1
|
Fusani B, Ramos A, Cardoso SD, Gonçalves D. Vasotocin and oxytocin modulation of the endocrine and behavioral response to an aggressive challenge in male Siamese fighting fish. Horm Behav 2025; 171:105728. [PMID: 40209508 DOI: 10.1016/j.yhbeh.2025.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Aggressive behavior is an adaptive trait present across all taxa. However, the neuroendocrine mechanisms regulating it, particularly in fish, are not well understood. Oxytocin (OXT) and arginine vasotocin (VT) are known modulators of aggression, but their actions remain controversial. This study tested the possible modulation of endocrine and behavioral responses to an aggression challenge by these nonapeptides in Siamese fighting fish, Betta splendens, a species known for its intrinsic aggressiveness. Male B. splendens were injected with different dosages of either Manning compound or L-368,899, VT and OXT receptor antagonists respectively, and were exposed to a mirror challenge for 30 min. While all fish displayed high levels of aggression toward their mirror image, no differences were observed between control-injected and treatment fish. However, blocking VT inhibited the post-fight increase in plasma levels of the androgen 11-ketotestosterone (KT). To further investigate this result, testis tissue from males was incubated with and without VT and Manning compound, and KT levels were measured after 180 min. Results showed a direct effect of VT on in vitro KT secretion, indicating the presence of VT receptors in the testes of this species. Overall, the study does not support a modulatory role of VT or OXT in aggressive behavior, although VT might be implicated in the regulation of peripheral androgen response to aggression in B. splendens.
Collapse
Affiliation(s)
- Bianca Fusani
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Andreia Ramos
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Sara D Cardoso
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - David Gonçalves
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau; William James Center for Research, Ispa - Instituto Universitário, Lisbon, Portugal.
| |
Collapse
|
2
|
Zvenigorodsky V, Gruenbaum BF, Shelef I, Horev A, Azab AN, Oleshko A, Abu-Rabia M, Negev S, Zlotnik A, Melamed I, Boyko M. Evaluation of Blood-Brain Barrier Disruption Using Low- and High-Molecular-Weight Complexes in a Single Brain Sample in a Rat Traumatic Brain Injury Model: Comparison to an Established Magnetic Resonance Imaging Technique. Int J Mol Sci 2024; 25:11241. [PMID: 39457023 PMCID: PMC11508800 DOI: 10.3390/ijms252011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), a major cause of death and disability among young people, leads to significant public health and economic challenges. Despite its frequency, treatment options remain largely unsuitable. However, examination of the blood-brain barrier (BBB) can assist with understanding the mechanisms and dynamics of brain dysfunction, which affects TBI sufferers secondarily to the injury. Here, we present a rat model of TBI focused on two standard BBB assessment markers, high- and low-molecular-weight complexes, in order to understand BBB disruption. In addition, we tested a new technique to evaluate BBB disruption on a single brain set, comparing the new technique with neuroimaging. A total of 100 Sprague-Dawley rats were separated into the following five groups: naive rats (n = 20 rats), control rats with administration (n = 20 rats), and TBI rats (n = 60 rats). Rats were assessed at different time points after the injury to measure BBB disruption using low- and high-molecular-weight complexes. Neurological severity score was evaluated at baseline and at 24 h following TBI. During the neurological exam after TBI, the rats were scanned with magnetic resonance imaging and euthanized for assessment of the BBB permeability. We found that the two markers displayed different examples of BBB disruption in the same set of brain tissues over the period of a week. Our innovative protocol for assessing BBB permeability using high- and low-molecular-weight complexes markers in a single brain set showed appropriate results. Additionally, we determined the lower limit of sensitivity, therefore demonstrating the accuracy of this method.
Collapse
Affiliation(s)
- Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Anat Horev
- Department of Neurology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Abed N. Azab
- Department of Nursing, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, 40002 Sumy, Ukraine;
| | - Mammduch Abu-Rabia
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Shahar Negev
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| |
Collapse
|
3
|
Zeng J, Gao W, Tang Y, Wang Y, Liu X, Yin J, Su X, Zhang M, Kang E, Tian Y, Ni B, He W. Hypoxia-sensitive cells trigger NK cell activation via the KLF4-ASH1L-ICAM-1 axis, contributing to impairment in the rat epididymis. Cell Rep 2023; 42:113442. [PMID: 37952156 DOI: 10.1016/j.celrep.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Male infertility is a global health problem especially prevalent in high-altitude regions. The epididymis is essential for sperm maturation, but the influence of environmental cues on its reshaping remains poorly understood. Here, we use single-cell transcriptomics to track the cellular profiles of epidydimal cells in rats raised under normoxia or extended hypoxia. The results show that hypoxia impairs epididymal function, evident in reduced epithelial cells, compromised blood-epididymis barrier integrity, and increased natural killer cells. Through combined analysis of gene-regulatory networks and cell-cell interaction maps, we identify epididymal hypoxia-sensitive cells that communicate with natural killer (NK) cells via increased intercellular adhesion molecule 1 (ICAM-1) driven by KLF4 recruitment of the histone methyltransferase ASL1L to the Icam1 promoter. Taken together, our study offers a detailed blueprint of epididymal changes during hypoxia and defines a KLF4-ALSH1L-ICAM-1 axis contributing to NK cell activation, yielding a potential treatment targeting hypoxia-induced infertility.
Collapse
Affiliation(s)
- Jitao Zeng
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ying Tang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Wang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaona Liu
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Xingxing Su
- Hepatological Surgery Department, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Enchuan Kang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei He
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Raj K, Gupta GD, Singh S. Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer's disease via attenuation of tau phosphorylation, Amyloid-β (1-42) and NF-κB pathway. Inflammopharmacology 2021; 29:1777-1793. [PMID: 34727278 DOI: 10.1007/s10787-021-00883-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by a gradual decline in cognitive and memory functions of the aged peoples. Long-term exposure to heavy metals (aluminium and iron) cause neurotoxicity by amyloid plaques accumulation, tau phosphorylation, increased oxidative stress, neuroinflammation, and cholinergic neurons degeneration, contributes to the development of AD-like symptoms. The present research work is designed to investigate the neuroprotective effect of spermine in aluminium chloride (AlCl3), and iron (Fe) induced AD-like symptoms in rats. Rats were administered of AlCl3 (100 mg/kg p.o.) alone and in combination with iron (120 μg/g, p.o.) for 28 days. Spermine (5 and 10 mg/kg) through intraperitoneal (i.p.) route was given for 14 days. The recognition and spatial memory impairment were tasted using Morris water maze (MWM), actophotometer, and Novel Object Recognition test (NORT). All the rats were sacrificed on day 29, brains were isolated, and tissue homogenate was used for neuroinflammatory, biochemical, neurotransmitters, metals concentration, and nuclear factor-kappa B (NF-κB) analysis. In the present study, AlCl3 and iron administration elevated oxidative stress, cytokines release, dysbalanced neurotransmitters concentration, and biochemical changes. Rats treated with spermine dose-dependently improved the recognition and spatial memory, attenuated proinflammatory cytokine release, and restored neurotransmitters concentration and antioxidant enzymes. Spermine also mitigated the increased beta-amyloid (Aβ42), with downregulation of tau phosphorylation. Furthermore, spermine augmented the hippocampal levels of B cell leukaemia/lymphoma-2 (Bcl-2), diminished nuclear factor-kappa B (NF-κB) and caspase-3 (casp-3) expression. Moreover, spermine exhibited the neuroprotective effect through anti-inflammatory, antioxidant, neurotransmitters restoration, anti-apoptotic Aβ42 concentration.
Collapse
Affiliation(s)
- Khadga Raj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
5
|
Evans blue dye as an indicator of albumin permeability across a brain endothelial cell monolayer in vitro. Neuroreport 2021; 32:957-964. [PMID: 34227616 DOI: 10.1097/wnr.0000000000001690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An increase in the brain endothelial (BEnd) cell permeability of blood albumin is often seen as an early sign of blood-brain barrier (BBB) disruption and can precede increases in the BEnd permeability of small molecules and other plasma proteins in the course of brain disease. Therefore, Evans blue dye (EBD), an albumin-binding fluorescent tracer that is simple to detect and quantify, has been widely utilized for studying BEnd permeability during BBB disruption. Here, we investigated whether EBD is a suitable indicator of albumin permeability across mouse BEnd cell monolayers, alone or cocultured with mouse cortical astrocytes, in an in-vitro permeability assay; given the strong affinity of EBD for albumin, we further asked whether EBD can affect albumin permeability and vice versa. Albumin and EBD readily crossed membrane cell culture inserts with pore diameters of no less than 1 µm in the absence of a cellular barrier, and their permeability was substantially reduced when the membranes were overlaid with a monolayer of BEnd cells. In line with albumin binding, the BEnd permeability of EBD was substantially reduced by the presence of albumin. While EBD at an EBD-to-albumin ratio similar to those typically used in in vivo BBB experiments had little effect on the BEnd permeability of albumin, a much higher concentration of EBD augmented the BEnd permeability of albumin. In conclusion, we investigated the use of EBD as an indicator of albumin permeability in vitro, explored some of its drawbacks and further demonstrated that EBD at the concentration used in vivo does not affect albumin permeability.
Collapse
|
6
|
Non-Invasive Low Pulsed Electrical Fields for Inducing BBB Disruption in Mice-Feasibility Demonstration. Pharmaceutics 2021; 13:pharmaceutics13020169. [PMID: 33513968 PMCID: PMC7911365 DOI: 10.3390/pharmaceutics13020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/30/2022] Open
Abstract
The blood–brain barrier (BBB) is a major hurdle for the treatment of central nervous system disorders, limiting passage of both small and large therapeutic agents from the blood stream into the brain. Thus, means for inducing BBB disruption (BBBd) are urgently needed. Here, we studied the application of low pulsed electrical fields (PEFs) for inducing BBBd in mice. Mice were treated by low PEFs using electrodes pressed against both sides of the skull (100–400 square 50 µs pulses at 4 Hz with different voltages). BBBd as a function of treatment parameters was evaluated using MRI-based treatment response assessment maps (TRAMs) and Evans blue extravasation. A 3D numerical model of the mouse brain and electrodes was constructed using finite element software, simulating the electric fields distribution in the brain and ensuring no significant temperature elevation. BBBd was demonstrated immediately after treatment and significant linear regressions were found between treatment parameters and the extent of BBBd. The maximal induced electric field in the mice brains, calculated by the numerical model, ranged between 62.4 and 187.2 V/cm for the minimal and maximal applied voltages. These results demonstrate the feasibility of inducing significant BBBd using non-invasive low PEFs, well below the threshold for electroporation.
Collapse
|
7
|
Yang WC, Cao HL, Wang YZ, Li TT, Hu HY, Wan Q, Li WZ. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury. Neural Regen Res 2021; 16:1574-1581. [PMID: 33433486 PMCID: PMC8323706 DOI: 10.4103/1673-5374.303035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies have shown that hyperglycemia aggravates brain damage by affecting vascular endothelial function. However, the precise mechanism remains unclear. Male Sprague-Dawley rat models of diabetes were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin. Rat models of traumatic brain injury were established using the fluid percussion method. Compared with traumatic brain injury rats without diabetic, diabetic rats with traumatic brain injury exhibited more severe brain injury, manifested as increased brain water content and blood-brain barrier permeability, the upregulation of heme oxygenase-1, myeloperoxidase, and Bax, the downregulation of occludin, zona-occludens 1, and Bcl-2 in the penumbra, and reduced modified neurological severity scores. The intraperitoneal injection of a nitric oxide synthase inhibitor N(5)-(1-iminoethyl)-L-ornithine (10 mg/kg) 15 minutes before brain injury aggravated the injury. These findings suggested that nitric oxide synthase plays an important role in the maintenance of cerebral microcirculation, including anti-inflammatory, anti-oxidative stress, and anti-apoptotic activities in diabetic rats with traumatic brain injury. The experimental protocols were approved by the Institutional Animal Care Committee of Harbin Medical University, China (approval No. ky2017-126) on March 6, 2017.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hong-Ling Cao
- Department of Anesthesiology, Jilin Province Tumor Hospital, Changchun, Jilin Province, China
| | - Yue-Zhen Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ting-Ting Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hong-Yu Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiang Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wen-Zhi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
8
|
Wang W, Sun J, Wang N, Sun Z, Ma Q, Li J, Zhang M, Xu J. Enterovirus A71 capsid protein VP1 increases blood-brain barrier permeability and virus receptor vimentin on the brain endothelial cells. J Neurovirol 2020; 26:84-94. [PMID: 31512144 PMCID: PMC7040057 DOI: 10.1007/s13365-019-00800-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Enterovirus A71 (EV-A71) is the major cause of severe hand-foot-and-mouth diseases (HFMD), especially encephalitis and other nervous system diseases. EV-A71 capsid protein VP1 mediates virus attachment and is the important virulence factor in the EV-A71pathogenesis. In this study, we explored the roles of VP1 in the permeability of blood-brain barrier (BBB). Sera albumin, Evans blue, and dextran leaked into brain parenchyma of the 1-week-old C57BL/6J mice intracranially injected with VP1 recombinant protein. VP1 also increased the permeability of the brain endothelial cells monolayer, an in vitro BBB model. Tight junction protein claudin-5 was reduced in the brain tissues or brain endothelial cells treated with VP1. In contrast, VP1 increased the expression of virus receptor vimentin, which could be blocked with VP1 neutralization antibody. Vimentin expression in the VP1-treated brain endothelial cells was regulated by TGF-β/Smad-3 and NF-κB signal pathways. Moreover, vimentin over-expression was accompanied with compromised BBB. From these studies, we conclude that EV-A71 virus capsid protein VP1 disrupted BBB and increased virus receptor vimentin, which both may contribute to the virus entrance into brain and EV-A71 CNS infection.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiandong Sun
- Department of Infectious Disease, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wang
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Zhixiao Sun
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Qiyun Ma
- Department of Respiratory Medicine, People's Hospital of Gaochun, Nanjing, 211300, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical University, Nanjing, 210016, China.
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| | - Juan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 210016, China.
| |
Collapse
|
9
|
Isoflurane attenuates carbogen-induced blood–brain barrier disruption independent of body temperature in mice and rats. Neuroreport 2020; 31:118-124. [DOI: 10.1097/wnr.0000000000001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Liao KH, Wei VC, Wang HL, Chen HY, Lai TW. Carbogen inhalation opens the blood-brain barrier in rats without causing long-term metabolic or neurological deficit. Brain Res 2019; 1720:146320. [DOI: 10.1016/j.brainres.2019.146320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
|