. Identification of a robust biomarker LAPTM4A for glioma based on comprehensive computational biology and experimental verification. Aging (Albany NY) 2024; 16:6954-6989. [PMID: 38613802 PMCID: PMC11087115 DOI: 10.18632/aging.205736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huabin Huang
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
5
|
Schoedel K, Heim T, Duensing A, Lohse I, Presutti L, Belayneh R, Bhogal S, Singh-Varma A, Chang A, Chandran U, Marker D, Szabo-Rogers H, Weiss K. Grade 2, 3 and Dedifferentiated Chondrosarcomas: A Comparative Study of Isocitrate Dehydrogenase-Mutant and Wild-Type Tumors with Implications for Prognosis and Therapy. Cancers (Basel) 2024; 16:247. [PMID: 38254737 PMCID: PMC10813891 DOI: 10.3390/cancers16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Grade 2 and 3 and dedifferentiated chondrosarcomas (CS) are frequently associated with isocitrate dehydrogenase (IDH) mutations and often exhibit a poor clinical outcome. Treatment is limited mainly to surgery. Defining IDH status (wild type (WT) and mutant) and the associated transcriptome may prove useful in determining other therapeutic options in these neoplasms. METHODS Formalin-fixed paraffin-embedded material from 69 primary and recurrent grade 2, 3 and dedifferentiated CS was obtained. DNA sequencing for IDH1 and IDH2 mutations (n = 47) and RNA sequencing via Nextseq 2000 (n = 14) were performed. Differentially expressed genes (DEGs) were identified and used to predict aberrant biological pathways with Ingenuity Pathway Analysis (IPA) software (Qiagen). Gene Set Enrichment Analyses (GSEA) using subsets C3, C5 and C7 were performed. Differentially expressed genes were validated by immunohistochemistry. Outcome analysis was performed using the Wilcoxon test. RESULTS A set of 69 CS (28 females, 41 males), average age 65, distributed among femur, pelvis, humerus, and chest wall were identified from available clinical material. After further selection based on available IDH status, we evaluated 15 IDH WT and 32 IDH mutant tumors as part of this dataset. Out of 15 IDH WT tumors, 7 involved the chest wall/scapula, while 1 of 32 mutants arose in the scapula. There were far more genes overexpressed in IDH WT tumors compared to IDH mutant tumors. Furthermore, IDH WT and IDH mutant tumors were transcriptomically distinct in the IPA and GSEA, with IDH mutant tumors showing increased activity in methylation pathways and endochondral ossification, while IDH WT tumors showed more activity in normal matrix development pathways. Validation immunohistochemistry demonstrated expression of WT1 and AR in IDH WT tumors, but not in IDH mutants. SATB2 was expressed in IDH mutant tumors and not in WT tumors. Outcome analysis revealed differences in overall survival between mutant and WT tumors (p = 0.04), dedifferentiated mutant and higher-grade (2, 3) mutant tumors (p = 0.03), and dedifferentiated mutant and higher-grade (2, 3) WT tumors (p = 0.03). The longest survival times were observed in patients with higher-grade WT tumors, while patients with dedifferentiated mutant tumors showed the lowest survival. Generally, patients with IDH WT tumors displayed longer survival in both the higher-grade and dedifferentiated groups. CONCLUSIONS Grade 2, 3 and dedifferentiated chondrosarcomas are further characterized by IDH status, which in turn informs transcriptomic phenotype and overall survival. The transcriptome is distinct depending on IDH status, and implies different treatment targets.
Collapse
Affiliation(s)
- Karen Schoedel
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tanya Heim
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anette Duensing
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Laura Presutti
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rebekah Belayneh
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Sumail Bhogal
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anya Singh-Varma
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Daniel Marker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Heather Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kurt Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
6
|
Wang Y, Shi C, Guo J, Zhang D, Zhang Y, Zhang L, Gong Z. IDH1/MDH1 deacetylation promotes acute liver failure by regulating NETosis. Cell Mol Biol Lett 2024; 29:8. [PMID: 38172700 PMCID: PMC10765752 DOI: 10.1186/s11658-023-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
7
|
Guterres A, Abrahim M, da Costa Neves PC. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023; 15:1057-1072. [PMID: 37431617 DOI: 10.2217/imt-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mayla Abrahim
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
8
|
Li J, Wang S, He Q, Lin F, Tao C, Ding Y, Wang J, Zhao J, Wang W. High ECM2 Expression Predicts Poor Clinical Outcome and Promotes the Proliferation, Migration, and Invasiveness of Glioma. Brain Sci 2023; 13:851. [PMID: 37371331 DOI: 10.3390/brainsci13060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Glioma is the most prevalent and fatal intracranial malignant tumor. Extracellular matrix protein 2 (ECM2) has rarely been studied in gliomas. Therefore, we explored the role of ECM2 in lower-grade gliomas (LGGs). METHODS The RNA-seq and clinicopathology data were obtained from the TCGA database. The immunohistochemical (IHC) staining was used to verify the expression of ECM2. Functional enrichment analyses, immune-related analyses, drug sensitivity, and mutation profile analyses were further conducted. Cox regression and Kaplan-Meier curves were utilized for survival analyses, while four external datasets were used to validate the prognostic role of ECM2. Furthermore, qRT-PCR, CCK-8, wound healing, and transwell assays were performed to confirm the function of ECM2 in gliomas. RESULTS The study found a significant upregulation of ECM2 expression with increasing glioma grades and a significant association between ECM2 expression and tumor immune infiltration. Cox regression verified the prognostic role of ECM2 in LGG patients (HR = 1.656, 95%CI = 1.055-2.600, p = 0.028). High ECM2 expression was significantly associated with poor outcome (p < 0.001). Four external datasets validated its prognostic value. After the knockdown of ECM2, the functional experiments showed a significant decrease in proliferation, migration, and invasion in glioma cell lines. CONCLUSION The study suggested the potential of ECM2 as a novel immune-associated prognostic biomarker and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Siyu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Chuming Tao
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| |
Collapse
|
9
|
Teraiya M, Perreault H, Chen VC. An overview of glioblastoma multiforme and temozolomide resistance: can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front Oncol 2023; 13:1166207. [PMID: 37182181 PMCID: PMC10169742 DOI: 10.3389/fonc.2023.1166207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent C. Chen
- Chemistry Department, Brandon University, Brandon, MB, Canada
| |
Collapse
|
10
|
Thamim M, Agrahari AK, Gupta P, Thirumoorthy K. Rational Computational Approaches in Drug Discovery: Potential Inhibitors for Allosteric Regulation of Mutant Isocitrate Dehydrogenase-1 Enzyme in Cancers. Molecules 2023; 28:molecules28052315. [PMID: 36903561 PMCID: PMC10005488 DOI: 10.3390/molecules28052315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.
Collapse
Affiliation(s)
- Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ashish Kumar Agrahari
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
11
|
Tuna G, Dal-Bekar NE, Akay A, Rükşen M, İşlekel S, İşlekel GH. Minimally Invasive Detection of IDH1 Mutation With Cell-Free Circulating Tumor DNA and D-2-Hydroxyglutarate, D/L-2-Hydroxyglutarate Ratio in Gliomas. J Neuropathol Exp Neurol 2022; 81:502-510. [PMID: 35582888 DOI: 10.1093/jnen/nlac036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isocitrate dehydrogenase-1 (IDH1) mutation is accepted as one of the earliest events in tumorigenesis in gliomas. This mutation causes preferential accumulation of D- relative to L-enantiomer of 2-hydroxyglutarate (2-HG). Minimally invasive techniques to detect IDH1 mutation may prove useful for clinical practice. We adopted 2 different diagnostic approaches to detect IDH1 mutation status in glioma patients: Evaluation of D- and L-2-HG levels in cerebrospinal fluid (CSF), urine, and plasma, and identification of IDH1 mutation using cell-free circulating tumor DNA (ctDNA) in CSF and plasma. Forty-nine glioma patients in different stages were included. Levels of D- and L-2-HG were determined using liquid chromatography-tandem mass spectrometry; IDH1 R132H mutation was determined by digital-PCR. D-2-HG levels and D/L-2-HG ratio (rDL) in CSF and rDL in plasma were significantly higher in the mutant group than in the wild-type group (p = 0.029, 0.032, 0.001, respectively). The IDH1 mutation detection rates in CSF- and plasma-ctDNA were 63.2% and 25.0%, respectively. These data indicate that D-2-HG values in CSF and rDL in plasma and CSF can be considered as significant contributors to the identification of IDH1 mutation status. In addition, detection of IDH1 mutation in CSF-ctDNA from glioma patients provides a basis for future use of ctDNA for minimally invasive clinical assessment of gliomas.
Collapse
Affiliation(s)
- Gamze Tuna
- From the Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Nazlı Ecem Dal-Bekar
- From the Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ali Akay
- Department of Neurosurgery, Izmir University of Economics Medical Park Hospital, Izmir, Turkey (AA)
| | - Mete Rükşen
- Department of Neurosurgery, Kent Hospital, Izmir, Turkey
| | - Sertaç İşlekel
- Department of Neurosurgery, Kent Hospital, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
12
|
Liu P, Li Y, Zhang Y, Choi J, Zhang J, Shang G, Li B, Lin YJ, Saleh L, Zhang L, Yi L, Yu S, Lim M, Yang X. Calcium-Related Gene Signatures May Predict Prognosis and Level of Immunosuppression in Gliomas. Front Oncol 2022; 12:708272. [PMID: 35646664 PMCID: PMC9136236 DOI: 10.3389/fonc.2022.708272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.
Collapse
Affiliation(s)
- Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Laura Saleh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Xuejun Yang, ; Michael Lim,
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- *Correspondence: Xuejun Yang, ; Michael Lim,
| |
Collapse
|
13
|
Metabolomic Phenotyping of Gliomas: What Can We Get with Simplified Protocol for Intact Tissue Analysis? Cancers (Basel) 2022; 14:cancers14020312. [PMID: 35053475 PMCID: PMC8773998 DOI: 10.3390/cancers14020312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme is one of the most malignant neoplasms among humans in their third and fourth decades of life, which is evidenced by short patient survival times and rapid tumor-cell proliferation after radiation and chemotherapy. At present, the diagnosis of gliomas and decisions related to therapeutic strategies are based on genetic testing and histological analysis of the tumor, with molecular biomarkers still being sought to complement the diagnostic panel. This work aims to enable the metabolomic characterization of cancer tissue and the discovery of potential biomarkers via high-resolution mass spectrometry coupled to liquid chromatography and a solvent-free sampling protocol that uses a microprobe to extract metabolites directly from intact tumors. The metabolomic analyses were performed independently from genetic and histological testing and at a later time. Despite the small cohort analyzed in this study, the results indicated that the proposed method is able to identify metabolites associated with different malignancy grades of glioma, as well as IDH and 1p19q codeletion mutations. A comparison of the constellation of identified metabolites and the results of standard tests indicated the validity of using the characterization of one comprehensive tumor phenotype as a reflection of all diagnostically meaningful information. Due to its simplicity, the proposed analytical approach was verified as being compatible with a surgical environment and applicable for large-scale studies.
Collapse
|
14
|
Marker DF, Agnihotri S, Amankulor N, Murdoch GH, Pearce TM. The dominant TP53 hotspot mutation in IDH -mutant astrocytoma, R273C, has distinctive pathologic features and sex-specific prognostic implications. Neurooncol Adv 2022; 4:vdab182. [PMID: 35047821 PMCID: PMC8760900 DOI: 10.1093/noajnl/vdab182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Infiltrative astrocytic tumors with and without isocitrate dehydrogenase (IDH) mutation frequently contain mutations in the TP53 tumor suppressor gene. Disruption of normal p53 protein activity confers neoplastic cells with a number of oncogenic properties and is a common feature of aggressive malignancies. However, the high prevalence of TP53 mutation and its pathogenic role in IDH-mutant (IDHmut) astrocytoma is not well understood. METHODS We performed a retrospective analysis of molecular and clinical data from patients with IDHmut astrocytoma at the University of Pittsburgh Medical Center between 2015 and 2019 as our initial cohort. We validated and expanded our findings using molecular and clinical data from The Cancer Genome Atlas. RESULTS We show that the TP53 mutational spectrum in IDHmut astrocytomas is dominated by a single hotspot mutation that codes for the R273C amino acid change. This mutation is not enriched in IDH-wildtype astrocytomas. The high prevalence of TP53 R273C mutation is not readily explained by known mutagenic mechanisms, and TP53 R273C mutant tumors have lower transcriptional levels of proliferation-related genes compared to IDHmut astrocytomas harboring other forms of mutant p53. Despite lower proliferation, TP53 R273C mutant tumors tend to progress more quickly and have a shorter overall survival than those with other TP53 mutations, particularly in male patients. CONCLUSIONS Our findings suggest that compared to other TP53 mutations, IDHmut astrocytomas may select for TP53 R273C mutations during tumorigenesis. The genotype, sex, and mutation-specific findings are clinically relevant and should prompt further investigation of TP53 R273C.
Collapse
Affiliation(s)
- Daniel F Marker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nduka Amankulor
- Department of Neurosurgery and Brain Tumor Center, Abramson Cancer Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Geoffrey H Murdoch
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas M Pearce
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Menyhárt O, Fekete JT, Győrffy B. Gene expression-based biomarkers designating glioblastomas resistant to multiple treatment strategies. Carcinogenesis 2021; 42:804-813. [PMID: 33754151 PMCID: PMC8215594 DOI: 10.1093/carcin/bgab024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Despite advances in molecular characterization of glioblastoma multiforme (GBM), only a handful of predictive biomarkers exist with limited clinical relevance. We aimed to identify differentially expressed genes in tumor samples collected at surgery associated with response to subsequent treatment, including temozolomide (TMZ) and nitrosoureas. Gene expression was collected from multiple independent datasets. Patients were categorized as responders/nonresponders based on their survival status at 16 months postsurgery. For each gene, the expression was compared between responders and nonresponders with a Mann-Whitney U-test and receiver operating characteristic. The package 'roc' was used to calculate the area under the curve (AUC). The integrated database comprises 454 GBM patients from 3 independent datasets and 10 103 genes. The highest proportion of responders (68%) were among patients treated with TMZ combined with nitrosoureas, where FCGR2B upregulation provided the strongest predictive value (AUC = 0.72, P < 0.001). Elevated expression of CSTA and MRPS17 was associated with a lack of response to multiple treatment strategies. DLL3 upregulation was present in subsequent responders to any treatment combination containing TMZ. Three genes (PLSCR1, MX1 and MDM2) upregulated both in the younger cohort and in patients expressing low MGMT delineate a subset of patients with worse prognosis within a population generally associated with a favorable outcome. The identified transcriptomic changes provide biomarkers of responsiveness, offer avenues for preclinical studies and may enhance future GBM patient stratifications. The described methodology provides a reliable pipeline for the initial testing of potential biomarker candidates for future validation studies.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| | - János Tibor Fekete
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| |
Collapse
|
16
|
Prognostic significance of L-type amino acid transporter-1 (LAT-1) expression in human astrocytic gliomas. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma. Front Oncol 2021; 10:574012. [PMID: 33614476 PMCID: PMC7892469 DOI: 10.3389/fonc.2020.574012] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with a dismal prognosis. The current mainstay of treatment involves maximally safe surgical resection followed by radiotherapy over a 6-week period with concomitant temozolomide chemotherapy followed by temozolomide maintenance. This review provides a summary of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed disease as well as the current standard of care and potential future therapeutic prospects.
Collapse
Affiliation(s)
- Bryan Oronsky
- Department of Clinical Research, EpicentRx, San Diego, CA, United States
| | - Tony R. Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| | - Arnold Oronsky
- Department of Clinical Research, InterWest Partners, Menlo Park, CA, United States
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan J. Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
18
|
Skiriute D, Stakaitis R, Steponaitis G, Tamasauskas A, Vaitkiene P. The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome. Int J Mol Sci 2020; 21:E7962. [PMID: 33120918 PMCID: PMC7663706 DOI: 10.3390/ijms21217962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recently long non-coding RNAs (lncRNAs) were highlighted for their regulatory role in tumor biology. The novel human lncRNA cancer susceptibility candidate 2 (CASC2) has been characterized as a potential tumor suppressor in several tumor types. However, the roles of CASC2 and its interplay with miR-21 in different malignancy grade patient gliomas remain unexplored. Here we screened 99 different malignancy grade astrocytomas for CASC2, and miR-21 gene expression by real-time quantitative polymerase chain reaction (RT-qPCR) in isocitrate dehydrogenase 1 (IDH1) and O-6-methylguanine methyltransferase (MGMT) assessed gliomas. CASC2 expression was significantly downregulated in glioblastomas (p = 0.0003). Gliomas with low CASC2 expression exhibited a high level of miR-21, which was highly associated with the higher glioma grade (p = 0.0001), IDH1 wild type gliomas (p < 0.0001), and poor patient survival (p < 0.001). Taken together, these observations suggest that CASC2 acts as a tumor suppressor and potentially as a competing endogenous RNA (ceRNA) for miR-21, plays important role in IDH1 wild type glioma pathogenesis and patients' outcomes.
Collapse
Affiliation(s)
- Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania; (R.S.); (G.S.); (A.T.)
| | - Rytis Stakaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania; (R.S.); (G.S.); (A.T.)
| | - Giedrius Steponaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania; (R.S.); (G.S.); (A.T.)
| | - Arimantas Tamasauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania; (R.S.); (G.S.); (A.T.)
| | - Paulina Vaitkiene
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
19
|
Wang QW, Wang YW, Wang ZL, Bao ZS, Jiang T, Wang Z, You G. Clinical and Molecular Characterization of Incidentally Discovered Lower-Grade Gliomas with Enrichment of Aerobic Respiration. Onco Targets Ther 2020; 13:9533-9542. [PMID: 33061437 PMCID: PMC7527698 DOI: 10.2147/ott.s248623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose Incidentally discovered diffusely infiltrating lower-grade gliomas (incidental LGGs, iLGGs) are defined as gliomas occasionally found in patients without tumor-related symptoms. At present, very few in-depth research studies on incidental LGGs were reported. We aimed to find out the inherent difference between iLGGs and LGGs with tumor-related symptoms. Patients and Methods We enrolled 2486 all-grade gliomas and screened 1594 lower-grade gliomas for further analysis. Medical records were retrospectively reviewed for iLGGs. Clinical and mRNA sequencing data were collected for in-depth analysis. Results We found that with increasing grade, the proportion of incidental glioma patients decreased obviously. In 1594 patients who underwent craniotomy for LGG, 80 (5%) patients were discovered incidentally. Grade II patients (88%) and patients bearing 1p/19q co-deletion in their tumors (23%) were more likely to be diagnosed as iLGGs. Regular radiological screening (48%) and trauma (24%) were the main complaint for brain imaging for iLGGs. Kaplan–Meier survival analysis indicated that iLGGs patients lived a significantly longer survival and Cox regression analysis revealed that iLGGs were an independent indicator of better prognosis. Subsequent gene set enrichment analysis and differential expression analysis based on the gene expression profile revealed that mitochondrial aerobic respiration process was enriched in iLGGs. Moreover, we found that iLGGs tended to generate energy by unique mitochondrial aerobic respiration. Conclusion These results provided a primitive exploration of iLGGs, which may potentially assist clinical neurosurgeons with personalized management of iLGGs.
Collapse
Affiliation(s)
- Qiang-Wei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Yi-Wen Wang
- Huadong Medical Institute of Biotechniques, Nanjing, People's Republic of China
| | - Zhi-Liang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
20
|
(2 R,3 S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102842. [PMID: 33019704 PMCID: PMC7600928 DOI: 10.3390/cancers12102842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is one of several cancers where cancer proliferation occurs under the influence of an aberrant metabolite known as an oncometabolite produced by a mutated enzyme in the cancer cell. In AML, mutant isocitrate dehydrogenases produce the oncometabolite 2-hydroxyglutarate. We screened AML patients with and without mutant isocitrate dehydrogenases by using a technique known as metabolomics, which measures many different metabolites in patient plasma. It was observed that another metabolite, 2,3-dihydroxybutyrate, was produced in larger amounts in patients with mutated isocitrate dehydrogenase and correlated strongly with 2-hydroxyglutarate levels. Moreover, 2,3-dihydroxybutyrate was a better indicator of the presence of mutated isocitrate dehydrogenase in the cancer than the known oncometabolite 2-hydroxyglutarate. These findings may lead to the characterization of 2,3-dihydroxybutyrate as a novel oncometabolite in AML, which would bring a fuller understanding of the etiology of this disease and offer opportunities for the development of novel therapeutic agents. Abstract Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography–mass spectrometry (GC–MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.
Collapse
|
21
|
Fiorica F, Colella M, Taibi R, Bonetti A, Giuliani J, Perrone MS, Missiroli S, Giorgi C. Glioblastoma: Prognostic Factors and Predictive Response to Radio and Chemotherapy. Curr Med Chem 2020; 27:2814-2825. [PMID: 32003678 DOI: 10.2174/0929867327666200131095256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by poor prognosis despite an aggressive therapeutic strategy. In recent years, many advances have been achieved in the field of glioblastoma biology. Here we try to summarize the main clinical and biological factors impacting clinical prognostication and therapy of GBM patients. From that standpoint, hopefully, in the near future, personalized therapies will be available.
Collapse
Affiliation(s)
- Francesco Fiorica
- Department of Radiation Oncology, AULSS 9 Scaligera, Verona, Italy.,Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Maria Colella
- Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Rosaria Taibi
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Andrea Bonetti
- Department of Oncology, AULSS 9 Scaligera, Verona, Italy
| | | | - Maria Sole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Milano MT, Chan MD, Minniti G, Hattangadi-Gluth JA, Redmond KJ, Soltys SG. The IMPACT of Molecular Grading of Gliomas on Contemporary Clinical Practice. Int J Radiat Oncol Biol Phys 2020; 107:859-862. [PMID: 32698972 DOI: 10.1016/j.ijrobp.2020.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California
| |
Collapse
|
23
|
Branzoli F, Pontoizeau C, Tchara L, Di Stefano AL, Kamoun A, Deelchand DK, Valabrègue R, Lehéricy S, Sanson M, Ottolenghi C, Marjańska M. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy. Neuro Oncol 2020; 21:765-774. [PMID: 30726924 DOI: 10.1093/neuonc/noz031] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Codeletion of chromosome arms 1p and 19q (1p/19q codeletion) highly benefits diagnosis and prognosis in gliomas. In this study, we investigated the effect of 1p/19q codeletion on cancer cell metabolism and evaluated possible metabolic targets for tailored therapies. METHODS We combined in vivo 1H (proton) magnetic resonance spectroscopy (MRS) measurements in human gliomas with the analysis of a series of standard amino acids by liquid chromatography-mass spectroscopy (LC-MS) in human glioma biopsies. Sixty-five subjects with low-grade glioma were included in the study: 31 underwent the MRI/MRS examination, 47 brain tumor tissue samples were analyzed with LC-MS, and 33 samples were analyzed for gene expression with quantitative PCR. Additionally, we performed metabolic tracer experiments in cell models with 1p deletion. RESULTS We report the first in vivo detection of cystathionine by MRS in 1p/19q codeleted gliomas. Selective accumulation of cystathionine was observed in codeleted gliomas in vivo, in brain tissue samples, as well as in cells harboring heterozygous deletions for serine- and cystathionine-pathway genes located on 1p: phosphoglycerate dehydrogenase (PHGDH) and cystathionine gamma-lyase (CTH). Quantitative PCR analyses showed 40-50% lower expression of both PHGDH and CTH in 1p/19q codeleted gliomas compared with their non-codeleted counterparts. CONCLUSIONS Our results provide strong evidence of a selective vulnerability of codeleted gliomas to serine and glutathione depletion and point to cystathionine as a possible noninvasive marker of treatment response.
Collapse
Affiliation(s)
- Francesca Branzoli
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Clément Pontoizeau
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Lucien Tchara
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Anna Luisa Di Stefano
- Department of Neurology, Public Assistance-Hospital of Paris, University Hospital Pitié-Salpêtrière, Paris, France.,Department of Neurology, Foch Hospital, Suresnes, France
| | - Aurélie Kamoun
- Tumor ID Card Program, National League Against Cancer, Paris, France
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Romain Valabrègue
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Stéphane Lehéricy
- Brain and Spine Institute, Center for Neuroimaging Research (CENIR), Paris, France.,Sorbonne University, Paris, France
| | - Marc Sanson
- Sorbonne University, Paris, France.,Department of Neurology, Public Assistance-Hospital of Paris, University Hospital Pitié-Salpêtrière, Paris, France.,The Tumorotheque, Brain and Spine Institute, Paris, France
| | - Chris Ottolenghi
- Metabolomics Unit, Department of Biology, Reference Center for Metabolic Diseases, Necker Hospital and University of Paris Descartes, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Yu D, Liu C, Guo L. Mitochondrial metabolism and cancer metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:904. [PMID: 32793748 DOI: 10.21037/atm.2020.03.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is regarded as the most important cause of cancer-related deaths around the world. During the complicated metastatic cascade, altered mitochondrial metabolism adapts to serve distinct conditions and microenvironments. In this review, we discuss how cells regulate their mitochondria metabolism to adapt to environmental cues during the metastasis, as well as how cancer cells and their tumor micro-environment (TME) are metabolically coupled during the metastatic cascade. We place a strong emphasis on how mitochondrial proline metabolism and extracellular matrix (ECM) are coupled.
Collapse
Affiliation(s)
- Dandan Yu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies, and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Dissecting Molecular Features of Gliomas: Genetic Loci and Validated Biomarkers. Int J Mol Sci 2020; 21:ijms21020685. [PMID: 31968687 PMCID: PMC7014190 DOI: 10.3390/ijms21020685] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.
Collapse
|
26
|
The Plant-Derived Compound Resveratrol in Brain Cancer: A Review. Biomolecules 2020; 10:biom10010161. [PMID: 31963897 PMCID: PMC7023272 DOI: 10.3390/biom10010161] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research, malignant brain tumors are among the most difficult to treat due to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood‒brain barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms, such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented promising results; however, further clinical research is necessary to prove the therapeutic efficacy of resveratrol in brain cancer treatment.
Collapse
|
27
|
Sorokin A, Shurkhay V, Pekov S, Zhvansky E, Ivanov D, Kulikov EE, Popov I, Potapov A, Nikolaev E. Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry. Curr Top Med Chem 2019; 19:1521-1534. [PMID: 31362676 DOI: 10.2174/1568026619666190729154543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.
Collapse
Affiliation(s)
- Anatoly Sorokin
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Vsevolod Shurkhay
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Stanislav Pekov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Evgeny Zhvansky
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Daniil Ivanov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Emanuel Institute of Biochemical Physics RAS, Moscow, Russian Federation
| | - Eugene E Kulikov
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation.,Federal Research Center "Fundamentals of biotechnology", Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Popov
- Laboratory of Ion and Molecular Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation.,Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation
| | - Alexander Potapov
- Federal State Autonomous Institution, N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Feaderation, Moscow, Russian Federation
| | - Eugene Nikolaev
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russian Federation.,Skolkovo Institute of Science and Technology, Skolkovo, Russian Federation
| |
Collapse
|
28
|
Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B. Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers (Basel) 2019; 11:cancers11081148. [PMID: 31405148 PMCID: PMC6721570 DOI: 10.3390/cancers11081148] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Predictors of patient outcome derived from gene methylation, mutation, or expression are severely limited in IDH1 wild-type glioblastoma (GBM). Radiomics offers an alternative insight into tumor characteristics which can provide complementary information for predictive models. The study aimed to evaluate whether predictive models which integrate radiomic, gene, and clinical (multi-omic) features together offer an increased capacity to predict patient outcome. A dataset comprising 200 IDH1 wild-type GBM patients, derived from The Cancer Imaging Archive (TCIA) (n = 71) and the McGill University Health Centre (n = 129), was used in this study. Radiomic features (n = 45) were extracted from tumor volumes then correlated to biological variables and clinical outcomes. By performing 10-fold cross-validation (n = 200) and utilizing independent training/testing datasets (n = 100/100), an integrative model was derived from multi-omic features and evaluated for predictive strength. Integrative models using a limited panel of radiomic (sum of squares variance, large zone/low gray emphasis, autocorrelation), clinical (therapy type, age), genetic (CIC, PIK3R1, FUBP1) and protein expression (p53, vimentin) yielded a maximal AUC of 78.24% (p = 2.9 × 10−5). We posit that multi-omic models using the limited set of ‘omic’ features outlined above can improve capacity to predict the outcome for IDH1 wild-type GBM patients.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| | - Paul Daniel
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, McGill University, Montreal, QC H4A 3J1, Canada
- Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada
| | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montréal, QC H3C 1K3, Canada
| | - Bassam Abdulkarim
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC H4A 3J1, Canada.
- Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
29
|
Meng X, Duan C, Pang H, Chen Q, Han B, Zha C, Dinislam M, Wu P, Li Z, Zhao S, Wang R, Lin L, Jiang C, Cai J. DNA damage repair alterations modulate M2 polarization of microglia to remodel the tumor microenvironment via the p53-mediated MDK expression in glioma. EBioMedicine 2019; 41:185-199. [PMID: 30773478 PMCID: PMC6442002 DOI: 10.1016/j.ebiom.2019.01.067] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Background DNA damage repair (DDR) alterations are important events in cancer initiation, progression, and therapeutic resistance. However, the involvement of DDR alterations in glioma malignancy needs further investigation. This study aims to characterize the clinical and molecular features of gliomas with DDR alterations and elucidate the biological process of DDR alterations that regulate the cross talk between gliomas and the tumor microenvironment. Methods Integrated transcriptomic and genomic analyses were undertaken to conduct a comprehensive investigation of the role of DDR alterations in glioma. The prognostic DDR-related cytokines were identified from multiple datasets. In vivo and in vitro experiments validated the role of p53, the key molecule of DDR, regulating M2 polarization of microglia in glioma. Findings DDR alterations are associated with clinical and molecular characteristics of glioma. Gliomas with DDR alterations exhibit distinct immune phenotypes, and immune cell types and cytokine processes. DDR-related cytokines have an unfavorable prognostic implication for GBM patients and are synergistic with DDR alterations. Overexpression of MDK mediated by p53, the key transcriptional factor in DDR pathways, remodels the GBM immunosuppressive microenvironment by promoting M2 polarization of microglia, suggesting a potential role of DDR in regulating the glioma microenvironment. Interpretation Our work suggests that DDR alterations significantly contribute to remodeling the glioma microenvironment via regulating the immune response and cytokine pathways. Fund This study was supported by: 1. The National Key Research and Development Plan (No. 2016YFC0902500); 2. National Natural Science Foundation of China (No. 81702972, No. 81874204, No. 81572701, No. 81772666); 3. China Postdoctoral Science Foundation (2018M640305); 4. Special Fund Project of Translational Medicine in the Chinese-Russian Medical Research Center (No. CR201812); 5. The Research Project of the Chinese Society of Neuro-oncology, CACA (CSNO-2016-MSD12); 6. The Research Project of the Health and Family Planning Commission of Heilongjiang Province (2017–201); and 7. Harbin Medical University Innovation Fund (2017LCZX37, 2017RWZX03). Gliomas with DNA damage repair alterations had distinct genomic variation spectrum. DDR alterations exhibit distinct immune phenotypes, cytokine processes and immune cell types in glioma. DDR-related cytokines in GME have an unfavorable prognostic implication for GBM patients. P53-mediated midkine expression derived from glioma cells promotes M2 polarization of microglia.
Collapse
Affiliation(s)
- Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chunbin Duan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Hengyuan Pang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Han
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Magafurov Dinislam
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neurosurgical department, Bashkir State Medical University, Ufa 450008, Russia
| | - Pengfei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruijia Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Lin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China.
| |
Collapse
|
30
|
Lipp ES, Healy P, Austin A, Clark A, Dalton T, Perkinson K, Herndon JE, Friedman HS, Friedman AH, Bigner DD, McLendon RE. MGMT: Immunohistochemical Detection in High-Grade Astrocytomas. J Neuropathol Exp Neurol 2019; 78:57-64. [PMID: 30500933 DOI: 10.1093/jnen/nly110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioma therapeutic resistance to alkylating chemotherapy is mediated via O6-methylguanine-DNA methyltransferase (MGMT). We hypothesized that a CD45/HAM56/MGMT double-stained cocktail would improve MGMT discrimination in tumor cells versus inflammatory and endothelial cells (IEC). Total MGMT protein was quantified by IHC on 982 glioblastomas (GBM) and 199 anaplastic astrocytomas. Correcting for IEC was done by a CD45/HAM56/MGMT 2-color cocktail. Lowest IEC infiltrates (IEC "cold spots") were identified to quantitate MGMT as well as the percentage of IEC% in the IEC cold spots. MGMT promoter methylation (PM) was also determined. Among the GBM biopsies, mean uncorrected and corrected MGMT% were 19.87 (range 0-90) and 16.67; mean IEC% was 18.65 (range 1-80). Four hundred and fifty one (45.9%) GBM biopsies were positive MGMT PM. Both uncorrected and corrected MGMT% positivity correlated with PM. All 3 MGMT scores correlated with overall survival (OS) in GBM's. Cold spot IEC% was also positively associated with OS. These effects remained in a multivariate model after adjusting for age and disease status. Prognosis determined by correcting MGMT% score for IEC% is not improved in this analysis. However, IEC COLD SPOT score does provide additional prognostic information that can be gained from this correction method.
Collapse
Affiliation(s)
- Eric S Lipp
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Patrick Healy
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC
| | - Alan Austin
- Department of Pathology, Duke University Health System, Durham, NC
| | - Alysha Clark
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Tara Dalton
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | | | - James E Herndon
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Allan H Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Darell D Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Health System, Durham, NC
| | - Roger E McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Health System, Durham, NC
| |
Collapse
|
31
|
Chen AS, Wardwell-Ozgo J, Shah NN, Wright D, Appin CL, Vigneswaran K, Brat DJ, Kornblum HI, Read RD. Drak/STK17A Drives Neoplastic Glial Proliferation through Modulation of MRLC Signaling. Cancer Res 2018; 79:1085-1097. [PMID: 30530503 DOI: 10.1158/0008-5472.can-18-0482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/21/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) and lower grade gliomas (LGG) are the most common primary malignant brain tumors and are resistant to current therapies. Genomic analyses reveal that signature genetic lesions in GBM and LGG include copy gain and amplification of chromosome 7, amplification, mutation, and overexpression of receptor tyrosine kinases (RTK) such as EGFR, and activating mutations in components of the PI3K pathway. In Drosophila melanogaster, constitutive co-activation of RTK and PI3K signaling in glial progenitor cells recapitulates key features of human gliomas. Here we use this Drosophila glioma model to identify death-associated protein kinase (Drak), a cytoplasmic serine/threonine kinase orthologous to the human kinase STK17A, as a downstream effector of EGFR and PI3K signaling pathways. Drak was necessary for glial neoplasia, but not for normal glial proliferation and development, and Drak cooperated with EGFR to promote glial cell transformation. Drak phosphorylated Sqh, the Drosophila ortholog of nonmuscle myosin regulatory light chain (MRLC), which was necessary for transformation. Moreover, Anillin, which is a binding partner of phosphorylated Sqh, was upregulated in a Drak-dependent manner in mitotic cells and colocalized with phosphorylated Sqh in neoplastic cells undergoing mitosis and cytokinesis, consistent with their known roles in nonmuscle myosin-dependent cytokinesis. These functional relationships were conserved in human GBM. Our results indicate that Drak/STK17A, its substrate Sqh/MRLC, and the effector Anillin/ANLN regulate mitosis and cytokinesis in gliomas. This pathway may provide a new therapeutic target for gliomas.Significance: These findings reveal new insights into differential regulation of cell proliferation in malignant brain tumors, which will have a broader impact on research regarding mechanisms of oncogene cooperation and dependencies in cancer.See related commentary by Lathia, p. 1036.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Joanna Wardwell-Ozgo
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Nilang N Shah
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Deidre Wright
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Christina L Appin
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Daniel J Brat
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California.,Department of Psychiatry and Behavioral Sciences, and Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, California
| | - Renee D Read
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Involvement of an Orphan Transporter, SLC22A18, in Cell Growth and Drug Resistance of Human Breast Cancer MCF7 Cells. J Pharm Sci 2018; 107:3163-3170. [DOI: 10.1016/j.xphs.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023]
|
33
|
Sarfraz I, Rasul A, Hussain G, Hussain SM, Ahmad M, Nageen B, Jabeen F, Selamoglu Z, Ali M. Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life 2018; 70:1076-1083. [PMID: 30160039 DOI: 10.1002/iub.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Reprogrammed metabolic profile is a biochemical fingerprint of cancerous cells, which represents one of the "hallmarks of cancer." The aberrant expression pattern of enzymatic machineries orchestrates metabolic activities into a platform that ultimately promotes cellular growth, survival, and proliferation. The NADP(+)-dependent mitochondrial malic enzyme 2 (ME2) has been widely appreciated due to its function as a provider of pyruvate and reducing power to the cell for biosynthesis of fatty acids and nucleotides along with maintenance of redox balance. Multiple lines of evidences have indicated that ME2 is a bonafide therapeutic target and novel biomarker which plays critical role during tumorigenesis. The objective of this review is to provide an update on the cancer-specific role of ME2 in order to explore its potential for therapeutic opportunities. Furthermore, we have discussed the potential of genetic and pharmacological inhibitors of ME2 in the light of previous research work for therapeutic advancements in cancer treatment. It is contemplated that additional investigations should focus on the use of ME2 inhibitors in combinational therapies as rational combinations of metabolic inhibitors and chemotherapy may have the ability to cure cancer. © 2018 IUBMB Life, 70(11):1076-1083, 2018.
Collapse
Affiliation(s)
- Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Faculty of Physical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zeliha Selamoglu
- Nigde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biology, Nigde, Turkey
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
34
|
Buerki RA, Chheda ZS, Okada H. Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clin Cancer Res 2018; 24:5198-5205. [PMID: 29871908 PMCID: PMC6214775 DOI: 10.1158/1078-0432.ccr-17-2769] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
The field of cancer immunotherapy has made exciting progress for some cancer types in recent years. However, recent failures of late-phase clinical trials evaluating checkpoint blockade in patients with glioblastoma (GBM) represent continued challenges for brain cancer immunotherapy. This is likely due to multiple factors including but not limited to marked genetic and antigenic heterogeneity, relatively low mutational loads, and paucity of GBM-infiltrating T cells. We review recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to single-modality immunotherapy approaches. We also discuss other novel immunotherapy approaches that may promote T-cell responses and overcome the "cold tumor" status of GBM, including oncolytic viruses and adoptive T-cell therapy. Clin Cancer Res; 24(21); 5198-205. ©2018 AACR.
Collapse
Affiliation(s)
- Robin A Buerki
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Zinal S Chheda
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
- The Parker Institute for Cancer Immunotherapy, San Francisco, California
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|
35
|
Zhao Q, Manning JR, Sutton J, Costales A, Sendzik M, Shafer CM, Levell JR, Liu G, Caferro T, Cho YS, Palermo M, Chenail G, Dooley J, Villalba B, Farsidjani A, Chen J, Dodd S, Gould T, Liang G, Slocum K, Pu M, Firestone B, Growney J, Heimbach T, Pagliarini R. Optimization of 3-Pyrimidin-4-yl-oxazolidin-2-ones as Orally Bioavailable and Brain Penetrant Mutant IDH1 Inhibitors. ACS Med Chem Lett 2018; 9:746-751. [PMID: 30034612 DOI: 10.1021/acsmedchemlett.8b00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mutant isocitrate dehydrogenase 1 (IDH1) is an attractive therapeutic target for the treatment of various cancers such as AML, glioma, and glioblastoma. We have evaluated 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors that bind to an allosteric, induced pocket of IDH1R132H. This Letter describes SAR exploration focused on improving both the in vitro and in vivo metabolic stability of the compounds, leading to the identification of 19 as a potent and selective mutant IDH1 inhibitor that has demonstrated brain penetration and excellent oral bioavailability in rodents. In a preclinical patient-derived IDH1 mutant xenograft tumor model study, 19 efficiently inhibited the production of the biomarker 2-HG.
Collapse
Affiliation(s)
- Qian Zhao
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - James R. Manning
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - James Sutton
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Abran Costales
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Martin Sendzik
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Cynthia M. Shafer
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Julian R. Levell
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gang Liu
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas Caferro
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Young Shin Cho
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mark Palermo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gregg Chenail
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia Dooley
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brian Villalba
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ali Farsidjani
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jinyun Chen
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ty Gould
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kelly Slocum
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Minying Pu
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brant Firestone
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph Growney
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tycho Heimbach
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Raymond Pagliarini
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Abstract
The most aggressive brain malignancy, glioblastoma, accounts for 60-70% of all gliomas and is uniformly fatal. According to the molecular signature, glioblastoma is divided into four subtypes (proneural, neural, classical, and mesenchymal), each with its own genetic background. The Cancer Genome Atlas project provides information about the most common genetic changes in glioblastoma. They involve mutations in TP53, TERT, and PTEN, and amplifications in EFGR, PDGFRA, CDK4, CDK6, MDM2, and MDM4. Recently, epigenetics was used to demonstrate the oncogenic roles of miR-124, miR-137, and miR-128. The most important findings so far are mutations in IDH1/2 and MGMT promoter methylation, which are routinely used as predictive biomarkers in patient care. Current clinical treatment leaves patients with only a 10% chance for 5-year survival. Attempts to define the mutational profile of glioblastoma to identify clinically relevant changes have not yet yielded significant results. This can be attributed to inter- and intra-tumor heterogeneity that is present in most glioblastomas, as well as hypermutation that appears as a consequence of chemotherapy. The evolving field of radiogenomics aims to classify glioblastoma using a combination of magnetic resonance imaging and genomic information. In the era of genomic medicine, next-generation sequencing is extensively used in glioblastoma research because it can detect multiple changes in a single biological sample; its potential in detecting circulating cell-free DNA has been tested in cerebrospinal fluid and plasma, and it shows promise in the examination of the cellular content of extracellular vesicles as a potential source of biomarkers. Next-generation sequencing is making its way into glioblastoma diagnostics. Gene panels like GlioSeq, which includes the most commonly mutated genes, are currently being tested on snap frozen and formalin fixed paraffin embedded tissues. This new methodology is helping to define the "next generation of glioblastomas" - clinically defined and better understood, with greater potential to improve patient care. However, limitations of the necessary infrastructure, space for data storage, technical expertise, and data ownership need to be considered carefully.
Collapse
Affiliation(s)
- Ivana Jovčevska
- a Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
37
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
38
|
Zhao H, Heimberger AB, Lu Z, Wu X, Hodges TR, Song R, Shen J. Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes. Oncotarget 2018; 7:20486-95. [PMID: 26967252 PMCID: PMC4991469 DOI: 10.18632/oncotarget.7974] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background Tumor-based molecular biomarkers have redefined in the classification gliomas. However, the association of systemic metabolomics with glioma phenotype has not been explored yet. Methods In this study, we conducted two-step (discovery and validation) metabolomic profiling in plasma samples from 87 glioma patients. The metabolomics data were tested for correlation with glioma grade (high vs low), glioblastoma (GBM) versus malignant gliomas, and IDH mutation status. Results Five metabolites, namely uracil, arginine, lactate, cystamine, and ornithine, significantly differed between high- and low-grade glioma patients in both the discovery and validation cohorts. When the discovery and validation cohorts were combined, we identified 29 significant metabolites with 18 remaining significant after adjusting for multiple comparisons. Those 18 significant metabolites separated high- from low-grade glioma patients with 91.1% accuracy. In the pathway analysis, a total of 18 significantly metabolic pathways were identified. Similarly, we identified 2 and 6 metabolites that significantly differed between GBM and non-GBM, and IDH mutation positive and negative patients after multiple comparison adjusting. Those 6 significant metabolites separated IDH1 mutation positive from negative glioma patients with 94.4% accuracy. Three pathways were identified to be associated with IDH mutation status. Within arginine and proline metabolism, levels of intermediate metabolites in creatine pathway were all significantly lower in IDH mutation positive than in negative patients, suggesting an increased activity of creatine pathway in IDH mutation positive tumors. Conclusion Our findings identified metabolites and metabolic pathways that differentiated tumor phenotypes. These may be useful as host biomarker candidates to further help glioma molecular classification.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Division of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhimin Lu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tiffany R Hodges
- Division of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Rashidian J, Copaciu R, Su Q, Merritt B, Johnson C, Yahyabeik A, French E, Cummings K. Generation and Performance of R132H Mutant IDH1 Rabbit Monoclonal Antibody. Antibodies (Basel) 2017; 6:antib6040022. [PMID: 31548536 PMCID: PMC6698843 DOI: 10.3390/antib6040022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Isocitrate dehydrogenase 1 (IDH1) gene mutations have been observed in a majority of diffuse astrocytomas, oligodendrogliomas, and secondary glioblastomas, and the mutant IDH1 R132H is detectable in most of these lesions. By specifically targeting the R132H mutation through B-cell cloning, a novel rabbit monoclonal antibody, MRQ-67, was produced that can recognize mutant IDH1 R132H and does not react with the wild type protein as demonstrated by Enzyme-linked immunosorbent assay (ELISA) and Western blotting. Through immunohistochemistry, the antibody is able to highlight neoplastic cells in glioma tissue specimens, and can be used as a tool in glioma subtyping. Immunohistochemistry (IHC) detection of IDH1 mutant protein may also be used to visualize single infiltrating tumor cells in surrounding brain tissue with an otherwise normal appearance.
Collapse
Affiliation(s)
- Juliet Rashidian
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Raul Copaciu
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Qin Su
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Brett Merritt
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Claire Johnson
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Aril Yahyabeik
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Ella French
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| | - Kelsea Cummings
- MilliporeSigma, 6600 Sierra College Blvd, Rocklin, CA 95677, USA.
| |
Collapse
|
40
|
Thomas TM, Yu JS. Metabolic regulation of glioma stem-like cells in the tumor micro-environment. Cancer Lett 2017; 408:174-181. [PMID: 28743531 PMCID: PMC5790120 DOI: 10.1016/j.canlet.2017.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 12/18/2022]
Abstract
Cancer metabolism has emerged as one of the most interesting old ideas being revisited from a new perspective. In the early 20th century Otto Warburg declared metabolism the prime cause in a disease of many secondary causes, and this statement seems more prescient in view of modern expositions into the true nature of tumor evolution. As the complexity of tumor heterogeneity becomes more clear from a genetic perspective, it is important to consider the inevitably heterogeneous metabolic components of the tumor and the tumor microenvironment. High grade gliomas remain one of the most difficult to treat solid tumors, due in part to the highly vascularized nature of the tumor and the maintenance of more resistant stem-like subpopulations within the tumor. Maintenance of glioma stem cells (GSCs) requires specific alterations within the cells and the greater tumor microenvironment with regards to signaling and metabolism. Specific niches within gliomas help foster the survival of stem-like sub-populations of cells with high tumorigenicity and high metabolic plasticity. Understanding these maintenance pathways and the metabolic dependencies within the niche may highlight potential avenues of addressing tumor resistance and recurrence in glioma patients.
Collapse
Affiliation(s)
- Tom M Thomas
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - John S Yu
- Maxine-Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
41
|
Lee Y, Koh J, Kim SI, Won JK, Park CK, Choi SH, Park SH. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 2017; 5:62. [PMID: 28851427 PMCID: PMC5574236 DOI: 10.1186/s40478-017-0465-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
Mutations in the telomerase reverse transcriptase gene promoter (TERTp) are common in glioblastomas (GBMs) and oligodendrogliomas (ODGs), and therefore, have a key role in tumorigenesis and may be of prognostic value. However, the extent of their prognostic importance in various gliomas is controversial. We studied 168 patients separated into five groups: Group 1: 65 patients with ODG carrying an IDH1 or IDH2 mutation (IDH-mutant) and 1p/19q–codeletion, Group 2: 23 patients with anaplastic astrocytoma (AA), IDH-mutant, Group 3: 13 patients with GBM, IDH-mutant, Group 4: 15 patients with AA, IDH-wildtype (WT), and Group 5: 52 patients with GBM, IDH-WT. TERTp mutations were found in 96.9%, 4.4%, 76.9%, 20.0%, and 84.6% of patients in Groups 1, 2, 3, 4, and 5, respectively. The R132H mutation in IDH1 was found in 60.5% (23/38) of patients in the AA cohort (Groups 2 and 4) and 20.0% (13/65) of patients from our GBM cohort (Groups 3 and 5), whereas all patients with ODG (Group 1) had a mutation either in IDH1 (n = 62) or IDH2 (n = 3). Using Kaplan Meier survival analysis, we found that the TERTp mutation was correlated with poor overall survival (OS) in Groups 2 and 4 combined (P = 0.001) and in Group 4 (P = 0.113), and in multivariate analysis, the TERTp mutant group was associated with significantly poor survival in Group 5 (P = 0.045). However, IDH mutation, MGMT methylation, and younger patient age (<55 years old) were significantly correlated with favorable OS (all P < 0.05) in our cohort of astrocytic and ODGs. In patients with ODG (Group 1), mutant IDH and TERTp did not have prognostic value because these mutations were universally present. Based on the revised 2016 WHO classification of gliomas, we found that TERTp mutation was frequently present in patients with GBM or ODG and because it was strongly correlated with poor survival outcome in patients with IDH-WT GBM in multivariate analysis, it may be of prognostic value in this subgroup of patients with gliomas.
Collapse
|
42
|
Mukherjee PK, Funchain P, Retuerto M, Jurevic RJ, Fowler N, Burkey B, Eng C, Ghannoum MA. Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA CLINICAL 2017; 7:8-15. [PMID: 28053877 PMCID: PMC5199158 DOI: 10.1016/j.bbacli.2016.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Metabolomics represents a promising approach for discovering novel targets and biomarkers in head and neck squamous cell carcinoma (HNSCC). Here we used metabolomics to identify oral metabolites associated with HNSCC. METHODS Tumor and adjacent normal tissue from surgical resections and presurgical oral washes as well as oral washes were collected from healthy participants. Metabolites extractions of these samples were analyzed by liquid chromatography-mass spectroscopy (LC/MS), LC/MS/MS and gas chromatography-MS (GC/MS). RESULTS Among 28 samples obtained from 7 HNSCC cases and 7 controls, 422 metabolites were detected (269 identified and 153 unidentified). Oral washes contained 12 and 23 metabolites in healthy controls and HNSCC patients, respectively, with phosphate and lactate being the most abundant. Small molecules related to energy metabolism were significantly elevated in HNSCC patients compared to controls. Levels of beta-alanine, alpha-hydroxyisovalerate, tryptophan, and hexanoylcarnitine were elevated in HNSCC oral washes compared to healthy controls (range 7.8-12.2-fold). Resection tissues contained 22 metabolites, of which eight were overproduced in tumor by 1.9- to 12-fold compared to controls. TCA cycle analogs 2-hydroxyglutarate (2-HG) and 3-GMP were detected exclusively in tumor tissues. Targeted quantification of 2-HG in a representative HNSCC patient showed increase in tumor tissue (14.7 μg/mL), but undetectable in normal tissue. Moreover, high levels of 2-HG were detected in HNSCC cell lines but not in healthy primary oral keratinocyte cultures. CONCLUSIONS Oral metabolites related to energy metabolism were elevated in HNSCC, and acylcarnitine and 2HG may have potential as non-invasive biomarkers. Further validation in clinical studies is warranted.
Collapse
Affiliation(s)
- Pranab K. Mukherjee
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Pauline Funchain
- Genomic Medicine Institute, Lerner Research Institute, Taussig Cancer Institute, United States
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Richard J. Jurevic
- Diagnostic Sciences, School of Dentistry, West Virginia University, Morgantown, WV, United States
| | | | - Brian Burkey
- Head and Neck Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Taussig Cancer Institute, United States
- Department of Genetics and Genome Sciences, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, United States
| |
Collapse
|
43
|
Nørøxe DS, Poulsen HS, Lassen U. Hallmarks of glioblastoma: a systematic review. ESMO Open 2017; 1:e000144. [PMID: 28912963 PMCID: PMC5419216 DOI: 10.1136/esmoopen-2016-000144] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023] Open
Abstract
Despite decades of intense research, the complex biology of glioblastoma (GBM) is not completely understood. Progression-free survival and overall survival have remained unchanged since the implementation of the STUPP regimen in 2005 with concomitant radio-/chemotherapy and adjuvant chemotherapy with temozolomide. In the context of Hanahan and Weinberg's six hallmarks and two emerging hallmarks of cancer, we discuss up-to-date status and recent research in the biology of GBM. We discuss the clinical impact of the research results with the most promising being in the hallmarks ‘enabling replicative immortality’, ‘inducing angiogenesis’, ‘reprogramming cellular energetics’ and ‘evading immune destruction’. This includes the importance of molecular diagnostics according to the new WHO classification and how next generation sequencing is being implemented in the clinical daily life. Molecular results linked together with clinical outcome have revealed the importance of the prognostic biomarker isocitratedehydrogenase (IDH), which is now part of the diagnostic criteria in brain tumours. IDH is discussed in the context of the hallmark ‘reprogramming cellular energetics’. O-6-methylguanine-DNA methyltransferase status predicts a more favourable response to treatment and is thus a predictive marker. Based on genomic aberrations, Verhaak et al have suggested a division of GBM into three subgroups, namely, proneural, classical and mesenchymal, which could be meaningful in the clinic and could help guide and differentiate treatment decisions according to the specific subgroup. The information achieved will develop and improve precision medicine in the future.
Collapse
Affiliation(s)
| | | | - Ulrik Lassen
- Department of Radiation Biology, The Finsen Center, Rigshospitalet
| |
Collapse
|
44
|
Cheng W, Ren X, Zhang C, Han S, Wu A. Expression and prognostic value of microRNAs in lower-grade glioma depends on IDH1/2 status. J Neurooncol 2017; 132:207-218. [PMID: 28091987 DOI: 10.1007/s11060-016-2368-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/25/2016] [Indexed: 01/01/2023]
Abstract
Histological and genomic characteristics are widely used in glioma management and research. This study investigated their relationship to the expression and prognostic value of microRNAs (miRNAs) in lower-grade glioma (LGG). A total of 447 LGG samples with available clinical and genomic information from The Cancer Genome Atlas database were reviewed. Samples with isocitrate dehydrogenase (IDH) 1/2 mutations (n = 366) were randomly divided into training and validation sets to establish and confirm a four-miRNA-based risk classifier. We found that IDH1/2 mutation status had greater impact than histological and other genomic features on miRNA expression patterns; 361/487 (74%) of miRNAs were differentially expressed according to IDH1/2 mutation status. Importantly, there were no miRNAs with the same prognostic significance among groups with different IDH1/2 mutation status. For IDH1/2-mut LGG, a four-miRNA risk classifier (miR-10b, miR-130b, miR-1304, and miR-302b) was established that could independently distinguish cases as high or low risk of poor prognosis in both training and validation sets. The risk classifier outperformed individual miRNAs and traditional prognostic factors in terms of sensitivity and specificity. Bioinformatic analyses indicated that high-risk samples were more mitotically active than low-risk samples. Taken together, IDH1/2 mutation status had a significant influence on miRNA expression and prognostication in LGG. The four-miRNA-based risk classifier can be used for risk stratification of IDH1/2-mut LGG.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
45
|
Maus A, Peters GJ. Glutamate and α-ketoglutarate: key players in glioma metabolism. Amino Acids 2017; 49:21-32. [PMID: 27752843 PMCID: PMC5241329 DOI: 10.1007/s00726-016-2342-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM), or grade IV astrocytoma, is the most common type of primary brain tumor. It has a devastating prognosis with a 2-year-overall survival rate of only 26 % after standard treatment, which includes surgery, radiation, and adjuvant chemotherapy with temozolomide. Also lower grade gliomas are difficult to treat, because they diffusely spread into the brain, where extensive removal of tissue is critical. Better understanding of the cancer's biology is a key for the development of more effective therapy approaches. The discovery of isocitrate dehydrogenase (IDH) mutations in leukemia and glioma drew attention to specific metabolic aberrations in IDH-mutant gliomas. In the center of the metabolic alterations is α-ketoglutarate (αKG), an intermediate metabolite in the tricarboxylic acid (TCA) cycle, and the associated amino acid glutamate (Glu). This article highlights the role of these metabolites in glioma energy and lipid production and indicates possible weak spots of IDH-mutant and IDH-wt gliomas.
Collapse
Affiliation(s)
- Andreas Maus
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- University of Gottingen, Gottingen, Germany
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Pickard AJ, Sohn ASW, Bartenstein TF, He S, Zhang Y, Gallo JM. Intracerebral Distribution of the Oncometabolite d-2-Hydroxyglutarate in Mice Bearing Mutant Isocitrate Dehydrogenase Brain Tumors: Implications for Tumorigenesis. Front Oncol 2016; 6:211. [PMID: 27781195 PMCID: PMC5057413 DOI: 10.3389/fonc.2016.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
The prevalence of mutant isocitrate dehydrogenase 1 (IDH1) brain tumors has generated significant efforts to understand the role of the mutated enzyme product d-2-hydroxyglutarate (D2HG), an oncometabolite, in tumorigenesis, as well as means to eliminate it. Glymphatic clearance was proposed as a pathway that could be manipulated to accelerate D2HG clearance and dictated the study design that consisted of two cohorts of mice bearing U87/mutant IDH1 intracerebral tumors that underwent two microdialysis - providing D2HG interstitial fluid concentrations - sampling periods of awake and asleep (activate glymphatic clearance) in a crossover manner. Glymphatic clearance was found not to have a significant effect on D2HG brain tumor interstitial fluid concentrations that were 126.9 ± 74.8 μM awake and 117.6 ± 98.6 μM asleep. These concentrations, although low relative to total brain tumor concentrations of 6.8 ± 3.6 mM, were considered sufficient to be transported by interstitial fluid and taken up into normal cells to cause deleterious effects. A model of D2HG CNS distribution supported this contention and was further supported by in vitro studies that showed D2HG could interfere with immune cell function. The study provides insight into the compartmental distribution of D2HG in the brain, wherein the interstitial fluid serves as a dynamic pathway for D2HG to enter normal cells and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Amanda J Pickard
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Albert S W Sohn
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Thomas F Bartenstein
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shan He
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA; Department of Microbiology and Immunology, Temple University, Philadelphia, PA, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA; Department of Microbiology and Immunology, Temple University, Philadelphia, PA, USA
| | - James M Gallo
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
47
|
Cheng W, Ren X, Zhang C, Cai J, Han S, Wu A. Gene Expression Profiling Stratifies IDH1-Mutant Glioma with Distinct Prognoses. Mol Neurobiol 2016; 54:5996-6005. [PMID: 27696222 DOI: 10.1007/s12035-016-0150-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/19/2016] [Indexed: 01/25/2023]
Abstract
Isocitrate dehydrogenase (IDH)1 mutation is one of the most important genetic aberrations in glioma. Even several genetic events have refined its prognostic value, the genome-wide expression alteration has not been systematically profiled. In this work, RNA-seq expression data from 310 patients in the Chinese Glioma Genome Atlas database were included as training set, while another 297 patients with microarray data were used as internal validation set. An independent cohort of GSE16011 (n = 205) constituted an external validation set. Approximately one fifth of the genes were differentially expressed in LGG according to IDH1 mutation status, yielding distinct gene expression profiles. A six-gene risk signature was established for IDH1-mutant LGG to distinguish low- from high-risk cases, which had distinct prognoses. The six-gene signature was an independent prognostic factor for IDH1-mutant LGG and had superior predictive value as compared to traditional clinicopathologic factors. Moreover, we depicted the differential expression pattern in GBM attributing to various IDH1 status, which was similar to that of LGG. It suggested that the effect of IDH1 mutation is conserved across histological classifications. The six-gene signature had equal prognostic value for IDH1-mutant GBM. By combining glioma grade, IDH1 status, and the six-gene signature, all glioma patients could be classified into six subgroups. These six subgroups could be further summarized into three sets with distinct prognosis. Taken together, a gene expression profile associated with IDH1 status was identified in LGG and GBM; a risk signature based on six genes was developed with equal prognostic value for IDH1-mutant LGG and GBM. When combined with clinicopathologic factors, the six-gene signature is a tool that enables precise risk stratification and can improve clinical management.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
48
|
Aibaidula A, Zhao W, Wu JS, Chen H, Shi ZF, Zheng LL, Mao Y, Zhou LF, Sui GD. Microfluidics for rapid detection of isocitrate dehydrogenase 1 mutation for intraoperative application. J Neurosurg 2016; 124:1611-8. [DOI: 10.3171/2015.4.jns141833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT
Conventional methods for isocitrate dehydrogenase 1 (IDH1) detection, such as DNA sequencing and immunohistochemistry, are time- and labor-consuming and cannot be applied for intraoperative analysis. To develop a new approach for rapid analysis of IDH1 mutation from tiny tumor samples, this study used microfluidics as a method for IDH1 mutation detection.
METHODS
Forty-seven glioma tumor samples were used; IDH1 mutation status was investigated by immunohistochemistry and DNA sequencing. The microfluidic device was fabricated from polydimethylsiloxane following standard soft lithography. The immunoanalysis was conducted in the microfluidic chip. Fluorescence images of the on-chip microcolumn taken by the charge-coupled device camera were collected as the analytical results readout. Fluorescence signals were analyzed by NIS-Elements software to gather detailed information about the IDH1 concentration in the tissue samples.
RESULTS
DNA sequencing identified IDH1 R132H mutation in 33 of 47 tumor samples. The fluorescence signal for IDH1-mutant samples was 5.49 ± 1.87 compared with 3.90 ± 1.33 for wild type (p = 0.005). Thus, microfluidics was capable of distinguishing IDH1-mutant tumor samples from wild-type samples. When the cutoff value was 4.11, the sensitivity of microfluidics was 87.9% and the specificity was 64.3%.
CONCLUSIONS
This new approach was capable of analyzing IDH1 mutation status of tiny tissue samples within 30 minutes using intraoperative microsampling. This approach might also be applied for rapid pathological diagnosis of diffuse gliomas, thus guiding personalized resection.
Collapse
Affiliation(s)
| | - Wang Zhao
- 2Department of Environmental Science and Engineering, Institute of Biomedical Sciences, and
| | - Jin-song Wu
- 1Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital,
| | - Hong Chen
- 3Department of Neuropathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-feng Shi
- 1Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital,
| | - Lu-lu Zheng
- 2Department of Environmental Science and Engineering, Institute of Biomedical Sciences, and
| | - Ying Mao
- 1Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital,
| | - Liang-fu Zhou
- 1Glioma Surgery Division, Neurological Surgery Department, Huashan Hospital,
| | - Guo-dong Sui
- 2Department of Environmental Science and Engineering, Institute of Biomedical Sciences, and
| |
Collapse
|
49
|
Chen JR, Yao Y, Xu HZ, Qin ZY. Isocitrate Dehydrogenase (IDH)1/2 Mutations as Prognostic Markers in Patients With Glioblastomas. Medicine (Baltimore) 2016; 95:e2583. [PMID: 26945349 PMCID: PMC4782833 DOI: 10.1097/md.0000000000002583] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to perform a meta-analysis examining the association of isocitrate dehydrogenase (IDH)1/2 mutations with overall survival (OS) and progression-free survival (PFS) in patients with glioblastomas. Medline, Cochrane, EMBASE, and Google Scholar were searched from inception to January 28, 2015, using combinations of the following keywords: IDH mutation, brain tumor, glioma, glioblastoma, oligodendroglioma, prognosis. Randomized controlled trials, and prospective and retrospective studies of patients with glioblastomas that provided IDH mutation and survival data were included. OS and PFS were used to evaluate the association of IDH1 and IDH1/2 mutations and prognosis. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for OS and PFS were calculated and compared between patients with and without mutations. Of 165 studies that were identified, 136 nonrelevant studies were excluded. Twenty-nine full-text articles were assessed, and of these, 5 were excluded as they did not provide a quantitative outcome. Therefore, 24 studies were included in the qualitative synthesis. The pooled HR of 0.358 (95% CI 0.264-0.487, P < 0.001) indicated that IDH mutations were associated with better OS. Similarly, the pooled HR of 0.322 (95% CI 0.24200.455, P < 0.001) indicated that IDH mutations were associated with better PFS. When patients were stratified by surgery versus no surgery or IDH1 versus IDH1/2 mutations, the results also indicated that the presence of IDH mutations was associated with better OS and PFS. The IDH mutations are associated with improved survival in patients with glioblastomas.
Collapse
Affiliation(s)
- Jun-Rui Chen
- From the Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
50
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|