1
|
Geng R, Wang Y, Wang R, Wu J, Bao X. Enhanced neurogenesis after ischemic stroke: The interplay between endogenous and exogenous stem cells. Neural Regen Res 2026; 21:212-223. [PMID: 39820432 PMCID: PMC12094570 DOI: 10.4103/nrr.nrr-d-24-00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option. This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events, with focus on the impact of stem cell-based therapies on neural stem cells. Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-to-cell contact and through the secretion of growth factors and exosomes. Additionally, implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called "biobridges." Furthermore, xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects, thereby supporting endogenous neuroregeneration. Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment, we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types. These approaches include: (1) co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis; (2) synergistic administration of stem cells and their exosomes to amplify paracrine effects; and (3) integration of stem cells within hydrogels, which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits. This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ruxu Geng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhe Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Wu
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
2
|
Łukowicz K, Grygier B, Basta-Kaim A. Emerging role of neural stem/progenitor cell secretome in brain inflammatory response modulation. Pharmacol Rep 2025:10.1007/s43440-025-00733-6. [PMID: 40387992 DOI: 10.1007/s43440-025-00733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Adult stem cells residing in the body's tissues are responsible for the regeneration and replacement of old cells by new ones, thanks to their ability to differentiate. Scientific research increasingly focuses on the regeneration processes associated with these cells and the ability to modulate the microenvironment in which they are located. The modulatory effect can occur through direct interactions of stem cells with other cells or through their paracrine activity by releasing biologically active substances. For the nervous system, neural stem/progenitor cells are located in the subgranular zone in the hippocampal dentate gyrus and the subventricular zone around the lateral ventricles. This type of cell, in addition to giving rise to new neurons depending on the physiological state of the body, is also involved in the modulation of the niche in which they are found. This process plays a particular role in inflammation associated with many neurodegenerative diseases, which is connected with increased activity of the immune system cells. In this review article, we wanted to present the biologically active factors found in the neural stem/progenitor cells' secretome, which are key factors that can contribute physiologically to the silencing of inflammatory processes.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland.
| | - Beata Grygier
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland.
| |
Collapse
|
3
|
Guo LS, An Y, Zhang ZY, Ma CB, Li JQ, Dong Z, Tian J, Liu ZY, Liu JG. Exploring the diagnostic potential: magnetic particle imaging for brain diseases. Mil Med Res 2025; 12:18. [PMID: 40287777 PMCID: PMC12034128 DOI: 10.1186/s40779-025-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/07/2025] [Indexed: 04/29/2025] Open
Abstract
Brain diseases are characterized by high incidence, disability, and mortality rates. Their elusive nature poses a significant challenge for early diagnosis. Magnetic particle imaging (MPI) is a novel imaging technique with high sensitivity, high temporal resolution, and no ionizing radiation. It relies on the nonlinear magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs), allowing visualization of the spatial concentration distribution of SPIONs in biological tissues. MPI is expected to become a mainstream technology for the early diagnosis of brain diseases, such as cancerous, cerebrovascular, neurodegenerative, and inflammatory diseases. This review provides an overview of the principles of MPI, explores its potential applications in brain diseases, and discusses the prospects for the diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Li-Shuang Guo
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu An
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Ze-Yu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Chen-Bin Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jia-Qian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhen Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
| | - Zhen-Yu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100191, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Jian-Gang Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhang H, Liu J, Chen B, Chen X, Wei S, Zhang G, Yan X, Xue X, He G, Lin J, Feng H, Chu W. Human Amniotic Epithelial Stem Cells Promote Functional Recovery After Spinal Cord Injury In Rats By Regulating The Polarization Of Macrophages. Mol Neurobiol 2025; 62:4617-4630. [PMID: 39470871 DOI: 10.1007/s12035-024-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic nerve injury caused by extremely severe damage to the spinal cord, for which effective treatments are currently unavailable. Human amniotic epithelial stem cells (hAESCs) are considered promising candidates for transplantation in various clinical and preclinical applications, due to their lack of limitations such as ethical barriers, immune rejection, tumorigenicity, or cell origin. Nevertheless, the effectiveness and mechanism by which hAESCs treat SCI remain elusive. To assess the motor function recovery process following SCI in rats, the Basso Beattie Bresnahan (BBB) behavior test, inclined plate scale and motor evoked potential (MEP) analysis were used in this study after transplantation of hAESCs at different doses. And the underlying mechanism was investigated by histological and molecular methods. The transplantation of hAESCs can significantly promote the recovery of motor function in SCI group, and the higher the dose, the better the effect. Compared with SCI group, hAESCs group had reduced tissue damage, significantly increased the number of neurons, neurofilaments and myelin sheath, and significantly reduced syringomyelia and glial scars. In addition, hAESCs inhibited the Levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) and increased the expression of the interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13), and promoted the shift of M1-polarized macrophages to M2-polarized macrophages. Our results demonstrate that hAESCs promoted the recovery of motor function after SCI by promoting M2 polarization of macrophages and reducing neuroinflammation. These findings may provide novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jingjing Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Beike Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun Wei
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Guanghui Zhang
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Xiaomin Yan
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Xingsen Xue
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guangjian He
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
6
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
8
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Tang Y, Wang Z, Teng H, Ni H, Chen H, Lu J, Chen Z, Wang Z. Safety and efficacy of bone marrow mononuclear cell therapy for ischemic stroke recovery: a systematic review and meta-analysis of randomized controlled trials. Neurol Sci 2024; 45:1885-1896. [PMID: 38172413 PMCID: PMC11021295 DOI: 10.1007/s10072-023-07274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cell-based therapy represents a potential treatment for ischemic stroke (IS). Here, we performed a systematic review and meta-analysis to summarize the evidence provided by randomized controlled trials (RCTs) for the transplantation of bone marrow mononuclear cells (BMMNCs) in patients with IS in any phase after stroke. METHODS We searched several databases for relevant articles up to the 10th of March 2023, including MEDLINE, EMBASE, the Cochrane Library, and ClinicalTrials.gov. Subgroup analyses were implemented to evaluate the dose and route of BMMNC administration. Statistical data were analyzed by Review Manager version 5.3 software. RESULTS Six RCTs were included in this article, including 177 patients who were treated by the transplantation of BMMNCs and 166 patients who received medical treatment. The three-month National Institutes of Health Stroke Scale (NIHSS) score indicated a favorable outcome for the BMMNC transplantation group (standardized mean difference (SMD), - 0.34; 95% confidence interval (CI), - 0.57 to - 0.11; P = 0.004). There were no significant differences between the two groups at six months post-transplantation with regards to NIHSS score (SMD 0.00; 95% CI - 0.26 to 0.27; P = 0.97), modified Rankin Scale (risk ratio (RR) 1.10; 95% CI 0.75 to 1.63; P = 0.62), Barthel Index change (SMD 0.68; 95% CI - 0.59 to 1.95; P = 0.29), and infarct volume change (SMD - 0.08; 95% CI - 0.42 to 0.26; P = 0.64). In addition, there was no significant difference between the two groups in terms of safety outcome (RR 1.24; 95% CI 0.80 to 1.91; P = 0.33). CONCLUSION Our meta-analysis demonstrated that the transplantation of BMMNCs was safe; however, the efficacy of this procedure requires further validation in larger RTCs.
Collapse
Affiliation(s)
- Yanbing Tang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Teng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Huiru Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiaye Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
10
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
11
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
12
|
Peng Y, Liou B, Lin Y, Mayhew CN, Fleming SM, Sun Y. iPSC-derived neural precursor cells engineering GBA1 recovers acid β-glucosidase deficiency and diminishes α-synuclein and neuropathology. Mol Ther Methods Clin Dev 2023; 29:185-201. [PMID: 37063480 PMCID: PMC10102010 DOI: 10.1016/j.omtm.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Mutations in GBA1, encoding the lysosomal acid β-glucosidase (GCase), cause neuronopathic Gaucher disease (nGD) and promote Parkinson disease (PD). The mutations on GBA1 include deletion and missense mutations that are pathological and lead to GCase deficiency in Gaucher disease. Both nGD and PD lack disease-modifying treatments and are critical unmet medical needs. In this study, we evaluated a cell therapy treatment using mouse iPSC-derived neural precursor cells (NPCs) engineered to overexpress GCase (termed hGBA1-NPCs). The hGBA1-NPCs secreted GCase that was taken up by adjacent mouse Gba -/- neurons and improved GCase activity, reduced GCase substrate accumulation, and improved mitochondrial function. Short-term in vivo effects were evaluated in 9H/PS-NA mice, an nGD mouse model exhibiting neuropathology and α-synuclein aggregation, the typical PD phenotypes. Intravenously administrated hGBA1-NPCs were engrafted throughout the brain and differentiated into neural lineages. GCase activity was increased in various brain regions of treated 9H/PS-NA mice. Compared with vehicle, hGBA1-NPC-transplanted mice showed ∼50% reduction of α-synuclein aggregates in the substantia nigra, significant reduction of neuroinflammation and neurodegeneration in the regions of NPC migration, and increased expression of neurotrophic factors that support neural cell function. Together, these results support the therapeutic benefit of intravenous delivery of iPSC-derived NPCs overexpressing GCase in mitigating nGD and PD phenotypes and establish the feasibility of combined cell and gene therapy for GBA1-associated PD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Lin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sheila M. Fleming
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
13
|
Mani KK, El-Hakim Y, Branyan TE, Samiya N, Pandey S, Grimaldo MT, Habbal A, Wertz A, Sohrabji F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav Immun 2023; 107:345-360. [PMID: 36328163 PMCID: PMC11906171 DOI: 10.1016/j.bbi.2022.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.
Collapse
Affiliation(s)
- Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Ali Habbal
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Anna Wertz
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States.
| |
Collapse
|
14
|
Probing Interleukin-6 in Stroke Pathology and Neural Stem Cell Transplantation. Int J Mol Sci 2022; 23:ijms232415453. [PMID: 36555094 PMCID: PMC9779061 DOI: 10.3390/ijms232415453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6's expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults.
Collapse
|
15
|
Shang Z, Wang M, Zhang B, Wang X, Wanyan P. Subacute traumatic spinal cord injury: a systematic review and network meta-analysis of therapeutic strategies based on bone marrow mesenchymal stromal cells in animal models. Cytotherapy 2022; 24:1181-1189. [PMID: 36117057 DOI: 10.1016/j.jcyt.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 08/11/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS To explore the optimal transplantation strategy of bone marrow mesenchymal stem cells in subacute traumatic spinal cord injury in animal experiments in order to provide reference for future animal studies and clinical research. METHODS The PubMed, Embase and Web of Science databases were systematically searched (inception to January 4, 2022). Literature search, data extraction and bias assessment were performed by two independent reviewers. RESULTS A total of 50 articles were included for analysis. Results of both traditional meta-analysis and network meta-analysis showed that high-dose (≥1 × 106) transplantation was significantly better than low-dose (<1 × 106) transplantation and intralesional transplantation was significantly better than intravenous transplantation. CONCLUSIONS Given the limited quality of evidence from current animal studies, more high-quality head-to-head comparisons are needed in the future to delve into the optimal transplantation strategy for stem cells.
Collapse
Affiliation(s)
- Zhizhong Shang
- First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xin Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, China; Chengren Institute of Traditional Chinese Medicine, Lanzhou, China; Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, China; The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
16
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Shang Z, Wang R, Li D, Chen J, Zhang B, Wang M, Wang X, Wanyan P. Spinal Cord Injury: A Systematic Review and Network Meta-Analysis of Therapeutic Strategies Based on 15 Types of Stem Cells in Animal Models. Front Pharmacol 2022; 13:819861. [PMID: 35359872 PMCID: PMC8964098 DOI: 10.3389/fphar.2022.819861] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: The optimal therapeutic strategies of stem cells for spinal cord injury (SCI) are fully explored in animal studies to promote the translation of preclinical findings to clinical practice, also to provide guidance for future animal experiments and clinical studies. Methods: PubMed, Web of Science, Embase, CNKI, Wangfang, VIP, and CBM were searched from inception to September 2021. Screening of search results, data extraction, and references quality evaluation were undertaken independently by two reviewers. Results and Discussion: A total of 188 studies were included for data analysis. Results of traditional meta-analysis showed that all 15 diverse types of stem cells could significantly improve locomotor function of animals with SCI, and results of further network meta-analysis showed that adipose-derived mesenchymal stem cells had the greatest therapeutic potential for SCI. Moreover, a higher dose (≥1 × 106) of stem cell transplantation had better therapeutic effect, transplantation in the subacute phase (3–14 days, excluding 3 days) was the optimal timing, and intralesional transplantation was the optimal route. However, the evidence of current animal studies is of limited quality, and more high-quality research is needed to further explore the optimal therapeutic strategies of stem cells, while the design and implementation of experiments, as well as measurement and reporting of results for animal studies, need to be further improved and standardized to reduce the risk when the results of animal studies are translated to the clinic. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ruirui Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| |
Collapse
|
18
|
Failure of Alzheimer’s Mice Brain Resident Neural Precursor Cells in Supporting Microglia-Mediated Amyloid β Clearance. Cells 2022; 11:cells11050876. [PMID: 35269501 PMCID: PMC8909275 DOI: 10.3390/cells11050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
The failure of brain microglia to clear excess amyloid β (Aβ) is considered a leading cause of the progression of Alzheimer’s disease pathology. Resident brain neural precursor cells (NPCs) possess immune-modulatory and neuro-protective properties, which are thought to maintain brain homeostasis. We have recently showed that resident mouse brain NPCs exhibit an acquired decline in their trophic properties in the Alzheimer’s disease brain environment. Therefore, we hypothesized that functional NPCs may support microglial phagocytic activity, and that NPCs derived from the adult AD mouse brain may fail to support the clearance of Aβ by microglia. We first identified in the AD brain, in vivo and ex vivo, a subpopulation of microglia that express high Aβ phagocytic activity. Time-lapse microscopy showed that co-culturing newborn NPCs with microglia induced a significant increase in the fraction of microglia with high Aβ phagocytic activity. Freshly isolated NPCs from adult wild type, but not AD, mouse brain, induced an increase in the fraction of microglia with high Aβ phagocytic activity. Finally, we showed that NPCs also possess the ability to promote Aβ degradation within the microglia with high Aβ phagocytic activity. Thus, resident brain NPCs support microglial function to clear Aβ, but NPCs derived from the AD environment fail to do so. We suggest that the failure of AD brain NPCs to support Aβ clearance from the brain by microglia may accelerate disease pathology.
Collapse
|
19
|
Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int J Mol Sci 2022; 23:ijms23031800. [PMID: 35163726 PMCID: PMC8836693 DOI: 10.3390/ijms23031800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Collapse
|
20
|
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr Stem Cell Res Ther 2022; 17:113-125. [PMID: 35135462 DOI: 10.2174/1574888x16666210810103838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
:
Several human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain
stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful
generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for
patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable
cell types for cell replacement therapy in patients suffering from neurological disorders has hampered
the development of this promising therapeutic approach. Attempts are thus being made to reconstruct
viable neurons and glial cells from different stem cells, such as embryonic stem cells,
mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based
brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the
field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the
shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Biological Science, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Ananta Prasad Arukha
- Comparative Diagnostic
and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville- 32608, U.S.A
| | - Shiv Kumar Yadav
- Department of Botany, Government Lal Bahadur Shastri PG college, Sironj, Vidisha, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jun O. Jin
- Department
of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Bai X, Bian Z. MicroRNA-21 Is a Versatile Regulator and Potential Treatment Target in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:842288. [PMID: 35173580 PMCID: PMC8841607 DOI: 10.3389/fnmol.2022.842288] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded RNAs with a length of approximately 22 nucleotides that are found in eukaryotes. miRNAs are involved in the regulation of cell differentiation, proliferation, invasion, apoptosis, and metabolism by regulating the expression of their target genes. Emerging studies have suggested that various miRNAs play key roles in the pathogenesis of central nervous system (CNS) disorders and may be viable therapeutic targets. In particular, miR-21 has prominently emerged as a focus of increasing research on the mechanisms of its involvement in CNS disorders. Herein, we reviewed recent studies on the critical roles of miR-21, including its dysregulated expression and target genes, in the regulation of pathophysiological processes of CNS disorders, with a special focus on apoptosis and inflammation. Collectively, miR-21 is a versatile regulator in the progression of CNS disorders and could be a promising biomarker and therapeutic target for these diseases. An in-depth understanding of the mechanisms by which miR-21 affects the pathogenesis of CNS disorders could pave the way for miR-21 to serve as a therapeutic target for these conditions.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhigang Bian,
| |
Collapse
|
22
|
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther 2022; 13:8. [PMID: 35012669 PMCID: PMC8744057 DOI: 10.1186/s13287-021-02684-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Radwa A Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt.
| |
Collapse
|
23
|
Borhani-Haghighi M, Mohamadi Y. The protective effects of neural stem cells and neural stem cells-conditioned medium against inflammation-induced prenatal brain injury. J Neuroimmunol 2021; 360:577707. [PMID: 34507013 DOI: 10.1016/j.jneuroim.2021.577707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Intrauterine inflammation affects fetal development of the nervous system and may cause prenatal brain injury in offspring. Previously, neural stem cells have been extensively used as a therapeutic choice for nervous system diseases. Recently, the therapeutic ability of conditioned medium, harvested from cultured stem cells, has captured the attention of researchers in the field. Our study aimed to compare the therapeutic effect of neural stem cells (NSCs) or NSC-conditioned medium (NSC-CM) after prenatal brain injury. The animal model was induced by intraperitoneal injection of lipopolysaccharide into the pregnant mice and NSCs or NSC-CM were transplanted into the lateral ventricle of embryos in treatment groups. Inflammation and apoptosis were evaluated postpartum in offspring via measuring the expression of NLRP3 gene and protein, the expression and the activity of caspase-3, and the expression of pro-inflammatory cytokines by real-time PCR, immunohistochemistry, western blotting, ELISA, and colorimetric assay kit. A rotarod test was performed for motor function evaluation. Data showed that although NSC-CM fought against the inflammation and apoptosis and improved the motor function, NSCs acted more efficiently. In conclusion, the results of our study contend that NSCs have a better therapeutic effect than CM in prenatal brain injury.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomical Sciences, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
24
|
Zhang H, Huang Z, Guo M, Meng L, Piao M, Zhang M, Yu H. Effect of combination therapy with neural stem cell transplantation and teramethylpyrazine in rats following acute spinal cord injury. Neuroreport 2021; 32:1311-1319. [PMID: 34554935 DOI: 10.1097/wnr.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study was to explore the effects of teramethylpyrazine (TMP) administered in conjunction with neural stem cell transplantation on motor function, pathological lesions and the Janus kinase (JAK)2/signal transducer and activator of transcription 3 signal transduction pathway in rats following acute spinal cord injury (SCI). METHODS Female Sprague-Dawley rats were randomly divided into sham, model, neural stem cells (NSCs) and NSCs+TMP groups. Motor function was evaluated using the Basso, Beattie, Bresnahan scale. Spinal cord neuropathies and neuron apoptosis were observed by HE and TUNEL staining. The brain-derived neurotrophic factor (BDNF), Nogo-A, JAK2 and p-JAK2 protein levels were measured by western blot analysis. RESULTS NSCs+TMP significantly improved rat motor function, attenuated impaired spinal cords, and decreased cellular apoptosis, compared with NSCs therapy alone (P < 0.05). In addition, expression of BDNF protein was significantly higher in NSCs+TMP rats compared with other groups regardless of time postinjury (P < 0.05). The highest expression levels of Nogo-A protein were observed in the model group. The expression of p-JAK2 in the NSCs+TMP group was relatively lower than the model and NSCs groups (P < 0.05). CONCLUSIONS In rats with SCI, NSCs+TMP effectively improved motor function and offered spinal cord protection by increasing BDNF and decreasing Nogo-A levels, as well as inhibiting the JAK2/STAT3 signal transduction pathway, suggesting that TMP could be a useful agent in NSCs transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Zijun Huang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meng Zhang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| |
Collapse
|
25
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
26
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
27
|
Brousse B, Mercier O, Magalon K, Daian F, Durbec P, Cayre M. Endogenous neural stem cells modulate microglia and protect against demyelination. Stem Cell Reports 2021; 16:1792-1804. [PMID: 34087164 PMCID: PMC8282429 DOI: 10.1016/j.stemcr.2021.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023] Open
Abstract
In response to corpus callosum (CC) demyelination, subventricular zone-derived neural progenitors (SVZdNPs) are mobilized and generate new myelinating oligodendrocytes (OLG). Here, we examine the putative immunomodulatory properties of endogenous SVZdNPs during demyelination in the cuprizone model. SVZdNP density was higher in the lateral and rostral CC regions, and demyelination was inversely correlated with activated microglial density and pro-inflammatory cytokine levels. Single-cell RNA sequencing showed that CC areas with high levels of SVZdNP mobilization were enriched in a microglial cell subpopulation with an immunomodulatory signature. We propose MFGE8 (milk fat globule-epidermal growth factor-8) and β3 integrin as a ligand/receptor pair involved in dialogue between SVZdNPs and microglia. Immature SVZdNPs mobilized to the demyelinated CC were found highly enriched in MFGE8, which promoted the phagocytosis of myelin debris in vitro. Overall, these results demonstrate that, in addition to their cell replacement capacity, endogenous progenitors have immunomodulatory properties, highlighting a new role for endogenous SVZdNPs in myelin regeneration. Demyelination is limited in corpus callosum areas rich in subventricular zone–derived progenitors In these areas microglial cells adopt an immunomodulatory phenotype Mobilized SVZ progenitors secrete MFGE8, which promotes myelin debris phagocytosis SVZ-derived progenitors minimize demyelination by modulating microglial activity
Collapse
Affiliation(s)
- Béatrice Brousse
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Océane Mercier
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Karine Magalon
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Fabrice Daian
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Pascale Durbec
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France.
| |
Collapse
|
28
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Zhang Y, Xu X, Tong Y, Zhou X, Du J, Choi IY, Yue S, Lee G, Johnson BN, Jia X. Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transection. Stem Cell Res Ther 2021; 12:180. [PMID: 33722287 PMCID: PMC7962265 DOI: 10.1186/s13287-021-02200-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe peripheral nerve injury significantly affects patients' quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. METHODS Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. RESULTS Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4-5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. CONCLUSION NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Yuxin Tong
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xijie Zhou
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - In Young Choi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shouwei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Perrier S, Michell-Robinson MA, Bernard G. POLR3-Related Leukodystrophy: Exploring Potential Therapeutic Approaches. Front Cell Neurosci 2021; 14:631802. [PMID: 33633543 PMCID: PMC7902007 DOI: 10.3389/fncel.2020.631802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montréal Children’s Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
31
|
Li F, Zhang J, Chen A, Liao R, Duan Y, Xu Y, Tao L. Combined transplantation of neural stem cells and bone marrow mesenchymal stem cells promotes neuronal cell survival to alleviate brain damage after cardiac arrest via microRNA-133b incorporated in extracellular vesicles. Aging (Albany NY) 2021; 13:262-278. [PMID: 33436530 PMCID: PMC7835040 DOI: 10.18632/aging.103920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Neural stem cell (NSC) transplantation has prevailed as a promising protective strategy for cardiac arrest (CA)-induced brain damage. Surprisingly, the poor survival of neuronal cells in severe hypoxic condition restricts the utilization of this cell-based therapy. Extracellular vesicles (EVs) transfer microRNAs (miRNAs) between cells are validated as the mode for the release of several therapeutic molecules. The current study reports that the bone marrow mesenchymal stem cells (BMSCs) interact with NSCs via EVs thereby affecting the survival of neuronal cells. Hypoxic injury models of neuronal cells were established using cobalt chloride, followed by co-culture with BMSCs and NSCs alone or in combination. BMSCs combined with NSCs elicited as a superior protocol to stimulate neuronal cell survival. BMSCs-derived EVs could protect neuronal cells against hypoxic injury. Silencing of miR-133b incorporated in BMSCs-derived EVs could decrease the cell viability and the number of NeuN-positive cells and increase the apoptosis in the CA rat model. BMSCs-derived EVs could transfer miR-133b to neuronal cells to activate the AKT-GSK-3β-WNT-3 signaling pathway by targeting JAK1. Our study demonstrates that NSCs promotes the release of miR-133b from BMSCs-derived EVs to promote neuronal cell survival, representing a potential therapeutic strategy for the treatment of CA-induced brain damage.
Collapse
Affiliation(s)
- Fang Li
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Jie Zhang
- The 2nd Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Anbao Chen
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Rui Liao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Yongchun Duan
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Yuwei Xu
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| | - Lili Tao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunan Province, P.R. China
| |
Collapse
|
32
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. Int J Mol Sci 2020; 22:ijms22010365. [PMID: 33396468 PMCID: PMC7794764 DOI: 10.3390/ijms22010365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.
Collapse
|
34
|
Ma Q, Cai M, Shang JW, Yang J, Gu XY, Liu WB, Yang Q. Glial cell induced neural differentiation of bone marrow stromal cells. Open Med (Wars) 2020; 15:954-961. [PMID: 33336053 PMCID: PMC7712328 DOI: 10.1515/med-2020-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Background Bone marrow stromal cells (BMSCs) have an important application prospect in the field of cell therapy for various neurodegenerative diseases, and inducing factors that regulate BMSC differentiation are proposed as a promising therapeutic strategy. In this study, we explored the effect of glial cell-derived neurotrophic factor (GDNF) on the course of BMSC differentiation. Methods BMSCs were isolated from rat bone marrow and induced by GDNF. The effects of GDNF on BMSC viability and proliferation were verified by cell counting kit-8, MTT, bromodeoxyuridine, and flow cytometry assays. Neuronal differentiation from BMSCs was detected by quantitative real-time polymerase chain reaction and immunofluorescence via measuring the expression of several neural specific markers. Results Compared to untreated BMSCs, GDNF induced the differentiation of BMSCs into neuron-like cells and enhanced the expression levels of neuronal markers including nestin and NCAM. Moreover, the expression of SCF was suppressed by GDNF stimulation. Conclusion GDNF could elevate the differentiation of BMSCs into neuron-like cells and could be considered as an effective candidate cell for future neuroscience research.
Collapse
Affiliation(s)
- Qiang Ma
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China.,Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jing-Wei Shang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Jun Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| | - Xin-Yi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Wen-Bo Liu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning Province, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, Liaoning Province, China
| |
Collapse
|
35
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
36
|
Wang Z, Du J, Lachance BB, Mascarenhas C, He J, Jia X. Intracerebroventricular Administration of hNSCs Improves Neurological Recovery after Cardiac Arrest in Rats. Stem Cell Rev Rep 2020; 17:923-937. [PMID: 33140234 DOI: 10.1007/s12015-020-10067-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Irreversible brain injury and neurological dysfunction induced by cardiac arrest (CA) have long been a clinical challenge due to lack of effective therapeutic interventions to reverse neuronal loss and prevent secondary reperfusion injury. The neuronal regenerative potential of neural stem cells (NSCs) provides a possible solution to this clinical deficit. We investigated the neuronal recovery potential of human neural stem cells (hNSCs) via intracerebroventricular (ICV) xenotransplantation after CA in rats and the effects of transplanted NSCs on the proliferation and migration of endogenous NSCs. Outcome measures included neurological functional recovery measured by neurological deficit score (NDS), electrophysiologic analysis of EEG, and assessment of proliferation and migration at the cellular level and the Wnt/β-catenin pathway at the molecular level. Neurological functional assessment based on aggregate neurological deficit score (NDS) showed better recovery of function after hNSCs therapy (P < 0.05). Tracking of stem cells' proliferation with Ki67 antibody suggested that the NSCs group had more prominent proliferation compared to control group (number of Ki67+ cells, Control VS. NSC: 89.0 ± 31.6 VS. 352.7 ± 97.3, P < 0.05). In addition, cell migration tracked by Dcx antibody showed more Dcx + cells migrated to the far distance zone from SVZ in the treatment group (P < 0.05). Further immunofluorescence staining confirmed that the expression of the Wnt signaling pathway protein (β-catenin) was upregulated in the NSC group (P < 0.05). ICV delivery of hNSCs promotes endogenous NSC proliferation and migration and ultimately enhances neuronal survival and neurological functional recovery. Wnt/β-catenin pathway may be involved in the initiation and maintenance of this enhancement.Graphical abstract.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China.,Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Junyun He
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Frid K, Binyamin O, Usman A, Gabizon R. Delay of gCJD aggravation in sick TgMHu2ME199K mice by combining NPC transplantation and Nano-PSO administration. Neurobiol Aging 2020; 95:231-239. [PMID: 32861834 DOI: 10.1016/j.neurobiolaging.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/02/2023]
Abstract
gCJD is a fatal late-onset neurodegenerative disease linked to mutations in the PRNP gene. We have previously shown that transplantation of neural precursor cells (NPCs), or administration of a nanoformulation of pomegranate seed oil (Nano-PSO, GranaGard), into newborn asymptomatic TgMHu2ME199K mice modeling for E200K gCJD significantly delayed the advance of clinical disease. In the present study, we tested the individual and combined effects of both treatments in older and sick TgMHu2ME199K mice. We show that while transplantation of NPCs at both initial (140 days) and advance clinical states (230 days) arrested disease progression for about 30 days, after which scores rapidly climbed to those of untreated Tgs, administration of Nano-PSO to transplanted TgMHu2ME199K mice resulted in detention of disease advance for 60-80 days, followed by a slower disease progression thereafter. Pathological examinations demonstrated the combined treatment extended the survival of the transplanted NPCs, and also increased the generation of endogenous stem cells. Our results suggest that administration of Nano-PSO may increase the beneficial effects of NPCs transplantation.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Areen Usman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel.
| |
Collapse
|
38
|
Lin C, Calzarossa C, Fernandez-Zafra T, Liu J, Li X, Ekblad-Nordberg Å, Vazquez-Juarez E, Codeluppi S, Holmberg L, Lindskog M, Uhlén P, Åkesson E. Human ex vivo spinal cord slice culture as a useful model of neural development, lesion, and allogeneic neural cell therapy. Stem Cell Res Ther 2020; 11:320. [PMID: 32727554 PMCID: PMC7390865 DOI: 10.1186/s13287-020-01771-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background There are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies. Methods We established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+ signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices. Results The spinal cord hOCs presented relatively stable features during 7–21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+ cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+ population and activated microglial population was not observed after allogeneic human neural cell therapy. Conclusions We conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Calzarossa
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology and Laboratory of Neuroscience, Università degli Studi diMilan, Milan, Italy
| | - Teresa Fernandez-Zafra
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Ekblad-Nordberg
- Department of Clinical Science, Intervention and Technology, Div. of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Simone Codeluppi
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lena Holmberg
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden. .,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden.
| |
Collapse
|
39
|
Borhani-Haghighi M, Mohamadi Y. Intranasal administration of conditioned medium derived from mesenchymal stem cells-differentiated oligodendrocytes ameliorates experimental autoimmune encephalomyelitis. J Chem Neuroanat 2020; 106:101792. [PMID: 32353514 DOI: 10.1016/j.jchemneu.2020.101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
In multiple sclerosis, myelin sheaths around the axons are degenerated due to uncontrolled inflammation in the central nervous system. Oligodendrocytes (OLs) are myelin-forming cells that secrete trophic factors necessary for myelin protection. Beneficial features of conditioned medium (CM) derived from different stem cells are nowadays under investigation in treating neurodegenerative diseases. Here, we used the differentiation capacity of Wharton's jelly mesenchymal stem cells (WJMSCs) to obtain OLs. Then, the study aimed to evaluate the status of inflammation and myelination in male experimental autoimmune encephalomyelitis (EAE) mice after intranasal administration of CM derived from OLs (OL-CM). Inflammation was studied by evaluating gliosis, inflammatory cell infiltration and expression of inflammation indicators including NLRP3 inflammasome, interleukin-1β, interleukin-18, glial fibrillary acidic protein, and ionized calcium binding adaptor molecule 1. Remyelination was studied by luxol fast blue staining and evaluating the expression of myelin indicators including myelin basic protein and oligodendrocyte transcription factor. In addition, we followed the trend of body weight and functional recovery during the 28-day study. ELISA assay revealed that OL-CM contained brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and ciliary neurotrophic factor. Data showed that OL-CM moderated inflammation, augmented remyelination, and gained normal body weight. Notably, these anti-inflammatory and regenerative effects of OL-CM improved neurological functions in EAE mice. In conclusion, the current study offered a new choice for treating multiple sclerosis using noninvasive intranasal administration of CM harvested from easily achievable WJMSCs-differentiated OLs.
Collapse
Affiliation(s)
- Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
40
|
Viggiano D, Wagner CA, Martino G, Nedergaard M, Zoccali C, Unwin R, Capasso G. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol 2020; 16:452-469. [PMID: 32235904 DOI: 10.1038/s41581-020-0266-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Cognitive impairment is an increasingly recognized major cause of chronic disability and is commonly found in patients with chronic kidney disease (CKD). Knowledge of the relationship between kidney dysfunction and impaired cognition may improve our understanding of other forms of cognitive dysfunction. Patients with CKD are at an increased risk (compared with the general population) of both dementia and its prodrome, mild cognitive impairment (MCI), which are characterized by deficits in executive functions, memory and attention. Brain imaging in patients with CKD has revealed damage to white matter in the prefrontal cortex and, in animal models, in the subcortical monoaminergic and cholinergic systems, accompanied by widespread macrovascular and microvascular damage. Unfortunately, current interventions that target cardiovascular risk factors (such as anti-hypertensive drugs, anti-platelet agents and statins) seem to have little or no effect on CKD-associated MCI, suggesting that the accumulation of uraemic neurotoxins may be more important than disturbed haemodynamic factors or lipid metabolism in MCI pathogenesis. Experimental models show that the brain monoaminergic system is susceptible to uraemic neurotoxins and that this system is responsible for the altered sleep pattern commonly observed in patients with CKD. Neural progenitor cells and the glymphatic system, which are important in Alzheimer disease pathogenesis, may also be involved in CKD-associated MCI. More detailed study of CKD-associated MCI is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention, and whether there may be novel approaches and potential therapies with wider application to this and other forms of cognitive decline.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Scarl, Ariano Irpino, Italy
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland, and National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Gianvito Martino
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maiken Nedergaard
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | - Carmine Zoccali
- Institute of Clinical Physiology, National Research Council (CNR), Reggio Calabria Unit, Reggio Calabria, Italy
| | - Robert Unwin
- Department of Renal Medicine, University College London (UCL), Royal Free Campus, London, UK.,Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. .,Biogem Scarl, Ariano Irpino, Italy.
| |
Collapse
|
41
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
42
|
Xie F, Liu H, Liu Y. Adult Neurogenesis Following Ischemic Stroke and Implications for Cell-Based Therapeutic Approaches. World Neurosurg 2020; 138:474-480. [PMID: 32147554 DOI: 10.1016/j.wneu.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is one of the most intractable diseases of the central nervous system and is also a major cause of mortality and disability in adult humans. Unfortunately, current therapies target vessel recanalization, which has a narrow treatment window, and the potential adverse effects lead to a low rate of clinical employment; in addition, neuroprotective strategies are not effective for stroke treatment. It is necessary to discover new approaches to develop neuroprotective, neuroregenerative treatment strategies for stroke. At present, accumulating evidence suggests that adult neurogenesis is a novel topic with extensive research on its potential to be harnessed for therapy in various neurologic disorders, and the neurogenesis capacity in the subventricular zone was shown to be increased in response to brain ischemic stroke. In this review, we describe the cellular and molecular mechanisms underlying potential adult neurogenesis and review current preclinical and clinical cell-based therapies for enhancing neural regeneration after adult ischemic stroke. Although stroke-induced neurogenesis in humans does not seem to translate to neurofunctional recovery, we also summarize factors of potential treatment strategies with transplanted cells, including transplantation time, cell dosage, and administration route, to achieve optimum and effective cell-based therapy, thereby harnessing this neuroregenerative response to improve neurofunctional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Fei Xie
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Hongbin Liu
- Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Miao S, Cui H, Esworthy T, Mahadik B, Lee S, Zhou X, Hann SY, Fisher JP, Zhang LG. 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902403. [PMID: 32195081 PMCID: PMC7080541 DOI: 10.1002/advs.201902403] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Indexed: 05/08/2023]
Abstract
As the most versatile and promising cell source, stem cells have been studied in regenerative medicine for two decades. Currently available culturing techniques utilize a 2D or 3D microenvironment for supporting the growth and proliferation of stem cells. However, these culture systems fail to fully reflect the supportive biological environment in which stem cells reside in vivo, which contain dynamic biophysical growth cues. Herein, a 4D programmable culture substrate with a self-morphing capability is presented as a means to enhance dynamic cell growth and induce differentiation of stem cells. To function as a model system, a 4D neural culture substrate is fabricated using a combination of printing and imprinting techniques keyed to the different biological features of neural stem cells (NSCs) at different differentiation stages. Results show the 4D culture substrate demonstrates a time-dependent self-morphing process that plays an essential role in regulating NSC behaviors in a spatiotemporal manner and enhances neural differentiation of NSCs along with significant axonal alignment. This study of a customized, dynamic substrate revolutionizes current stem cell therapies, and can further have a far-reaching impact on improving tissue regeneration and mimicking specific disease progression, as well as other impacts on materials and life science research.
Collapse
Affiliation(s)
- Shida Miao
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Haitao Cui
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Bhushan Mahadik
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Se‐jun Lee
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
- Department of Electrical and Computer EngineeringDepartment of MedicineDepartment of Biomedical EngineeringThe George Washington UniversityWashingtonDC20052USA
| |
Collapse
|
44
|
Qian K, Xu TY, Wang X, Ma T, Zhang KX, Yang K, Qian TD, Shi J, Li LX, Wang Z. Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res 2020; 15:748-758. [PMID: 31638100 PMCID: PMC6975148 DOI: 10.4103/1673-5374.266915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). Data sources Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. Data selection Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. Outcome measures The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. Results We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). Conclusion NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tuo-Ye Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Ma
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Kai-Xin Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province; Department of Neurosurgery, Huangshan City People's Hospital, Huangshan, Anhui Province, China
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng-Da Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, Jintan Hospital Affiliated to Jiangsu University, Jintan, Jiangsu Province, China
| | - Jing Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Xin Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Wang
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
45
|
PDE9 inhibition promotes proliferation of neural stem cells via cGMP-PKG pathway following oxygen-glucose deprivation/reoxygenation injury in vitro. Neurochem Int 2019; 133:104630. [PMID: 31821840 DOI: 10.1016/j.neuint.2019.104630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Cerebral ischemia is one of leading causes of death and long-term disability worldwide. Stem cell-based therapy is promising some valuable strategies for the structural and functional recovery after ischemic insult. The inhibition of phosphodiesterases (PDEs) has wide spectrum neuroprotective properties by stimulating proliferation of neural stem cells (NSCs). However, the potential role of PDE9 on NSCs proliferation after cerebral ischemia is not well investigated. The present study aimed to assess the contribution of PDE9 inhibition on the proliferation of NSCs and to determine the details of its underlying mechanisms against cerebral ischemia. The survival and proliferation of NSCs were assessed by CCK-8 assay and BrdU immunofluorescence staining, respectively. PDE9 activity and cGMP level were measured by ELISA kits. The protein expression of PKG and BDNF was detected by Western blot. Exposing NSCs of cultured primary hippocampus to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly decreased the survival rate, but increased the proliferation of NSCs. Meanwhile, PDE9 activity was decreased, cGMP level was increased, PKG and BDNF protein expression was increased. PF-04447953, a PDE9 inhibitor, increased the survival rate of NSCs, moreover, PDE9 activity reduced more, and NSCs proliferation, cGMP level, PKG and BDNF protein expression were increased further, compared with OGD/R model group. These effects of PF-04447953, except for PDE9 activity and cGMP level, were reversed by treatment with KT5823, a PKG inhibitor. Taken together, the inhibition of PDE9 can promote the proliferation of NSCs following OGD/R injury, which may be, at least partly, mediated by cGMP-PKG pathway.
Collapse
|
46
|
Peng Y, Liou B, Inskeep V, Blackwood R, Mayhew CN, Grabowski GA, Sun Y. Intravenous infusion of iPSC-derived neural precursor cells increases acid β-glucosidase function in the brain and lessens the neuronopathic phenotype in a mouse model of Gaucher disease. Hum Mol Genet 2019; 28:3406-3421. [PMID: 31373366 PMCID: PMC6891072 DOI: 10.1093/hmg/ddz184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease (GD) is caused by GBA1 mutations leading to functional deficiency of acid-β-glucosidase (GCase). No effective treatment is available for neuronopathic GD (nGD). A subclass of neural stem and precursor cells (NPCs) expresses VLA4 (integrin α4β1, very late antigen-4) that facilitates NPC entry into the brain following intravenous (IV) infusion. Here, the therapeutic potential of IV VLA4+NPCs was assessed for nGD using wild-type mouse green fluorescent protein (GFP)-positive multipotent induced pluripotent stem cell (iPSC)-derived VLA4+NPCs. VLA4+NPCs successfully engrafted in the nGD (4L;C*) mouse brain. GFP-positive cells differentiated into neurons, astrocytes and oligodendrocytes in the brainstem, midbrain and thalamus of the transplanted mice and significantly improved sensorimotor function and prolonged life span compared to vehicle-treated 4L;C* mice. VLA4+NPC transplantation significantly decreased levels of CD68 and glial fibrillary acidic protein, as well as TNFα mRNA levels in the brain, indicating reduced neuroinflammation. Furthermore, decreased Fluoro-Jade C and NeuroSilver staining suggested inhibition of neurodegeneration. VLA4+NPC-engrafted 4L;C* midbrains showed 35% increased GCase activity, reduced substrate [glucosylceramide (GC, -34%) and glucosylsphingosine (GS, -11%)] levels and improved mitochondrial oxygen consumption rates in comparison to vehicle-4L;C* mice. VLA4+NPC engraftment in 4L;C* brain also led to enhanced expression of neurotrophic factors that have roles in neuronal survival and the promotion of neurogenesis. This study provides evidence that iPSC-derived NPC transplantation has efficacy in an nGD mouse model and provides proof of concept for autologous NPC therapy in nGD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Blackwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
47
|
Song P, Kwon Y, Joo JY, Kim DG, Yoon JH. Secretomics to Discover Regulators in Diseases. Int J Mol Sci 2019; 20:ijms20163893. [PMID: 31405033 PMCID: PMC6720857 DOI: 10.3390/ijms20163893] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023] Open
Abstract
Secretory proteins play important roles in the cross-talk of individual functional units, including cells. Since secretory proteins are essential for signal transduction, they are closely related with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines, myokines, and hepatokines are secreted from respective organs under specific environmental conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases, astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to identify and characterize secretory proteins. This strategy involves stepwise processes such as the collection of conditioned medium (CM) containing secretome proteins and concentration of the CM, peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has become a new research focus for understanding the additional extracellular functions of intracellular proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to disease mechanisms, and highlight the future prospects of this technology. Continued research in this field is expected to provide valuable information on cell-to-cell communication and uncover new pathological mechanisms.
Collapse
Affiliation(s)
- Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Yonghoon Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Korea.
| |
Collapse
|
48
|
Tuazon JP, Castelli V, Borlongan CV. Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin Drug Deliv 2019; 16:823-833. [PMID: 31311344 DOI: 10.1080/17425247.2019.1645116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Stem cell therapy is an experimental treatment for brain disorders. Although a cellular product, stem cells can be classified as biologics based on the cells' secretion of therapeutic substances. Treatment with stem cell biologics may appeal to stroke because of the secondary cell death mechanisms, especially neuroinflammation, that are rampant from the onset and remain elevated during the progressive phase of the disease requiring multi-pronged biological targets to effectively abrogate the neurodegenerative pathology. However, the optimal delivery methods, among other logistical approaches (i.e. cell doses and timing of intervention), for stem cell therapy will need to be refined before stem cell biologics can be successfully utilized for stroke in large scale clinical trials. Areas covered: In this review, we discuss how the innate qualities of stem cells characterize them as biologics, how stem cell transplantation may be an ideal treatment for stroke, and the various routes of stem cell administration that have been employed in various preclinical and clinical investigations. Expert opinion: There is a need to optimize the delivery of stem cell biologics for stroke in order to guide the safe and effective translation of this therapy from the laboratory to the clinic.
Collapse
Affiliation(s)
- Julian P Tuazon
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Vanessa Castelli
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| | - Cesar V Borlongan
- a Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine , Tampa , FL , USA
| |
Collapse
|
49
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
50
|
Wang Z, Yang X, He J, Du J, Liu S, Jia X. Intracerebroventricular Administration of Neural Stem Cells after Cardiac Arrest. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:4213-4216. [PMID: 31946798 PMCID: PMC6986274 DOI: 10.1109/embc.2019.8857270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiac arrest (CA) is a serious disease with high rates of mortality and disability worldwide. Currently, neither pharmacological intervention nor therapeutic hypothermia can reverse the neural injury caused by CA. Neural stem cell therapy is a promising treatment for brain injury. We investigated the effects of the intracerebroventricular (ICV) administration of human neural stem cells (hNSCs) on global brain ischemia injury after CA. Twelve Long-Evans rats (4 Male and 8 female) subjected to 8-min asphyxia-CA were randomly assigned to hNSC treatment (n=7) or control group (n=5). The hNSCs were slowly infused into the left lateral ventricular 3 hours after resuscitation. An additional two rats subjected to 8-min asphyxia-CA were euthanized at 4 weeks after resuscitation to confirm the survival and function of transplanted PKH26 pre-labeled hNSCs by brain slides and whole cell patch clamp. Electrophysiological monitoring, quantitative EEG value (qEEG-IQ) and neurological deficit score (NDS) were used to evaluate the functional outcome. Immunofluorescence staining was used to investigate the survival of neurons and track migration of hNSCs. There was a significant improvement on the behavior tests evaluated as a subgroup of NDS (p <; 0.05) in the NSCs group than the control group. Immunofluorescent co-staining of PKH26 and NeuN verified the neuronal differentiation from transplanted PKH26+ hNSCs in the hippocampus CA1 and cortex 4 weeks after CA. The whole-cell patch clamp technique confirmed the spontaneous firing activity that was recorded in cell-attached mode from the functional mature neurons derived from transplanted cells. Transplanted hNSCs via ICV administration markedly improved neurologic outcomes after CA. Further studies are needed to elucidate the neuroprotective mechanism.
Collapse
|