1
|
Inci OK, Seyrantepe V. Combined treatment of Ketogenic diet and propagermanium reduces neuroinflammation in Tay-Sachs disease mouse model. Metab Brain Dis 2025; 40:133. [PMID: 40019557 PMCID: PMC11870964 DOI: 10.1007/s11011-025-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Tay-Sachs disease is a rare lysosomal storage disorder caused by β-Hexosaminidase A enzyme deficiency causing abnormal GM2 ganglioside accumulation in the central nervous system. GM2 accumulation triggers chronic neuroinflammation due to neurodegeneration-based astrogliosis and macrophage activity with the increased expression level of Ccl2 in the cortex of a recently generated Tay-Sachs disease mouse model Hexa-/-Neu3-/-. Propagermanium blocks the neuroinflammatory response induced by Ccl2, which is highly expressed in astrocytes and microglia. The ketogenic diet has broad potential usage in neurological disorders, but the knowledge of the impact on Tay-Sach disease is limited. This study aimed to display the effect of combining the ketogenic diet and propagermanium treatment on chronic neuroinflammation in the Tay-Sachs disease mouse model. Hexa-/-Neu3-/- mice were placed into the following groups: (i) standard diet, (ii) ketogenic diet, (iii) standard diet with propagermanium, and (iv) ketogenic diet with propagermanium. RT-PCR and immunohistochemistry analyzed neuroinflammation markers. Behavioral analyses were also applied to assess phenotypic improvement. Notably, the expression levels of neuroinflammation-related genes were reduced in the cortex of 140-day-old Hexa-/-Neu3-/- mice compared to β-Hexosaminidase A deficient mice (Hexa-/-) after combined treatment. Immunohistochemical analysis displayed correlated results with the RT-PCR. Our data suggest the potential to implement combined treatment to reduce chronic inflammation in Tay-Sachs and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Orhan Kerim Inci
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, Gulbahce Mah, Izmir, 35430, Urla, Turkey
| | - Volkan Seyrantepe
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, Gulbahce Mah, Izmir, 35430, Urla, Turkey.
- Izmir Institute of Technology, IYTEDEHAM, Gulbahce Mah, İzmir, 35430, Urla, Turkey.
| |
Collapse
|
2
|
Rugieł M, Setkowicz Z, Czyzycki M, Simon R, Baumbach T, Chwiej J. Element Changes Occurring in Brain Point at the White Matter Abnormalities in Rats Exposed to the Ketogenic Diet During Prenatal Life. ACS Chem Neurosci 2024; 15:3932-3944. [PMID: 39443296 PMCID: PMC11587514 DOI: 10.1021/acschemneuro.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
A large number of clinical studies demonstrate that the ketogenic diet (KD) may be an effective approach to the reduction of epileptic seizures in children and adults. Such dietary therapy could also help pregnant women with epilepsy, especially since most antiseizure drugs have teratogenic action. However, there is a lack of medical data, considering the safety of using KD during gestation for the progeny. Therefore, we examined the influence of KD used prenatally in rats on the elemental composition of the selected brain regions in their offspring. For this purpose, synchrotron radiation-induced X-ray fluorescence (SR-XRF) microscopy was utilized, and elements such as P, S, K, Ca, Fe, and Zn were determined. Moreover, to verify whether the possible effects of KD are temporary or long-term, different stages of animal postnatal development were taken into account in our experiment. The obtained results confirmed the great applicability of SR-XRF microscopy to track the element changes occurring in the brain during postnatal development as well as those induced by prenatal exposure to the high-fat diet. The topographic analysis of the brains taken from offspring of mothers fed with KD during pregnancy and appropriate control individuals showed a potential influence of such dietary treatment on the brain levels of elements such as P and S. In the oldest progeny, a significant reduction of the surface of brain areas characterized by an increased P and S content, which histologically/morphologically correspond to white matter structures, was noticed. In turn, quantitative elemental analysis showed significantly decreased levels of Fe in the striatum and white matter of 30-day-old rats exposed prenatally to KD. This effect was temporary and was not noticed in adult animals. The observed abnormalities may be related to the changes in the accumulation of sphingomyelin and sulfatides and may testify about disturbances in the structure and integrity of the myelin, present in the white matter.
Collapse
Affiliation(s)
- Marzena Rugieł
- Faculty of
Physics and Applied Computer Science, AGH
University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Institute
of Zoology and Biomedical Research, Jagiellonian
University, Gronostajowa
9, Krakow 30-387, Poland
| | - Mateusz Czyzycki
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Rolf Simon
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Tilo Baumbach
- Institute
for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
- Laboratory
for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe D-76131, Germany
| | - Joanna Chwiej
- Faculty of
Physics and Applied Computer Science, AGH
University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
3
|
Song G, Song D, Wang Y, Wang L, Wang W. Generalized Ketogenic Diet Induced Liver Impairment and Reduced Probiotics Abundance of Gut Microbiota in Rat. BIOLOGY 2024; 13:899. [PMID: 39596854 PMCID: PMC11591927 DOI: 10.3390/biology13110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The ketogenic diet is becoming an assisted treatment to control weight, obesity, and even type 2 diabetes. However, there has been no scientific proof supporting that the ketogenic diet is absolutely safe and sustainable. In this study, Sprague-Dawley (SD) rats were fed different ratios of fat to carbohydrates under the same apparent metabolizable energy level to evaluate the effects of a ketogenic diet on healthy subjects. The results showed that the ketogenic diet could relatively sustain body weight and enhance the levels of serum alanine aminotransferase (ALT) and serum alkaline phosphatase (SAP), leading to more moderate lipoidosis and milder local non-specific inflammation in the liver compared with the high-carbohydrate diet. In addition, the abundance of probiotic strains such as Lactobacillus, Lactococcus, and Faecalitalea were reduced with the ketogenic diet in rats, while an abundance of pathogenic strains such as Anaerotruncus, Enterococcus, Rothia, and Enterorhabdus were increased with both the ketogenic diet and the high-carbohydrate diet. This study suggests that the ketogenic diet can lead to impairments of liver function and changed composition of the gut microbiota in rats, which to some extent indicates the danger of consuming a generalized ketogenic diet.
Collapse
Affiliation(s)
| | | | | | - Li Wang
- Key Laboratory of Grain and Oil Biotechnology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (G.S.); (D.S.); (Y.W.)
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (G.S.); (D.S.); (Y.W.)
| |
Collapse
|
4
|
Liu K, Yang Y, Yang JH. Underlying mechanisms of ketotherapy in heart failure: current evidence for clinical implementations. Front Pharmacol 2024; 15:1463381. [PMID: 39512825 PMCID: PMC11540999 DOI: 10.3389/fphar.2024.1463381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Heart failure (HF) is a life-threatening cardiac syndrome characterized by high morbidity and mortality, but current anti-heart failure therapies have limited efficacy, necessitating the urgent development of new treatment drugs. Exogenous ketone supplementation helps prevent heart failure development in HF models, but therapeutic ketosis in failing hearts has not been systematically elucidated, limiting the use of ketones to treat HF. Here, we summarize current evidence supporting ketotherapy in HF, emphasizing ketone metabolism in the failing heart, metabolic and non-metabolic therapeutic effects, and mechanisms of ketotherapy in HF, involving the dynamics within the mitochondria. We also discuss clinical strategies for therapeutic ketosis, aiming to deepen the understanding of the characteristics of ketone metabolism, including mitochondrial involvement, and its clinical therapeutic potential in HF.
Collapse
Affiliation(s)
| | | | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang Y, Dong Y, Zhang Y, Yan J, Ren C, Ma H, Cui Z. An 8-week ketogenic diet improves exercise endurance and liver antioxidant capacity after weight loss in obese mice. Front Nutr 2023; 10:1322936. [PMID: 38223504 PMCID: PMC10785402 DOI: 10.3389/fnut.2023.1322936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Evolving evidence supports the role of the ketogenic diet (KD) in weight loss. However, no coherent conclusions are drawn on its impact on the effect of KD on exercise and antioxidant capacity after weight loss in obese individuals. We evaluated the exercise performance, energy metabolism and antioxidant capacity of mice after weight loss using high-fat diet-induced obese mice, and used KD and normal diet (ND) intervention, respectively, to provide a theoretical basis for further study of the health effects of KD. Our results showed that the 8-week KD significantly reduced the body weight of obese mice and improved the performance of treadmill exercise, but had no significant effect on grip strength. Serum biochemical results suggest that KD has the risk of elevating blood lipid. In liver tissue, KD significantly reduced the level of oxidative stress and increased the antioxidant capacity of the liver. Our findings suggest that the intervention with KD led to weight loss, modulate energy metabolism and improve aerobic exercise endurance in obese mice. Despite its antioxidant potential in the liver, the utilization of KD still requires caution. This study underscores the need for further investigation into the health impacts of KD, especially in regard to its potential risks.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Yunlong Dong
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Ying Zhang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Jiabao Yan
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Cuiru Ren
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Hong Ma
- Sports Department, Xi’an International Studies University, Xi’an, China
| | - Zhenwei Cui
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Guo Z, Zhong F, Hou M, Xie J, Zhang AZ, Li X, Li Y, Chang B, Yang J. Key enzyme in charge of ketone reabsorption of renal tubular SMCT1 may be a new target in diabetic kidney disease. Nephrol Dial Transplant 2023; 38:2754-2766. [PMID: 37698892 DOI: 10.1093/ndt/gfad173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVE A ketogenic diet or mildly increased ketone body levels are beneficial for diabetic kidney disease (DKD) patients. Our previous study has found that sodium-coupled monocarboxylate transporter 1 (SMCT1), a key enzyme in charge of ketone reabsorption, possesses beneficial effects on the function of renal tubular epithelial cells (TECs) in energy crisis. Our present study is to investigate whether SMCT1 is important in maintaining the physiological function of renal tubular and plays a role in DKD. METHODS We tested the expression of SMCT1 in kidney tissues from DKD patients receiving kidney biopsy as well as diabetes mice. We compared the difference of β-hydroxybutyrate (β-HB) levels in serum, urine and kidney tissues between diabetic mice and control. Using recombinant adeno-associated viral vector containing SMCT1 (encoded by Slc5a8 gene), we tested the effect of SMCT1 upregulation on microalbuminuria as well as its effects on mitochondrial energy metabolism in diabetic mice. Then we investigated the role of SMCT1 and its β-HB reabsorption function in maintaining the physiological function of renal tubular using renal tubule-specific Slc5a8 gene knockout mice. Transcriptomes and proteomics analysis were used to explore the underlying mechanism. RESULTS SMCT1 downregulation was found in DKD patients as well as in diabetic mice. Moreover, diabetic mice had a decreased renal β-HB level compared with control, and SMCT1 upregulation could improve microalbuminuria and mitochondrial energy metabolism. In renal tubule-specific Slc5a8 gene knockout mice, microalbuminuria occurred early at 24 weeks of age, accompanied by ATP shortage and metabolic reprogramming in the kidney; however, supplementation with β-HB precursor substance 1,3-butanediol in food alleviated kidney damage as well as energy metabolic reprogramming. CONCLUSIONS Decreased SMCT1 expression and its ketone reabsorption function play an important role in the occurrence of DKD. SMCT1 may be a new promising target in treating DKD.
Collapse
Affiliation(s)
- Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feifei Zhong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Meng Hou
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinlan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - A Zhong Zhang
- Inspection Technology Department, Tianjin People's Procuratorate, Tianjin, China
| | - Xinran Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
8
|
Xu Y, Zheng F, Zhong Q, Zhu Y. Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer’s Disease: Mechanisms and Clinical Implications. J Alzheimers Dis 2023; 92:1173-1198. [PMID: 37038820 DOI: 10.3233/jad-230002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is mainly characterized by cognitive deficits. Although many studies have been devoted to developing disease-modifying therapies, there has been no effective therapy until now. However, dietary interventions may be a potential strategy to treat AD. The ketogenic diet (KD) is a high-fat and low-carbohydrate diet with adequate protein. KD increases the levels of ketone bodies, providing an alternative energy source when there is not sufficient energy supply because of impaired glucose metabolism. Accumulating preclinical and clinical studies have shown that a KD is beneficial to AD. The potential underlying mechanisms include improved mitochondrial function, optimization of gut microbiota composition, and reduced neuroinflammation and oxidative stress. The review provides an update on clinical and preclinical research on the effects of KD or medium-chain triglyceride supplementation on symptoms and pathophysiology in AD. We also detail the potential mechanisms of KD, involving amyloid and tau proteins, neuroinflammation, gut microbiota, oxidative stress, and brain metabolism. We aimed to determine the function of the KD in AD and outline important aspects of the mechanism, providing a reference for the implementation of the KD as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yunlong Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Fuxiang Zheng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Qi Zhong
- Department of Neurology, Shenzhen Luohu People’s Hospital; The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Souza KRD, Engel NA, Costa AB, Soares HJ, Bressan CBC, Oliveira MPD, Dela Vedova LM, Silva LED, Mendes TF, Silva MRD, Rezin GT. Influence of anti-obesity strategies on brain function in health and review: A review. Neurochem Int 2023; 163:105468. [PMID: 36587746 DOI: 10.1016/j.neuint.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
The aim of this review was to investigate in the literature the application of strategies such as low carbohydrate diet (LCD), ketogenic diet (KD) and intermittent fasting (IF) and their effects on the CNS. We performed a narrative review of the literature. The search was specifically carried out in PubMed, selecting articles in English, which had the following keywords: obesity, central nervous system, low carb diet, ketogenic diet and intermittent fasting, using the narrative review methodology. The studies found show that the benefits of the LCD, KD and IF strategies, at the CNS level, have a strong influence on the mechanisms of hunger and satiety, as well as on the reduction of food reward and show improvement in memory and mood influenced by the interventions.
Collapse
Affiliation(s)
- Keila Rufatto de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Hevylin Jacintho Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Catarina Barbosa Chaves Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil.
| | - Larissa Marques Dela Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
10
|
Makuku R, Sinaei Far Z, Khalili N, Moyo A, Razi S, Keshavarz-Fathi M, Mahmoudi M, Rezaei N. The Role of Ketogenic Diet in the Treatment of Neuroblastoma. Integr Cancer Ther 2023; 22:15347354221150787. [PMID: 36752115 PMCID: PMC9909060 DOI: 10.1177/15347354221150787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD) was initially used in 1920 for drug-resistant epileptic patients. From this point onward, ketogenic diets became a pivotal part of nutritional therapy research. To date, KD has shown therapeutic potential in many pathologies such as Alzheimer's disease, Parkinson's disease, autism, brain cancers, and multiple sclerosis. Although KD is now an adjuvant therapy for certain diseases, its effectiveness as an antitumor nutritional therapy is still an ongoing debate, especially in Neuroblastoma. Neuroblastoma is the most common extra-cranial solid tumor in children and is metastatic at initial presentation in more than half of the cases. Although Neuroblastoma can be managed by surgery, chemotherapy, immunotherapy, and radiotherapy, its 5-year survival rate in children remains below 40%. Earlier studies have proposed the ketogenic diet as a possible adjuvant therapy for patients undergoing treatment for Neuroblastoma. In this study, we seek to review the possible roles of KD in the treatment of Neuroblastoma.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Zeinab Sinaei Far
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alistar Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Sepideh Razi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
11
|
Tao Y, Leng SX, Zhang H. Ketogenic Diet: An Effective Treatment Approach for Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2303-2319. [PMID: 36043794 PMCID: PMC9890290 DOI: 10.2174/1570159x20666220830102628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
This review discusses the effects and mechanisms of a ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, mediumprotein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of the ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of the ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.
Collapse
Affiliation(s)
- Ye Tao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle - Room 1A.38A, Baltimore, MD, 21224, USA
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Costa TJ, Linder BA, Hester S, Fontes M, Pernomian L, Wenceslau CF, Robinson AT, McCarthy CG. The janus face of ketone bodies in hypertension. J Hypertens 2022; 40:2111-2119. [PMID: 35969209 PMCID: PMC9733433 DOI: 10.1097/hjh.0000000000003243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypertension is the most important risk factor for the development of terminal cardiovascular diseases, such as heart failure, chronic kidney disease, and atherosclerosis. Lifestyle interventions to lower blood pressure are generally desirable prior to initiating pharmaceutical drug treatments, which may have undesirable side effects. Ketogenic interventions are popular but the scientific literature supporting their efficacy is specific to certain interventions and outcomes in animal models and patient populations. For example, although caloric restriction has its own inherent difficulties (e.g. it requires high levels of motivation and adherence is difficult), it has unequivocally been associated with lowering blood pressure in hypertensive patients. On the other hand, the antihypertensive efficacy of ketogenic diets is inconclusive, and this is surprising, given that these diets have been largely helpful in mitigating metabolic syndrome and promoting longevity. It is possible that side effects associated with ketogenic diets (e.g. dyslipidemia) aggravate the hypertensive phenotype. However, given the recent data from our group, and others, reporting that the most abundant ketone body, β-hydroxybutyrate, can have positive effects on endothelial and vascular health, there is hope that ketone bodies can be harnessed as a therapeutic strategy to combat hypertension. Therefore, we conclude this review with a summary of the type and efficacy of ketone supplements. We propose that ketone supplements warrant investigation as low-dose antihypertensive therapy that decreases total peripheral resistance with minimal adverse side effects.
Collapse
Affiliation(s)
- Tiago J. Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | - Seth Hester
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Milene Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Camilla F. Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | - Cameron G. McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia, South Carolina
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
13
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
14
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
15
|
Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity. Neurochem Res 2022; 47:2109-2122. [PMID: 35522366 DOI: 10.1007/s11064-022-03605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma β-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.
Collapse
|
16
|
Sánchez-Lijarcio O, Yubero D, Leal F, Couce ML, Luis GGS, López-Laso E, García-Cazorla À, Pías-Peleteiro L, de Azua Brea B, Ibáñez-Micó S, Martínez GM, Schifferli MT, Enriquez SW, Ugarte M, Artuch R, Pérez B. The clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1. Clin Genet 2022; 102:40-55. [PMID: 35388452 PMCID: PMC9325084 DOI: 10.1111/cge.14138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
Glucose transporter 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder caused by haploinsufficiency of the GLUT1 glucose transporter (encoded by SLC2A1) leading to defective glucose transport across the blood–brain barrier. This work describes the genetic analysis of 56 patients with clinical or biochemical GLUT1DS hallmarks. 55.4% of these patients had a pathogenic variant of SLC2A1, and 23.2% had a variant in one of 13 different genes. No pathogenic variant was identified for the remaining patients. Expression analysis of SLC2A1 indicated a reduction in SLC2A1 mRNA in patients with pathogenic variants of this gene, as well as in one patient with a pathogenic variant in SLC9A6, and in three for whom no candidate variant was identified. Thus, the clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1.
Collapse
Affiliation(s)
- Obdulia Sánchez-Lijarcio
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Delia Yubero
- Sant Joan de Déu Research Institute, CIBERER, Barcelona, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - María L Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, CIBERER, MetabERN, Santiago de Compostela, Spain
| | | | - Eduardo López-Laso
- Paediatric Neurology Unit, Department of Paediatrics, University Hospital Reina Sofía, Maimónides Institute of Biomedical Investigation of Cordoba (IMIBIC) and CIBERER, Córdoba, Spain
| | | | | | | | - Salvador Ibáñez-Micó
- Neuropaediatrics Unit, Department of Pediatrics, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | | | - Scarlet Witting Enriquez
- Child Neurology Service, Clinical Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Rafael Artuch
- Sant Joan de Déu Research Institute, CIBERER, Barcelona, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| |
Collapse
|
17
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Cronjé HT, Jensen MK, Rozing MP, Koch M. Ketogenic therapies in mild cognitive impairment and dementia. Curr Opin Lipidol 2021; 32:330-332. [PMID: 34472542 DOI: 10.1097/mol.0000000000000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Héléne T Cronjé
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maarten P Rozing
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Manja Koch
- Institute of Epidemiology, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
Expanding Dietary Therapy Beyond the Classic Ketogenic Diet: On the Use of the Modified Atkins Diet and Low Glycemic Index Treatment in Pediatric Epilepsy. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Mongioì LM, Cimino L, Greco E, Cannarella R, Condorelli RA, La Vignera S, Calogero AE. Very-low-calorie ketogenic diet: An alternative to a pharmacological approach to improve glycometabolic and gonadal profile in men with obesity. Curr Opin Pharmacol 2021; 60:72-82. [PMID: 34358793 DOI: 10.1016/j.coph.2021.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Obesity and metabolic diseases have become a worrying reality, especially in more developed societies. They are associated with the development of many comorbidities, such as type 2 diabetes mellitus, hypogonadism, hypertension, cerebrovascular and cardiovascular diseases, neoplasia, obstructive sleep apnea, and non-alcoholic fatty liver disease. Therefore, weight loss is of paramount importance. A promising therapeutic option to achieve this goal is the very-low-calorie ketogenic diet. This review aims to summarize the main effects of very-low-calorie-ketogenic diet on the glycometabolic and gonadal profiles of men with overweight/obesity.
Collapse
Affiliation(s)
- Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Emanuela Greco
- Department of Experimental and Clinical Medicine, Magna Graecia University Catanzaro, 88100 Catanzaro, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
21
|
Włodarek D. Food for thought: the emerging role of a ketogenic diet in Alzheimer's disease management. Expert Rev Neurother 2021; 21:727-730. [PMID: 34214008 DOI: 10.1080/14737175.2021.1951235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dariusz Włodarek
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
22
|
Zweers H, van Wegberg AMJ, Janssen MCH, Wortmann SB. Ketogenic diet for mitochondrial disease: a systematic review on efficacy and safety. Orphanet J Rare Dis 2021; 16:295. [PMID: 34217336 PMCID: PMC8254320 DOI: 10.1186/s13023-021-01927-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/01/2022] Open
Abstract
Background No curative therapy for mitochondrial disease (MD) exists, prioritizing supportive treatment for symptom relief. In animal and cell models ketones decrease oxidative stress, increase antioxidants and scavenge free radicals, putting ketogenic diets (KDs) on the list of management options for MD. Furthermore, KDs are well-known, safe and effective treatments for epilepsy, a frequent symptom of MD. This systematic review evaluates efficacy and safety of KD for MD. Methods We searched Pubmed, Cochrane, Embase and Cinahl (November 2020) with search terms linked to MD and KD. From the identified records, we excluded studies on Pyruvate Dehydrogenase Complex deficiency. From these eligible reports, cases without a genetically confirmed diagnosis and cases without sufficient data on KD and clinical course were excluded. The remaining studies were included in the qualitative analysis. Results Only 20 cases (14 pediatric) from the 694 papers identified met the inclusion criteria (one controlled trial (n = 5), 15 case reports). KD led to seizure control in 7 out of 8 cases and improved muscular symptoms in 3 of 10 individuals. In 4 of 20 cases KD reversed the clinical phenotype (e.g. cardiomyopathy, movement disorder). In 5 adults with mitochondrial DNA deletion(s) related myopathy rhabdomyolysis led to cessation of KD. Three individuals with POLG mutations died while being on KD, however, their survival was not different compared to individuals with POLG mutations without KD. Conclusion Data on efficacy and safety of KD for MD is too scarce for general recommendations. KD should be considered in individuals with MD and therapy refractory epilepsy, while KD is contraindicated in mitochondrial DNA deletion(s) related myopathy. When considering KD for MD the high rate of adverse effects should be taken into account, but also spectacular improvements in individual cases. KD is a highly individual management option in this fragile patient group and requires an experienced team. To increase knowledge on this—individually—promising management option more (prospective) studies using adequate outcome measures are crucial. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01927-w.
Collapse
Affiliation(s)
- Heidi Zweers
- Department of Gastroenterology and Hepatology - Dietetics, Radboudumc, Postbus 9101, 6500 HB, Nijmegen, The Netherlands. .,Radboud Center for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands.
| | - Annemiek M J van Wegberg
- Department of Gastroenterology and Hepatology - Dietetics, Radboudumc, Postbus 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Saskia B Wortmann
- Radboud Center for Mitochondrial Medicine (RCMM), Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands.,University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
23
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
24
|
Hwang SI, Chen HY, Fenk C, Rothfuss MA, Bocan KN, Franconi NG, Morgan GJ, White DL, Burkert SC, Ellis JE, Vinay ML, Rometo DA, Finegold DN, Sejdic E, Cho SK, Star A. Breath Acetone Sensing Based on Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids Enabled by a Custom-Built Dehumidifier. ACS Sens 2021; 6:871-880. [PMID: 33720705 DOI: 10.1021/acssensors.0c01973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@TiO2) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and β-hydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hou-Yu Chen
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Courtney Fenk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gregory J. Morgan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James E. Ellis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David A. Rometo
- Department of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David N. Finegold
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
25
|
Olaniyan OT, Ojewale OA, Dare A, Adebayo O, Enyojo JE, Okotie GE, Adetunji CO, Mada BS, Okoli BJ, Eweoya OO. Cocos nucifera L. oil alleviates lead acetate-induced reproductive toxicity in sexually-matured male Wistar rats. J Basic Clin Physiol Pharmacol 2021; 33:297-303. [PMID: 33713589 DOI: 10.1515/jbcpp-2020-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Lead primarily affects male reproductive functions via hormonal imbalance and morphological damage to the testicular tissue with significant alteration in sperm profile and oxidative markers. Though, different studies have reported that Cocos nucifera L. oil has a wide range of biological effects, this study aimed at investigating the effect of Cocos nucifera L. oil on lead acetate-induced reproductive toxicity in male Wistar rats. METHODS Twenty (20) sexually matured male Wistar rats (55-65 days) were randomly distributed into four groups (n=5). Group I (negative control)-distilled water orally for 56 days, Group II (positive control)-5 mg/kg bwt lead acetate intraperitoneally (i.p.) for 14 days, Group III-6.7 mL/kg bwt Cocos nucifera L. oil orally for 56 days and Group IV-lead acetate intraperitoneally (i.p.) for 14 days and Cocos nucifera L. oil for orally for 56 days. Rats were sacrificed by diethyl ether, after which the serum, testis and epididymis were collected and used for semen analysis, biochemical and histological analysis. RESULTS The lead acetate significantly increases (p<0.05) testicular and epididymal malondialdehyde (MDA) levels, while a significant reduction (p<0.05) in sperm parameters, organ weight, testosterone and luteinizing hormone was observed when compared with the negative control. The coadministration of Cocos nucifera oil with lead acetate significantly increases (p<0.05) testosterone, luteinizing hormone, sperm parameters and organ weight, with a significant decrease (p<0.05) in MDA levels compared with positive control. Histological analysis showed that lead acetate distorts testicular cytoarchitecture and germ cell integrity while this was normalized in the cotreated group. CONCLUSIONS Cocos nucifera oil attenuates the deleterious effects of lead acetate in male Wistar rats, which could be attributed to its polyphenol content and antioxidant properties.
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Department of Physiology, Laboratory for Reproductive Biology and Developmental Programming, Edo State University Uzairue, Iyamho, Edo State, Nigeria
| | - Olakunle A Ojewale
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Ayobami Dare
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Olufemi Adebayo
- Department of Physiology, Bingham University Karu, New Karu, Nasarawa State, Nigeria
| | - Joseph E Enyojo
- Department of Physiology, Bingham University Karu, New Karu, Nasarawa State, Nigeria
| | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Charles O Adetunji
- Department of Microbiology, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Edo State University Uzairue, Iyamho, Edo State, Nigeria
| | | | - Bamidele J Okoli
- Institute of Chemical and Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng, South Africa
| | - Olugbenga O Eweoya
- School of Medicine and Allied Health Sciences, University of the Gambia, Banjul, The Gambia
| |
Collapse
|
26
|
Christensen MG, Damsgaard J, Fink-Jensen A. Use of ketogenic diets in the treatment of central nervous system diseases: a systematic review. Nord J Psychiatry 2021; 75:1-8. [PMID: 32757903 DOI: 10.1080/08039488.2020.1795924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Studies have consistently shown that patients with epilepsy could benefit from ketogenic diets (KDs). Recent evidence suggests that KD could be used in the treatment of central nervous system (CNS) diseases. The aim of this systematic review was to investigate the use and efficacy of KD, modified Atkins diet (MAD) and medium-chain triglyceride (MCT) diet in infants, children, adolescents, and adults with CNS diseases. METHODS This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Main databases, i.e. EMBASE, PubMed and PsycINFO, were searched on 4 December 2019. Only randomized clinical trials (RCTs) were included and only if they reported KD, MCT or MAD interventions on patients with CNS diseases. RESULTS Twenty-four publications were eligible for inclusion (n = 1221). Twenty-one publications concerned epilepsy, two concerned Alzheimer's disease (AD), and one concerned Parkinson's disease (PD). All studies regarding epilepsy reported of seizure reduction compared to baseline. MCT did not significantly change regional cerebral blood flow (rCBF) in patients with AD, but MAD significantly improved memory at 6 weeks (p = .03). KD significantly improved motor and nonmotor functions in patients with PD at 8 weeks (p < .001). There was a trend towards fewer adverse effects in MAD compared to KD. CONCLUSION In conclusion, various forms of KDs seem tolerable and effective as part of the treatment for epilepsy, AD and PD, although more investigation concerning the mechanism, efficacy and adverse events is necessary.
Collapse
Affiliation(s)
| | - Jakob Damsgaard
- Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Anders Fink-Jensen
- Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Gavrilovici C, Rho JM. Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. J Inherit Metab Dis 2021; 44:42-53. [PMID: 32654164 DOI: 10.1002/jimd.12283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
28
|
Barrea L, Caprio M, Tuccinardi D, Moriconi E, Di Renzo L, Muscogiuri G, Colao A, Savastano S. Could ketogenic diet "starve" cancer? Emerging evidence. Crit Rev Food Sci Nutr 2020; 62:1800-1821. [PMID: 33274644 DOI: 10.1080/10408398.2020.1847030] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells (CCs) predominantly use aerobic glycolysis (Warburg effect) for their metabolism. This important characteristic of CCs represents a potential metabolic pathway to be targeted in the context of tumor treatment. Being this mechanism related to nutrient oxidation, dietary manipulation has been hypothesized as an important strategy during tumor treatment. Ketogenic diet (KD) is a dietary pattern characterized by high fat intake, moderate-to-low protein consumption, and very-low-carbohydrate intake (<50 g), which in cancer setting may target CCs metabolism, potentially influencing both tumor treatment and prognosis. Several mechanisms, far beyond the originally proposed inhibition of glucose/insulin signaling, can underpin the effectiveness of KD in cancer management, ranging from oxidative stress, mitochondrial metabolism, and inflammation. The role of a qualified Nutritionist is essential to reduce and manage the short and long-term complications of this dietary therapy, which must be personalized to the individual patient for the planning of tailored KD protocol in cancer patients. In the present review, we summarize the proposed antitumor mechanisms of KD, the application of KD in cancer patients with obesity and cachexia, and the preclinical and clinical evidence on KD therapy in cancer.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | |
Collapse
|
29
|
Conboy K, Henshall DC, Brennan GP. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol Dis 2020; 148:105179. [PMID: 33181318 DOI: 10.1016/j.nbd.2020.105179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a network disorder driven by fundamental changes in the function of the cells which compose these networks. Driving this aberrant cellular function are large scale changes in gene expression and gene expression regulation. Recent studies have revealed rapid and persistent changes in epigenetic control of gene expression as a critical regulator of the epileptic transcriptome. Epigenetic-mediated gene output regulates many aspects of cellular physiology including neuronal structure, neurotransmitter assembly and abundance, protein abundance of ion channels and other critical neuronal processes. Thus, understanding the contribution of epigenetic-mediated gene regulation could illuminate novel regulatory mechanisms which may form the basis of novel therapeutic approaches to treat epilepsy. In this review we discuss the effects of epileptogenic brain insults on epigenetic regulation of gene expression, recent efforts to target epigenetic processes to block epileptogenesis and the prospects of an epigenetic-based therapy for epilepsy, and finally we discuss technological advancements which have facilitated the interrogation of the epigenome.
Collapse
Affiliation(s)
- Karen Conboy
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Gary P Brennan
- FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Guo Y, Wang X, Jia P, You Y, Cheng Y, Deng H, Luo S, Huang B. Ketogenic diet aggravates hypertension via NF-κB-mediated endothelial dysfunction in spontaneously hypertensive rats. Life Sci 2020; 258:118124. [PMID: 32702443 DOI: 10.1016/j.lfs.2020.118124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022]
Abstract
AIMS Ketogenic diet (KD) has been proposed to be an effective lifestyle intervention for metabolic syndrome. However, the effects of KD on hypertension have not been well investigated. The present study aimed to investigate the effects and underling mechanisms of KD on hypertension in spontaneously hypertensive rats (SHRs). MATERIALS AND METHODS SHRs were subjected to normal diet or KD for 4 weeks, starting at the age of 10 weeks. Then, the blood pressure and vascular function were assessed. Next, the eNOS expression, inflammatory factors and relative signaling pathway were examined. Human umbilical vein endothelial cells were used to investigate the underlying mechanism account for the effect of ketone on inflammation and eNOS expression. KEY FINDINGS Compared with the normal diet, KD was indicated to aggravate hypertension and impaire endothelium-dependent relaxation in mesenteric arteries of SHRs. eNOS and CD31 expression in mesenteric arteries were also significantly suppressed by KD. In addition, KD markedly increased the activation of NF-κB pathway and the expression of IL1-β and TNF-α. In vitro, results showed that inhibition of NF-κB could rescue the adverse effects of ketone body and TGF-β on eNOS expression and inflammation response. SIGNIFICANCE Our study indicated that KD impaired endothelium-dependent relaxation in mesenteric arteries and aggravated the development of hypertension in SHRs, suggesting that it should be more cautious to apply KD into clinical application in hypertensive individuals.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Jia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Cheng
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Hongpei Deng
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Bi Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Mechanism of Action of Ketogenic Diet Treatment: Impact of Decanoic Acid and Beta-Hydroxybutyrate on Sirtuins and Energy Metabolism in Hippocampal Murine Neurons. Nutrients 2020; 12:nu12082379. [PMID: 32784510 PMCID: PMC7468807 DOI: 10.3390/nu12082379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet (KD), a high-lipid and low-carbohydrate diet, has been used in the treatment of epilepsy, neurodegenerative disorders, inborn errors of metabolism and cancer; however, the exact mechanism/s of its therapeutic effect is not completely known. We hypothesized that sirtuins (SIRT)—a group of seven NAD-dependent enzymes and important regulators of energy metabolism may be altered under KD treatment. HT22 hippocampal murine neurons were incubated with two important KD metabolites–beta-hydroxybutyrate (BHB) (the predominant ketone body) and decanoic acid (C10), both accumulating under KD. Enzyme activity, protein, and gene expressions of SIRT 1-4, enzyme capacities of the mitochondrial respiratory chain complexes (MRC), citrate synthase (CS) and gene expression of monocarboxylate transporters were measured in control (untreated) and KD-treated cells. Incubation with both–BHB and C10 resulted in significant elevation of SIRT1 enzyme activity and an overall upregulation of the MRC. C10 incubation showed prominent increases in maximal activities of complexes I + III and complex IV of the MRC and ratios of their activities to that of CS, pointing towards a more efficient functioning of the mitochondria in C10-treated cells.
Collapse
|
32
|
Lynch S, Barry C, Douglass LM. Social and Economic Challenges to Implementing the Ketogenic Diet: A Case Series. JOURNAL OF PEDIATRIC EPILEPSY 2020. [DOI: 10.1055/s-0040-1713908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe ketogenic diet (KD) is a powerful therapeutic tool that can reduce seizure activity in patients with refractory epilepsy. However, dietary implementation can be difficult for patients and families due to the time and resource intensive nature of the diet. These challenges are particularly pronounced in economically disadvantaged or socially unstable patient populations. The first case of this series describes the successful implementation of KD in a low-income, homeless patient through the use of innovative KD recipes and access to social programs offered through Boston Medical Center. The second case illustrates the importance of consistent parental support to the success of KD and describes mechanisms used to improve familial support within a nonunified household. Collectively, these cases demonstrate ways by which health care providers can make this powerful dietary treatment accessible to low-resource patients.
Collapse
Affiliation(s)
- Sloan Lynch
- Division of Child Neurology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Catherine Barry
- Division of Developmental and Behavioral Pediatrics, Boston Medical Center, Boston, Massachusetts, United States
| | - Laurie M. Douglass
- Division of Child Neurology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
33
|
|
34
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
35
|
Li RJ, Liu Y, Liu HQ, Li J. Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. J Food Biochem 2020; 44:e13140. [PMID: 31943235 DOI: 10.1111/jfbc.13140] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Ketogenic diet (KD), the "High-fat, low-carbohydrate, adequate-protein" diet strategy, replacing glucose with ketone bodies, is effective against several diseases, from intractable epileptic seizures, metabolic disorders, tumors, autosomal dominant polycystic kidney disease, and neurodegeneration to skeletal muscle atrophy and peripheral neuropathy. Key mechanisms include augmented mitochondrial efficiency, reduced oxidative stress, and regulated phospho-AMP-activated protein kinase, gamma-aminobutyric acid-glutamate, Na+/ K+ pump, leptin and adiponectin levels, ghrelin levels, lipogenesis, ketogenesis, lipolysis, and gluconeogenesis. In cancer cells, KD targets glucose metabolism, suppresses insulin-like growth factor-1 and PI3K/AKT/mTOR pathways, and reduces cancer cachexia and muscle waste and fatigue. An associated increased skeletal proliferator-activated receptor-γ coactivator-1α activity alters systemic ketone body homeostasis, contributing toward attenuated diabetic hyperketonemia. Antioxidative and anti-inflammatory properties enable KD enhance endurance and sports performances while preventing exercise-induced muscle and organ debility. KD reduces metabolic syndromes-associated allodynia and promotes peripheral axonal and sensory regeneration. This review enlightens effects of KD on various disease conditions. PRACTICAL APPLICATIONS: It is increasingly being realized that diet plays a very important role in our fight against several diseases. This can range from neurological disorders to diabetes and cancer. In this context, the potential of KD, the "High-fat, low-carbohydrate, adequate-protein" diet strategy, is increasingly being realized. In this article, we provide a comprehensive analysis of the benefits of KD against many diseases and discuss the underlying biochemical mechanisms. We hope that our write-up will stimulate further research on KD and help generate an interest for the populations to adopt this healthy diet. It can help overcome the problems associated with weight and dysregulated metabolism.
Collapse
Affiliation(s)
- Rui-Jun Li
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Yang Liu
- The Handsurgery Department, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| | - Ji Li
- The Anesthesia Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes. Med Oncol 2020; 37:14. [PMID: 31927631 DOI: 10.1007/s12032-020-1337-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Preclinical data provide evidence for synergism between ketogenic diets (KDs) and other oncological therapies. The aim of this systematic review was to summarize data from clinical studies that have tested KDs along with other treatments used within medical oncology. The PubMed database was searched using the key words "ketogenic" AND ("cancer" OR "glioblastoma"). A secondary search was conducted by screening the reference lists of relevant articles on this topic. Relevant studies for this review were defined as studies in which KDs were used complementary to surgery, radio-, chemo-, or targeted therapy and at least one of the following four outcomes were reported: (i) Overall survival (OS); (ii) progression-free survival (PFS); (iii) local control rate; (iv) body composition changes. Twelve papers reporting on 13 clinical studies were identified. Nine studies were prospective and six had a control group, but only two were randomized. KD prescription varied widely between studies and was described only rudimentarily in most papers. Adverse events attributed to the diet were rare and only minor (grade 1-2) except for one possibly diet-related grade 4 event. Studies reporting body composition changes found beneficial effects of KDs in both overweight and frail patient populations. Beneficial effects of KDs on OS and/or PFS were found in four studies including one randomized controlled trial. Studies in high-grade glioma patients were not sufficiently powered to prove efficacy. Evidence for beneficial effects of KDs during cancer therapy is accumulating, but more high-quality studies are needed to assess the overall strength of evidence.
Collapse
|
37
|
Bowman CE, Selen Alpergin ES, Ellis JM, Wolfgang MJ. Loss of ACOT7 potentiates seizures and metabolic dysfunction. Am J Physiol Endocrinol Metab 2019; 317:E941-E951. [PMID: 31039008 PMCID: PMC6879868 DOI: 10.1152/ajpendo.00537.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
Abstract
Neurons uniquely antagonize fatty acid utilization by hydrolyzing the activated form of fatty acids, long chain acyl-CoAs, via the enzyme acyl-CoA thioesterase 7, Acot7. The loss of Acot7 results in increased fatty acid utilization in neurons and exaggerated stimulus-evoked behavior such as an increased startle response. To understand the contribution of Acot7 to seizure susceptibility, we generated Acot7 knockout (KO) mice and assayed their response to kainate-induced seizures. Acot7 KO mice exhibited potentiated behavioral and molecular indices of seizure severity following kainic acid administration, suggesting that fatty acid metabolism in neurons can be a critical regulator of neuronal activity. These data are consistent with the presentation of seizures in a human with genomic deletion of ACOT7 demonstrating the conservation of function across species. To further understand the metabolic complications arising from a deletion in Acot7, we subjected Acot7 KO mice to a high-fat diet. While the loss of Acot7 did not result in metabolic complications following a normal chow diet, a high-fat diet induced greater body weight gain, adiposity, and glucose intolerance in Acot7 KO mice. These data demonstrate that Acot7, a fatty acid metabolic enzyme highly enriched in neurons, regulates both brain-specific metabolic processes related to seizure susceptibility and the whole body response to dietary lipid.
Collapse
Affiliation(s)
- Caitlyn E Bowman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica M Ellis
- Department of Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Gupta L, Khandelwal D, Kalra S, Gupta P, Dutta D, Aggarwal S. Ketogenic diet in endocrine disorders: Current perspectives. J Postgrad Med 2019; 63:242-251. [PMID: 29022562 PMCID: PMC5664869 DOI: 10.4103/jpgm.jpgm_16_17] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diet (KD) is a high-fat, adequate-protein, and low-carbohydrate diet that leads to nutritional ketosis, long known for antiepileptic effects and has been used therapeutically to treat refractory epilepsy. This review attempts to summarize the evidence and clinical application of KD in diabetes, obesity, and other endocrine disorders. KD is usually animal protein based. An empiric vegetarian Indian variant of KD has been provided keeping in mind the Indian food habits. KD has beneficial effects on cardiac ischemic preconditioning, improves oxygenation in patients with respiratory failure, improves glycemic control in diabetics, is associated with significant weight loss, and has a beneficial impact on polycystic ovarian syndrome. Multivitamin supplementations are recommended with KD. Recently, ketones are being proposed as super-metabolic fuel; and KD is currently regarded as apt dietary therapy for "diabesity."
Collapse
Affiliation(s)
- L Gupta
- Department of Dietetics, Maharaja Agrasen Hospital, New Delhi, India
| | - D Khandelwal
- Department of Endocrinology, Maharaja Agrasen Hospital, New Delhi, India
| | - S Kalra
- Department of Endocrinology, Bharti Hospital and Bharti Research Institute of Diabetes and Endocrinology, Karnal, Haryana, India
| | - P Gupta
- Department of Paediatrics, Maharaja Agrasen Hospital, New Delhi, India
| | - D Dutta
- Department of Endocrinology, Venkateshwar Hospitals, New Delhi, India
| | - S Aggarwal
- Department of Medicine, Division of Endocrinology, Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, Haryana, India
| |
Collapse
|
39
|
Klement RJ. When is a Ketogenic Diet Ketogenic? Comment on "Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients, Nutrients 2019, 11, 1156". Nutrients 2019; 11:nu11081909. [PMID: 31443214 PMCID: PMC6722583 DOI: 10.3390/nu11081909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422 Schweinfurt, Germany.
| |
Collapse
|
40
|
Svedlund A, Hallböök T, Magnusson P, Dahlgren J, Swolin-Eide D. Prospective study of growth and bone mass in Swedish children treated with the modified Atkins diet. Eur J Paediatr Neurol 2019; 23:629-638. [PMID: 31085021 DOI: 10.1016/j.ejpn.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE The modified Atkins diet (MAD) is a less restrictive treatment option than the ketogenic diet (KD) for intractable epilepsy and some metabolic conditions. Prolonged KD treatment may decrease bone mineralization and affect linear growth; however, long-term studies of MAD treatment are lacking. This study was designed to assess growth, body composition, and bone mass in children on MAD treatment for 24 months. METHODS Thirty-eight patients, mean age (SD) 6.1 years (4.8 years), 21 girls, with intractable epilepsy (n = 22), glucose transporter type 1 deficiency syndrome (n = 7), or pyruvate dehydrogenase complex deficiency (n = 9) were included. Body weight, height, body mass index (BMI), bone mass, and laboratory tests (calcium, phosphorus, magnesium, alkaline phosphatase, cholesterol, 25-hydroxyvitamin D, insulin-like growth factor-I and insulin-like growth factor binding protein 3) were assessed at baseline and after 24 months of MAD treatment. RESULTS Approximately 50% of the patients responded with more than 50% seizure reduction. Weight and height standard deviation score (SDS) were stable over 24 months, whereas median (minimum - maximum) BMI SDS increased from 0.2 (-3.3 to 4.5) to 0.7 (-0.9 to 2.6), p < 0.005. No effects were observed for bone mass (total body, lumbar spine and hip) or fat mass. CONCLUSIONS The MAD was efficient in reducing seizures, and no negative effect was observed on longitudinal growth or bone mass after MAD treatment for 24 months.
Collapse
Affiliation(s)
- A Svedlund
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Department of Pediatrics, Gothenburg, Sweden.
| | - T Hallböök
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Department of Pediatrics, Gothenburg, Sweden
| | - P Magnusson
- Department of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Dahlgren
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Department of Pediatrics, Gothenburg, Sweden
| | - D Swolin-Eide
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Department of Pediatrics, Gothenburg, Sweden
| |
Collapse
|
41
|
Di Lorenzo C, Coppola G, Bracaglia M, Di Lenola D, Sirianni G, Rossi P, Di Lorenzo G, Parisi V, Serrao M, Cervenka MC, Pierelli F. A ketogenic diet normalizes interictal cortical but not subcortical responsivity in migraineurs. BMC Neurol 2019; 19:136. [PMID: 31228957 PMCID: PMC6588932 DOI: 10.1186/s12883-019-1351-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/31/2019] [Indexed: 11/26/2022] Open
Abstract
Background A short ketogenic diet (KD) treatment can prevent migraine attacks and correct excessive cortical response. Here, we aim to prove if the KD-related changes of cortical excitability are primarily due to cerebral cortex activity or are modulated by the brainstem. Methods Through the stimulation of the right supraorbital division of the trigeminal nerve, we concurrently interictally recorded the nociceptive blink reflex (nBR) and the pain-related evoked potentials (PREP) in 18 migraineurs patients without aura before and after 1-month on KD, while in metabolic ketosis. nBR and PREP reflect distinct brain structures activation: the brainstem and the cerebral cortex respectively. We estimated nBR R2 component area-under-the-curve as well as PREP amplitude habituation as the slope pof the linear regression between the 1st and the 2nd block of 5 averaged responses. Results Following 1-month on KD, the mean number of attacks and headache duration reduced significantly. Moreover, KD significantly normalized the interictal PREP habituation (pre: + 1.8, post: − 9.1, p = 0.012), while nBR deficit of habituation did not change. Conclusions The positive clinical effects we observed in a population of migraineurs by a 1-month KD treatment coexists with a normalization at the cortical level, not in the brainstem, of the typical interictal deficit of habituation. These findings suggest that the cerebral cortex may be the primary site of KD-related modulation. Trial registration ClinicalTrials.gov NCT03775252 (retrospectively registered, December 09, 2018).
Collapse
Affiliation(s)
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University Rof Rome Polo Pontino, Latina, Italy
| | - Martina Bracaglia
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University Rof Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University Rof Rome Polo Pontino, Latina, Italy
| | | | - Paolo Rossi
- INI, Headache Clinic, Grottaferrata (RM), Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neurophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University Rof Rome Polo Pontino, Latina, Italy
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University Rof Rome Polo Pontino, Latina, Italy.,IRCCS - Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
42
|
Włodarek D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease). Nutrients 2019; 11:nu11010169. [PMID: 30650523 PMCID: PMC6356942 DOI: 10.3390/nu11010169] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/29/2022] Open
Abstract
The goal of this review was to assess the effectiveness of ketogenic diets on the therapy of neurodegenerative diseases. The ketogenic diet is a low-carbohydrate and fat-rich diet. Its implementation has a fasting-like effect, which brings the body into a state of ketosis. The ketogenic diet has, for almost 100 years, been used in the therapy of drug-resistant epilepsy, but current studies indicate possible neuroprotective effects. Thus far, only a few studies have evaluated the role of the ketogenic diet in the prevention of Parkinson’s disease (PD) and Alzheimer’s disease (AD). Single studies with human participants have demonstrated a reduction of disease symptoms after application. The application of the ketogenic diet to elderly people, however, raises certain concerns. Persons with neurodegenerative diseases are at risk of malnutrition, while food intake reduction is associated with disease symptoms. In turn, the ketogenic diet leads to a reduced appetite; it is not attractive from an organoleptic point of view, and may be accompanied by side effects of the gastrointestinal system. All this may lead to further lowering of consumed food portions by elderly persons with neurodegenerative diseases and, in consequence, to further reduction in the supply of nutrients provided by the diet. Neither data on the long-term application of the ketogenic diet in patients with neurodegenerative disease or data on its effects on disease symptoms are available. Further research is needed to evaluate the suitability of the ketogenic diet in the therapy of AD- or PD-affected persons.
Collapse
Affiliation(s)
- Dariusz Włodarek
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska Str., 02-776 Warsaw, Poland.
| |
Collapse
|
43
|
Gerges M, Selim L, Girgis M, El Ghannam A, Abdelghaffar H, El-Ayadi A. Implementation of ketogenic diet in children with drug-resistant epilepsy in a medium resources setting: Egyptian experience. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 11:35-38. [PMID: 30619711 PMCID: PMC6312833 DOI: 10.1016/j.ebcr.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/10/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Background Even with the extensive use of ketogenic dietary therapies (KD), there still exist many areas of the world that do not provide these treatments. Implementing the ketogenic diet in different countries forms a real challenge in order to match the cultural and economic differences. Aim To assess the feasibility of implementing a ketogenic diet plan in a limited resource setting with identification of the compliance, tolerability and side effects in the target population and to assess the efficacy of the ketogenic diet in children with intractable epilepsy. Method of the study The medical records of 28 patients with intractable epilepsy, treated at The Children's Hospital - Cairo University from December 2012 to March 2014 with ketogenic dietary therapy were reviewed. The non-fasting protocol was followed without hospital admission. All children were started on a standardized classic ketogenic diet with a ratio ranging from 2.5-4:1 (grams of fat to combined carbohydrate and protein). Patients were followed at 1, 3 and 6 months after diet initiation. Results The median age was 60 months (range, 30-110). After 1 month from diet initiation, 16 patients (57%) remained on the diet. One of them (6.3%) had more than 90% reduction in seizure frequency, an additional 6 patients (37.5%) had a 50-90% reduction in seizure frequency. In total, seven out of the 16 patients continuing the diet for 1 month (43.8%) had more than 50% improvement in seizure control from the base line. Despite having 50-90% seizure control, three children discontinued the diet after one month.Three months after diet initiation, 6 patients (22%) remained on diet, 4 of them (66.7%) had more than 50% reduction in seizure frequency.At 6 months, only 3 patients remained on diet, 2 of them (66.6%) had 50-90% reduction in seizure frequency, while one patient (33.3%) showed better than 90% decrease in seizure. Conclusion The current study shows that the ketogenic diet could be implemented in medium resources countries and should be included in the management of children with intractable epilepsy.
Collapse
Affiliation(s)
- Mary Gerges
- Department of Pediatrics, Clinical Nutrition Division, Cairo University Hospital, Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Neurology Division, Cairo University Hospital, Cairo, Egypt
| | - Marian Girgis
- Department of Pediatrics, Neurology Division, Cairo University Hospital, Cairo, Egypt
| | - Amr El Ghannam
- Department of Pediatrics, Neurology Division, Cairo University Hospital, Cairo, Egypt
| | | | - Ahmed El-Ayadi
- Department of Pediatrics, Clinical Nutrition Division, Cairo University Hospital, Cairo, Egypt
| |
Collapse
|
44
|
Kirmani BF, Barr D, Robinson DM, Pranske Z, Fonkem E, Benge J, Huang JH, Ling G. Management of Autoimmune Status Epilepticus. Front Neurol 2018; 9:259. [PMID: 29867707 PMCID: PMC5954092 DOI: 10.3389/fneur.2018.00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
Status epilepticus is a neurological emergency with increased morbidity and mortality. Urgent diagnosis and treatment are crucial to prevent irreversible brain damage. In this mini review, we will discuss the recent advances in the diagnosis and treatment of autoimmune status epilepticus (ASE), a rare form of the disorder encountered in the intensive care unit. ASE can be refractory to anticonvulsant therapy and the symptoms include subacute onset of short-term memory loss with rapidly progressive encephalopathy, psychiatric symptoms with unexplained new-onset seizures, imaging findings, CSF pleocytosis, and availability of antibody testing makes an earlier diagnosis of ASE possible. Neuroimmunomodulatory therapies are the mainstay in the treatment of ASE. The goal is to maximize the effectiveness of anticonvulsant agents and find an optimal combination of therapies while undergoing immunomodulatory therapy to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Batool F Kirmani
- Epilepsy Center, Baylor Scott and White Health Neuroscience Institute, Temple, TX, United States.,Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Donald Barr
- Epilepsy Center, Baylor Scott and White Health Neuroscience Institute, Temple, TX, United States
| | | | | | - Ekokobe Fonkem
- Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.,Department of Neurosurgery, Baylor Scott and White Health Neuroscience Institute, Temple, TX, United States
| | - Jared Benge
- Division of Neuropsychology, Baylor Scott and White Health Neuroscience Institute, Temple, TX, United States
| | - Jason H Huang
- Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.,Department of Neurosurgery, Baylor Scott and White Health Neuroscience Institute, Temple, TX, United States
| | - Geoffrey Ling
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
45
|
Barry D, Ellul S, Watters L, Lee D, Haluska R, White R. The ketogenic diet in disease and development. Int J Dev Neurosci 2018; 68:53-58. [DOI: 10.1016/j.ijdevneu.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Affiliation(s)
- Denis Barry
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Sarah Ellul
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Lindsey Watters
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - David Lee
- Department of Anatomy Trinity Biomedical Sciences InstituteTrinity College DublinDublin, 2Ireland
| | - Robert Haluska
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| | - Robin White
- Department of BiologyWestfield State University577 Western AvenueWestfieldMA01085United States
| |
Collapse
|
46
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
47
|
Poff A, Koutnik AP, Egan KM, Sahebjam S, D'Agostino D, Kumar NB. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol 2017; 56:135-148. [PMID: 29294371 DOI: 10.1016/j.semcancer.2017.12.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022]
Abstract
Gliomas are a highly heterogeneous tumor, refractory to treatment and the most frequently diagnosed primary brain tumor. Although the current WHO grading system (2016) demonstrates promise towards identifying novel treatment modalities and better prediction of prognosis over time, to date, existing targeted and mono therapy approaches have failed to elicit a robust impact on disease progression and patient survival. It is possible that tumor heterogeneity as well as specifically targeted agents fail because redundant molecular pathways in the tumor make it refractory to such approaches. Additionally, the underlying metabolic pathology, which is significantly altered during neoplastic transformation and tumor progression, is unaccounted for. With several molecular and metabolic pathways implicated in the carcinogenesis of CNS tumors, including glioma, we postulate that a systemic, broad spectrum approach to produce robust targeting of relevant and multiple molecular and metabolic regulation of growth and survival pathways, critical to the modulation of hallmarks of carcinogenesis, without clinically limiting toxicity, may provide a more sustained impact on clinical outcomes compared to the modalities of treatment evaluated to date. The objective of this review is to examine the emerging hallmark of reprogramming energy metabolism of the tumor cells and the tumor microenvironment during carcinogenesis, and to provide a rationale for exploiting this hallmark and its biological capabilities as a target for secondary chemoprevention and treatment of glioma. This review will primarily focus on interventions to induce ketosis to target the glycolytic phenotype of many cancers, with specific application to secondary chemoprevention of low grade glioma- to halt the progression of lower grade tumors to more aggressive subtypes, as evidenced by reduction in validated intermediate endpoints of disease progression including clinical symptoms.
Collapse
Affiliation(s)
- Angela Poff
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Andrew P Koutnik
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Kathleen M Egan
- Moffitt Cancer Center, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, MRC/CANCONT, Tampa, FL 22612-9497, United States.
| | - Solmaz Sahebjam
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL 22612-9497, United States.
| | - Dominic D'Agostino
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Nagi B Kumar
- Moffitt Cancer Center, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, MRC/CANCONT, Tampa, FL 22612-9497, United States.
| |
Collapse
|
48
|
Loos B, Klionsky DJ, Wong E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 2017; 156:90-106. [DOI: 10.1016/j.pneurobio.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
|
49
|
Paleologou E, Ismayilova N, Kinali M. Use of the Ketogenic Diet to Treat Intractable Epilepsy in Mitochondrial Disorders. J Clin Med 2017; 6:E56. [PMID: 28587136 PMCID: PMC5483866 DOI: 10.3390/jcm6060056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders are a clinically heterogeneous group of disorders that are caused by defects in the respiratory chain, the metabolic pathway of the adenosine tri-phosphate (ATP) production system. Epilepsy is a common and important feature of these disorders and its management can be challenging. Epileptic seizures in the context of mitochondrial disease are usually treated with conventional anti-epileptic medication, apart from valproic acid. However, in accordance with the treatment of intractable epilepsy where there are limited treatment options, the ketogenic diet (KD) has been considered as an alternative therapy. The use of the KD and its more palatable formulations has shown promising results. It is especially indicated and effective in the treatment of mitochondrial disorders due to complex I deficiency. Further research into the mechanism of action and the neuroprotective properties of the KD will allow more targeted therapeutic strategies and thus optimize the treatment of both epilepsy in the context of mitochondrial disorders but also in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Paleologou
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| | - Naila Ismayilova
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| | - Maria Kinali
- Chelsea and Westmister Hospital, 369 Fulham road, Chelsea, London SW10 9NH, UK.
| |
Collapse
|
50
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|