1
|
Rajkumar RP. SAPAP3, SPRED2, and obsessive-compulsive disorder: the search for fundamental phenotypes. Front Mol Neurosci 2023; 16:1095455. [PMID: 37324590 PMCID: PMC10264593 DOI: 10.3389/fnmol.2023.1095455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
|
2
|
Singla R, Mishra A, Lin H, Lorsung E, Le N, Tin S, Jin VX, Cao R. Haploinsufficiency of a Circadian Clock Gene Bmal1 ( Arntl or Mop3) Causes Brain-Wide mTOR Hyperactivation and Autism-like Behavioral Phenotypes in Mice. Int J Mol Sci 2022; 23:6317. [PMID: 35682995 PMCID: PMC9181331 DOI: 10.3390/ijms23116317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 50-80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/-) reduced the Bmal1 protein levels by ~50-75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/- mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.
Collapse
Affiliation(s)
- Rubal Singla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Hao Lin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Su Tin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
| | - Victor X. Jin
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; (R.S.); (A.M.); (H.L.); (E.L.); (N.L.); (S.T.)
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Park ES, Freeborn J, Venna VR, Roos S, Rhoads JM, Liu Y. Lactobacillus reuteri effects on maternal separation stress in newborn mice. Pediatr Res 2021; 90:980-988. [PMID: 33531679 DOI: 10.1038/s41390-021-01374-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Probiotic Lactobacillus reuteri DSM 17938 (LR 17938) is beneficial to infants with colic. To understand its mechanism of action, we assessed ultrasonic vocalizations (USV) and brain pain/stress genes in newborn mice exposed to maternal separation stress. METHODS Pups were exposed to unpredictable maternal separation (MSU or SEP) or MSU combined with unpredictable maternal stress (MSU + MSUS or S + S), from postnatal days 5 to 14. USV calls and pain/stress/neuroinflammation-related genes in the brain were analyzed. RESULTS We defined 10 different neonatal call patterns, none of which increased after MSU. Stress reduced overall USV calls. Orally feeding LR 17938 also did not change USV calls after MSU. However, LR 17938 markedly increased vocalizations in mice allowed to stay with their dams. Even though LR 17938 did not change MSU-related calls, LR 17938 modulated brain genes related to stress and pain. Up-regulated genes following LR 17938 treatment were opioid peptides, kappa-opioid receptor 1 genes, and CD200, important in anti-inflammatory signaling. LR 17938 down-regulated CCR2 transcripts, a chemokine receptor, in the stressed neonatal brain. CONCLUSIONS USV calls in newborn mice are interpreted as "physiological calls" instead of "cries." Feeding LR 17938 after MSU did not change USV calls but modulated cerebral genes favoring pain and stress reduction and anti-inflammatory signaling. IMPACT We defined mouse ultrasonic vocalization (USV) call patterns in this study, which will be important in guiding future studies in other mouse strains. Newborn mice with maternal separation stress have reduced USVs, compared to newborn mice without stress, indicating USV calls may represent "physiological calling" instead of "crying." Oral feeding of probiotic Lactobacillus reuteri DSM 17938 raised the number of calls when newborn mice continued to suckle on their dams, but not when mice were under stress. The probiotic bacteria had a dampening effect on monocyte activation and on epinephrine and glutamate-related stress gene expression in the mouse brain.
Collapse
Affiliation(s)
- Evelyn S Park
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jasmin Freeborn
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Venugopal Reddy Venna
- Departments of Neurology at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - J Marc Rhoads
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuying Liu
- Departments of Pediatrics at McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Tsuji T, Mizutani R, Minami K, Furuhara K, Fujisaku T, Pinyue F, Jing Z, Tsuji C. Oxytocin administration modulates the complex type of ultrasonic vocalisation of mice pups prenatally exposed to valproic acid. Neurosci Lett 2021; 758:135985. [PMID: 34048819 DOI: 10.1016/j.neulet.2021.135985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by communication disability with no curative treatment. Maternal separation-induced ultrasonic vocalisation (USV) was widely used to assess communication disability between pups and dams. Particularly, USV calls in many genetically modified ASD model mice were altered. Previously, we demonstrated that mice pups exposed to valproic acid in utero (VPA pups) showed decreased number of USV calls on postnatal day 11 and were rescued by subcutaneous injection of oxytocin. However, the qualitative change of USV calls by oxytocin has not been evaluated in VPA pups. In the present study, we examined the duration of oxytocin effect and analysed the altered pattern of USV calls using VPA pups. The oxytocin administration increased the total number of USV calls and the effect persisted up to 120 min in VPA pups. The pattern analysis revealed that the increase in the number of complex calls also persisted up to 120 min. These results suggested that oxytocin had a prolonged effect on USV calls, mainly on complex calls, in VPA pup, showing that oxytocin could recover their social modality to respond to maternal separation.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Japan.
| | - Ryuko Mizutani
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan; Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Tomoaki Fujisaku
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Fu Pinyue
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan
| | - Zhong Jing
- Physiological Department, Guangxi University of Chinese Medicine, Nanning, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu Univeristy School of Medicine, Chiba University and Univeristy of Fukui, Kanazawa Campus, Japan.
| |
Collapse
|
5
|
Alteration in the time and/or mode of delivery differentially modulates early development in mice. Mol Brain 2020; 13:34. [PMID: 32151280 PMCID: PMC7063737 DOI: 10.1186/s13041-020-00578-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Delivery is a complex biological process involving hormonal and mechanical stimuli that together condition the survival and development of the fetus out of the womb. Accordingly, changes in the time or way of being born are associated with an alteration of fundamental biological functions and hypothesized to promote the emergence of neurodevelopmental disorders. Hence, the steadily rise in preterm birth and cesarean section (CS) delivery rates over the past years has become a worldwide health concern. In our previous work, we reported that even though no long-term autistic-like deficits were observed, mice born preterm by CS presented early transient neuronal and communicative defects. However, understanding if these alterations were due to an early birth combined with CS delivery, or if prematurity solely could lead to a similar outcome remained to be evaluated. Using mice born either at term or preterm by vaginal or CS delivery, we assessed early life ultrasonic vocalizations and the onset of eye opening. We report that alterations in communicative behaviors are finely attuned and specifically affected either by preterm birth or by the association between CS delivery and preterm birth in mice, while delayed onset of eye opening is due to prematurity. Moreover, our work further underlies a gender-dependent vulnerability to changes in the time and/or way of being born with distinct outcomes observed in males and females. Thus, our results shed light on the intricacy of birth alterations and might further explain the disparities reported in epidemiological studies.
Collapse
|
6
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|