1
|
York JM, Taylor TN, LaPotin S, Lu Y, Mueller U. Hymenopteran-specific TRPA channel from the Texas leaf cutter ant (Atta texana) is heat and cold activated and expression correlates with environmental temperature. INSECT SCIENCE 2025; 32:301-320. [PMID: 38605428 PMCID: PMC11824891 DOI: 10.1111/1744-7917.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.
Collapse
Affiliation(s)
- Julia M. York
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois Urbana‐ChampaignUrbanaUSA
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Timothy N. Taylor
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| | - Sarah LaPotin
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
- Department of Human GeneticsUniversity of UtahSalt Lake CityUSA
| | - Ying Lu
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
- Institute for NeuroscienceUniversity of Texas at AustinAustinUSA
| | - Ulrich Mueller
- Department of Integrative BiologyUniversity of Texas at AustinAustinUSA
| |
Collapse
|
2
|
Cao Z, Wang N, Liu X, Deng W, Dong R, Jiang Q. Mechanisms of Low Temperature-induced GH Resistance via TRPA1 Channel Activation in Male Nile Tilapia. Endocrinology 2025; 166:bqaf013. [PMID: 39865881 DOI: 10.1210/endocr/bqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low-temperature effects on growth performance and GH resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16 °C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased IGF-1 levels. Molecular analysis revealed tissue-specific upregulation of TRPA1 expression in the pituitary and liver under low-temperature conditions, concurrent with alterations in GH/IGF-1 axis-related gene expression. Pharmacological modulation of TRPA1 using an agonist mimicked low-temperature effects on the GH/IGF-1 axis, while an antagonist reversed cold-induced hormonal changes. In vitro experiments with tilapia hepatocytes demonstrated that TRPA1 activation decreased IGF-1 expression through calcium ion/calmodulin-dependent pathways and disrupted GH-induced JAK2/STAT5 signaling. Additionally, TRPA1 activation induced GH receptor degradation primarily through lysosomal pathways, with partial involvement of proteasomal mechanisms. This study is the first to reveal that TRPA1 channels play a crucial role in mediating the effects of low temperature on GH resistance in fish, providing new insights into temperature regulation of endocrine function. The evolutionary conservation of TRPA1 and the GH/IGF-1 axis suggests potential relevance to stress-induced endocrine dysfunction in other vertebrates, including mammals.
Collapse
Affiliation(s)
- Zhikai Cao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| | - Nan Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| | - Xinrui Liu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| | - Wenjun Deng
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| | - Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065 P.R., China
| |
Collapse
|
3
|
Liénard MA, Baez-Nieto D, Tsai CC, Valencia-Montoya WA, Werin B, Johanson U, Lassance JM, Pan JQ, Yu N, Pierce NE. TRPA5 encodes a thermosensitive ankyrin ion channel receptor in a triatomine insect. iScience 2024; 27:109541. [PMID: 38577108 PMCID: PMC10993193 DOI: 10.1016/j.isci.2024.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
As ectotherms, insects need heat-sensitive receptors to monitor environmental temperatures and facilitate thermoregulation. We show that TRPA5, a class of ankyrin transient receptor potential (TRP) channels absent in dipteran genomes, may function as insect heat receptors. In the triatomine bug Rhodnius prolixus (order: Hemiptera), a vector of Chagas disease, the channel RpTRPA5B displays a uniquely high thermosensitivity, with biophysical determinants including a large channel activation enthalpy change (72 kcal/mol), a high temperature coefficient (Q10 = 25), and in vitro temperature-induced currents from 53°C to 68°C (T0.5 = 58.6°C), similar to noxious TRPV receptors in mammals. Monomeric and tetrameric ion channel structure predictions show reliable parallels with fruit fly dTRPA1, with structural uniqueness in ankyrin repeat domains, the channel selectivity filter, and potential TRP functional modulator regions. Overall, the finding of a member of TRPA5 as a temperature-activated receptor illustrates the diversity of insect molecular heat detectors.
Collapse
Affiliation(s)
- Marjorie A. Liénard
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Balder Werin
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22362 Lund, Sweden
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22362 Lund, Sweden
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Laboratory of Evolutionary Neuroethology, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Wei X, Pan H, Liu D, Zhao X, Gou Y, Guo R, Tian Y. Identification and functional characterization of a novel TRPA1 gene from sea cucumber Apostichopus japonicus and interaction with miR-2013 in response to salt stress. Cell Stress Chaperones 2023; 28:1027-1039. [PMID: 38108989 PMCID: PMC10746662 DOI: 10.1007/s12192-023-01398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Salinity is important abiotic factor influencing sea cucumber aquaculture. This study aimed to identify and functional study of a novel transient receptor potential cation channel subfamily A member 1 (TRPA1) involved in salinity stress through interaction with miR-2013 in the sea cucumber. The full-length cDNA sequence was 1369 bp in length and encoded 138 amino acids. The TRPA1 homolog protein was a hydrophilic protein without a signal peptide and was predicted to a spatial structure of seven helices and eight random coils and two major ANK functional domains. Bioinformatic analysis and luciferase reporter assays confirmed TRPA1 as a target gene of miR-2013. Quantitative PCR revealed that miR-2013 was induced upregulation after salinity stress, while TRPA1 showed upregulated expression with maximum expression at 24 h. The expression of miR-2013 and TRPA1 was negatively regulated. Transfection experiments were conducted to validate the role of miR-2013 and TRPA1 in salinity response. The results showed that miR-2013 was upregulated and TRPA1 was downregulated after transfection with miR-2013 mimics, while miR-2013 was downregulated and TRPA1 was upregulated after transfection with miR-2013 inhibitor. Transfection with si-TRPA1 homolog resulted in upregulation of miR-2013 and downregulation of TRPA1 homolog. These findings suggest that miR-2013 can regulate the expression of TRPA1 under salt stress, and highlight the importance of miR-2013 and TRPA1 in salt stress response. miR-2013 mimics improved the survival rate, while miR-2013 inhibitor and si-TRPA1 reduced it. These findings suggest that miR-2013 and TRPA1 play important roles in sea cucumbers adaptation to salinity changes.
Collapse
Affiliation(s)
- Xin Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Haoran Pan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Dan Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Xinyan Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yuqing Gou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Ran Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yi Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China.
| |
Collapse
|
5
|
Zhang H, Wang C, Zhang K, Kamau PM, Luo A, Tian L, Lai R. The role of TRPA1 channels in thermosensation. CELL INSIGHT 2022; 1:100059. [PMID: 37193355 PMCID: PMC10120293 DOI: 10.1016/j.cellin.2022.100059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/18/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
| | - Chengsan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lifeng Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese, Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
6
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
7
|
Sinica V, Vlachová V. Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor. Physiol Res 2021; 70:363-381. [PMID: 33982589 DOI: 10.33549/physiolres.934697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of the role of the transient receptor potential ankyrin 1 (TRPA1) channel as a polymodal detector of cold and pain-producing stimuli almost two decades ago catalyzed the consequent identification of various vertebrate and invertebrate orthologues. In different species, the role of TRPA1 has been implicated in numerous physiological functions, indicating that the molecular structure of the channel exhibits evolutionary flexibility. Until very recently, information about the critical elements of the temperature-sensing molecular machinery of thermosensitive ion channels such as TRPA1 had lagged far behind information obtained from mutational and functional analysis. Current developments in single-particle cryo-electron microscopy are revealing precisely how the thermosensitive channels operate, how they might be targeted with drugs, and at which sites they can be critically regulated by membrane lipids. This means that it is now possible to resolve a huge number of very important pharmacological, biophysical and physiological questions in a way we have never had before. In this review, we aim at providing some of the recent knowledge on the molecular mechanisms underlying the temperature sensitivity of TRPA1. We also demonstrate how the search for differences in temperature and chemical sensitivity between human and mouse TRPA1 orthologues can be a useful approach to identifying important domains with a key role in channel activation.
Collapse
Affiliation(s)
- V Sinica
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic. or
| | | |
Collapse
|
8
|
de Alba G, López-Olmeda JF, Sánchez-Vázquez FJ. Rearing temperature conditions (constant vs. thermocycle) affect daily rhythms of thermal tolerance and sensing in zebrafish. J Therm Biol 2021; 97:102880. [PMID: 33863444 DOI: 10.1016/j.jtherbio.2021.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
In the wild, the environment does not remain constant, but periodically oscillates so that temperature rises in the daytime and drops at night, which generates a daily thermocycle. The effects of thermocycles on thermal tolerance have been previously described in fish. However, the impact of thermocycles on daytime-dependent thermal responses and daily rhythms of temperature tolerance and sensing expression mechanisms remain poorly understood. This study investigates the effects of two rearing conditions: constant (26 °C, C) versus a daily thermocycle (28 °C in the daytime; 24 °C at night, T) on the thermal tolerance response in zebrafish. Thermal tolerance (mortality) was assessed in 4dpf (days post fertilization) zebrafish larvae after acute heat shock (39 °C for 1 h) at two time points: middle of the light phase (ML) or middle of the dark phase (MD). Thermal stress responses were evaluated in adult zebrafish after a 37 °C challenge for 1 h at ML or MD to examine the expression of the heat-shock protein (HSP) (hsp70, hsp90ab1, grp94, hsp90aa1, hspb1, hsp47, cirbp) and transient receptor potential (TRP) channels (trpv4, trpm4a, trpm2, trpa1b) in the brain. Finally, the daily rhythms of gene expression of HSPs and TRPs were measured every 4 h for 24 h. The results revealed the larval mortality rates and the expression induction of most HSPs in adult zebrafish brain reached the highest values in fish reared under constant temperature and subjected to thermal shock at MD. The expression of most HSPs and TRPs was mainly synchronized to the light/dark (LD) cycle, regardless of the temperature regime. Most HSPs involved in hyperthermic challenges displayed diurnal rhythms with their acrophases in phase with warm-sensing thermoTRPs acrophases. The cold-sensing trpa1b peaked in the second half of the light period and slightly shifted toward the dark phase anticipating the acrophase of cirpb, which is involved in hypothermic challenges. These findings indicated that: a) thermal shocks are best tolerated in the daytime; b) the implementation of daily thermocycles during larval development reduces mortality and stress-cellular expression of HSPs to an acute thermal stress at MD; c) daily rhythms need to be considered when discussing physiological responses of thermal sensing and thermotolerance in zebrafish.
Collapse
Affiliation(s)
- Gonzalo de Alba
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
9
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
10
|
Functional properties of axolotl transient receptor potential ankyrin 1 revealed by the heterologous expression system. Neuroreport 2019; 30:323-330. [PMID: 30702505 DOI: 10.1097/wnr.0000000000001197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) from tetrapod vertebrates except rodents are activated by high temperature with a relatively clear threshold. Our recent investigation suggested that a gradual heat activation without clear threshold might be a common feature for TRPA1 of fish. To approach which animal first acquires TRPA1 as a threshold detector instead of a gradual heat sensor, here, we focused on TRPA1 from axolotls (Ambystoma mexicanum). We isolated a full-length cDNA of axolotl transient receptor potential ankyrin 1 (axTRPA1) and studied the functional properties by two-electrode voltage clamp method using Xenopus oocytes. Allyl isothiocyanate, caffeine, methyl anthranilate and carvacrol activated axTRPA1 channels. The results indicated that axTRPA1 is heat activated with the average threshold of 39.7°C, suggesting that axTRPA1 already has acquired the functional property of land animals.
Collapse
|