1
|
Puoyan‐Majd S, Parnow A, Rashno M, Heidarimoghadam R, komaki A. Effects of Pretreatment With Coenzyme Q10 (CoQ10) and High-Intensity Interval Training (HIIT) on FNDC5, Irisin, and BDNF Levels, and Amyloid-Beta (Aβ) Plaque Formation in the Hippocampus of Aβ-Induced Alzheimer's Disease Rats. CNS Neurosci Ther 2025; 31:e70221. [PMID: 39957598 PMCID: PMC11831071 DOI: 10.1111/cns.70221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
AIMS Physical exercise has been shown to protect against cognitive decline in Alzheimer's disease (AD), likely through the upregulation of brain-derived neurotrophic factor (BDNF). Recent studies have reported that exercise activates the FNDC5/irisin pathway in the hippocampus of mice, triggering a neuroprotective gene program that includes BDNF. This study aimed to investigate the effects of 8 weeks of pretreatment with coenzyme Q10 (CoQ10) and high-intensity interval training (HIIT), both individually and in combination, on FNDC5, irisin, BDNF, and amyloid-beta (Aβ) plaque formation in the hippocampus of Aβ-related AD rats. METHODS In this study, 72 male Wistar rats were randomly assigned to one of the following groups: control, sham, HIIT (low intensity: 3 min running at 50%-60% VO2max; high intensity: 4 min running at 85%-90% VO2max), Q10 (50 mg/kg, orally administered), Q10 + HIIT, AD, AD + HIIT, AD + Q10, and AD + Q10 + HIIT. RESULTS Aβ injection resulted in a trend toward decreased levels of FNDC5, irisin, and BDNF, alongside increased Aβ plaque formation in the hippocampus of Aβ-induced AD rats. However, pretreatment with CoQ10, HIIT, or their combination significantly restored hippocampal levels of FNDC5, irisin, and BDNF, while also inhibiting Aβ plaque accumulation in these rats. CONCLUSION Pretreatment with CoQ10 and HIIT improved the Aβ-induced reduction in BDNF levels probably through the FNDC5/irisin pathway and preventing Aβ plaque formation.
Collapse
Affiliation(s)
- Samira Puoyan‐Majd
- Bio‐Sciences Department, Physical Education and Sport Sciences FacultyRazi UniversityKermanshahIran
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
| | - Abdolhossein Parnow
- Bio‐Sciences Department, Physical Education and Sport Sciences FacultyRazi UniversityKermanshahIran
| | - Masome Rashno
- Asadabad School of Medical SciencesAsadabadIran
- Student Research Committee, Asadabad School of Medical SciencesAsadabadIran
| | - Rashid Heidarimoghadam
- Department of ErgonomicsSchool of Health, Hamadan University of Medical SciencesHamadanIran
| | - Alireza komaki
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of NeuroscienceSchool of Science and Advanced Technologies in Medicine, Hamadan University of Medical SciencesHamadanIran
| |
Collapse
|
2
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
4
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
5
|
Ayari S, Abellard A, Carayol M, Guedj É, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals' models with mild cognitive impairment or dementia. Exp Gerontol 2023; 175:112141. [PMID: 36898593 DOI: 10.1016/j.exger.2023.112141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To investigate which type, frequency, duration, intensity, and volume of chronic exercise might more strongly reduce pro-inflammatory cytokines and enhance anti-inflammatory cytokines in human and animal models with Mild Cognitive Impairment (MCI) or dementia. DESIGN A systematic review. DATA SOURCE English-language search of 13 electronic databases: Web of Science, PubMed/Medline, Sport Discus, Scopus, Cochrane, Psych Net, Springer, ScienceDirect, Pascal & Francis, Sage journals, Pedro, Google Scholar, and Sage. INCLUSION CRITERIA (i) human and animal studies that included exercise, physical activity, or fitness training as an experimental intervention, (ii) studies that addressed MCI, dementia, or AD, (iii) studies that focused on measuring cytokines and/or other inflammatory and/or neuroinflammatory immune markers, (iii) studies that examined inflammatory indicators in blood, CSF (Cerebrospinal Fluid), and brain tissue. RESULTS Of the 1290 human and animal studies found, 38 were included for qualitative analysis, 11 human articles, 27 animal articles, and two articles addressing both human and animal protocols. In the animal model, physical exercise decreased pro-inflammatory markers in 70.8 % of the articles and anti-inflammatory cytokines: IL -4, IL -10, IL-4β, IL -10β, and TGF-β in 26 % of articles. Treadmill running, resistance exercise, and swimming exercise reduce pro-inflammatory cytokines and increase anti-inflammatory cytokines. In the human model, 53.9 % of items reduced pro-inflammatory proteins and 23 % increased anti-inflammatory proteins. Cycling exercise, multimodal, and resistance training effectively decreased pro-inflammatory cytokines. CONCLUSION In rodent animal models with AD phenotype, treadmill, swimming, and resistance training remain good interventions that can delay various mechanisms of dementia progression. In the human model, aerobic, multimodal, and resistance training are beneficial in both MCI and AD. Multimodal training of moderate to high intensity multimodal exercise is effective for MCI. Voluntary cycling training, moderate- or high-intensity aerobic exercise is effective in mild AD patients.
Collapse
Affiliation(s)
- Sawsen Ayari
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Alexandre Abellard
- Mediterranean Institute of Information and Communication Sciences, Toulon, France.
| | - Marion Carayol
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| | - Éric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France.
| | - Olivier Gavarry
- Research Unit "Impact of Physical Activity on Health" (IAPS n°201723207F), University of Toulon, Toulon, France.
| |
Collapse
|
6
|
Rangasamy SB, Jana M, Dasarathi S, Kundu M, Pahan K. Treadmill workout activates PPARα in the hippocampus to upregulate ADAM10, decrease plaques and improve cognitive functions in 5XFAD mouse model of Alzheimer's disease. Brain Behav Immun 2023; 109:204-218. [PMID: 36682514 PMCID: PMC10023420 DOI: 10.1016/j.bbi.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Although liver is rich in peroxisome proliferator-activated receptor α (PPARα), recently we have described the presence of PPARα in hippocampus where it is involved in non-amyloidogenic metabolism of amyloid precursor protein (APP) via ADAM10, decreasing amyloid plaques and improving memory and learning. However, mechanisms to upregulate PPARα in vivo in the hippocampus are poorly understood. Regular exercise has multiple beneficial effects on human health and here, we describe the importance of regular mild treadmill exercise in upregulating PPARα in vivo in the hippocampus of 5XFAD mouse model of Alzheimer's disease. We also demonstrate that treadmill exercise remained unable to stimulate ADAM10, reduce plaque pathology and improve cognitive functions in 5XFADΔPPARα mice (5XFAD mice lacking PPARα). On the other hand, treadmill workout increased ADAM10, decreased plaque pathology and protected memory and learning in 5XFADΔPPARβ mice (5XFAD mice lacking PPARβ). Moreover, the other PPAR (PPARγ) also did not play any role in the transcription of ADAM10 in vivo in the hippocampus of treadmill exercised 5XFAD mice. These results underline an important role of PPARα in which treadmill exercise remains unable to exhibit neuroprotection in the hippocampus in the absence of PPARα.
Collapse
Affiliation(s)
- Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Malabendu Jana
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Madhuchhanda Kundu
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, USA.
| |
Collapse
|
7
|
Gu L, Ju Y, Hu M, Zheng M, Li Q, Zhang X. Research progress of PPARγ regulation of cholesterol and inflammation in Alzheimer's disease. Metab Brain Dis 2023; 38:839-854. [PMID: 36723831 DOI: 10.1007/s11011-022-01139-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023]
Abstract
Peroxidase proliferator receptors (PPARs) are defined as key sensors and regulators of cell metabolism, transcription factors activated by ligands, involved in lipid, glucose and amino acid metabolism, participating in the processes of cell differentiation, apoptosis, inflammation regulation, and acute and chronic nerve damage. Among them, PPARγ is expressed in different brain regions and can regulate lipid metabolism, mitochondrial disorders, oxidative stress, and cell apoptosis. It has anti-inflammatory activity and shows neuroprotection. The regulation of Aβ levels in Alzheimer's disease involves cholesterol metabolism and inflammation, so this article first analyzes the biological functions of PPARγ, then mainly focuses on the relationship between cholesterol and inflammation and Aβ, and elaborates on the regulation of PPARγ on key proteins and the corresponding molecules, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yue Ju
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
8
|
Elsworthy RJ, Hill EJ, Dunleavy C, Aldred S. The role of ADAM10 in astrocytes: Implications for Alzheimer's disease. Front Aging Neurosci 2022; 14:1056507. [PMID: 36533182 PMCID: PMC9748279 DOI: 10.3389/fnagi.2022.1056507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 01/27/2025] Open
Abstract
Much of the early research into AD relies on a neuron-centric view of the brain, however, evidence of multiple altered cellular interactions between glial cells and the vasculature early in AD has been demonstrated. As such, alterations in astrocyte function are widely recognized a contributing factor in the pathogenesis of AD. The processes by which astrocytes may be involved in AD make them an interesting target for therapeutic intervention, but in order for this to be most effective, there is a need for the specific mechanisms involving astrocyte dysfunction to be investigated. "α disintegrin and metalloproteinase" 10 (ADAM10) is capable of proteolytic cleavage of the amyloid precursor protein which prevents amyloid-β generation. As such ADAM10 has been identified as an interesting enzyme in AD pathology. ADAM10 is also known to play a role in a significant number of cellular processes, most notable in notch signaling and in inflammatory processes. There is a growing research base for the involvement of ADAM10 in regulating astrocytic function, primarily from an immune perspective. This review aims to bring together available evidence for ADAM10 activity in astrocytes, and how this relates to AD pathology.
Collapse
Affiliation(s)
- Richard J. Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Hill
- School of Biosciences, Aston University, Birmingham, United Kingdom
| | - Connor Dunleavy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
10
|
Pedrini S, Chatterjee P, Nakamura A, Tegg M, Hone E, Rainey-Smith SR, Rowe CC, Dore V, Villemagne VL, Ames D, Kaneko N, Gardener SL, Taddei K, Fernando B, Martins I, Bharadwaj P, Sohrabi HR, Masters CL, Brown B, Martins RN. The Association Between Alzheimer's Disease-Related Markers and Physical Activity in Cognitively Normal Older Adults. Front Aging Neurosci 2022; 14:771214. [PMID: 35418852 PMCID: PMC8996810 DOI: 10.3389/fnagi.2022.771214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Pratishtha Chatterjee
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Akinori Nakamura
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michelle Tegg
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Eugene Hone
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Stephanie R. Rainey-Smith
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, Australia
- Academic Unit for Psychiatry of Old Age, St George's Hospital, University of Melbourne, Kew, VIC, Australia
| | - Naoki Kaneko
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sam L. Gardener
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Kevin Taddei
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Binosha Fernando
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Prashant Bharadwaj
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin L. Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Belinda Brown
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Ralph N. Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Ralph N. Martins
| |
Collapse
|
11
|
Sayevand Z, Nazem F, Nazari A, Sheykhlouvand M, Forbes SC. Cardioprotective effects of exercise and curcumin supplementation against myocardial ischemia–reperfusion injury. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
13
|
Marko DM, Finch MS, Mohammad A, MacNeil AJ, Klentrou P, MacPherson REK. Post-Exercise Serum from Humans Influences the Biological Tug of War of APP Processing in Human Neuronal Cells. Am J Physiol Cell Physiol 2022; 322:C614-C623. [PMID: 35196169 DOI: 10.1152/ajpcell.00418.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are becoming more prevalent in our aging society. One specific neuropathological hallmark of this disease is the accumulation of amyloid-β (Aβ) peptides, which aggregate to form extra-neuronal plaques. Increased Aβ peptides are often observed well before symptoms of AD develop, highlighting the importance of targeting Aβ producing pathways early on in disease progression. Evidence indicates that exercise has the capacity to reduce Aβ peptide production in the brain however the mechanisms remain unknown. Exercise-induced signaling mediators could be the driving force behind some of the beneficial effects observed in the brain with exercise. The purpose of this study was to examine if post-exercise serum and the factors it contains can alter neuronal APP processing. Human SH-SY5Y neuronal cells were differentiated with retinoic acid for 5 days and treated with 10% pre- or post-exercise serum from humans for 30 minutes. Cells were collected for analysis of acute (30 minutes; n=6) or adaptive (24 hours post-treatment; n=6) responses. There were no statistical differences in ADAM10 and BACE1 mRNA or protein expression with post-exercise serum treatment at either time point. However, there was an increase in the ratio of sAPPa to sAPPβ protein content (p=0.05) after 30 minutes of post-exercise serum treatment. Additionally, 30 minutes of post-exercise serum treatment increased ADAM10 (p=0.01) and BACE1 (p=0.02) activity. These findings suggest that post-exercise serum modulates important enzymes involved in APP processing, pushing the cascade towards the non-amyloidogenic arm.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
14
|
Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 2022; 74:101543. [PMID: 34923167 PMCID: PMC8761166 DOI: 10.1016/j.arr.2021.101543] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, USA; Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA
| | - R J Wessells
- Department of Physiology, Wayne State University School of Medicine, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
15
|
Tan ZX, Dong F, Wu LY, Feng YS, Zhang F. The Beneficial Role of Exercise on Treating Alzheimer's Disease by Inhibiting β-Amyloid Peptide. Mol Neurobiol 2021; 58:5890-5906. [PMID: 34415486 DOI: 10.1007/s12035-021-02514-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find effective treatments of the disease. One feature of AD is the accumulation of neurotoxic β-amyloid peptide (Aβ). Aβ induces multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the reduction of Aβ to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies have been performed to verify the role that exercise plays in reducing Aβ deposition to alleviate AD. This paper reviewed the various mechanisms involved in the exercise-induced reduction of Aβ, including the regulation of amyloid precursor protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide new therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People's Republic of China. .,Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
16
|
Vasconcelos-Filho FSL, da Rocha Oliveira LC, de Freitas TBC, de Pontes PADS, Rocha-E-Silva RCD, Godinho WDN, Chaves EMC, da Silva CGL, Soares PM, Ceccatto VM. Effect of involuntary chronic physical exercise on beta-amyloid protein in experimental models of Alzheimer's disease: Systematic review and meta-analysis. Exp Gerontol 2021; 153:111502. [PMID: 34339821 DOI: 10.1016/j.exger.2021.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The excessive deposition of β-amyloid proteins (Aβ) is directly correlated with the establishment and development of Alzheimer's Disease (AD). Current treatments for AD only reduce symptoms instead of acting on Aβ, the primary etiological agent. Hence, the anti-amyloid effect of regular exercise has been widely investigated as an alternative therapy. This systematic review and meta-analysis examined the anti-amyloid effect of regular physical exercise in animal models of AD. The search was conducted on the electronic databases Pubmed, Embase, Scopus and Web of Science without data limitation and using the following describers: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated using the SYRCLE's tool. Meta-analyses were conducted using models of random continuous effects. A total of 36 studies were selected and most used: transgenic mice (n = 29), treadmill training, duration of 12 weeks (interval of 4 to 28 weeks), rate of 60 min/day (interval of 30 min and up until free access) and speed of 12 m/min (interval of 3.2 to 32 m/min). The hippocampus and cortex were the most frequently investigated regions. Meta-analysis demonstrated a decrease in Aβ with greater effect in unspecified isoforms Meta-analysis demonstrated a decrease in Aβ with greater effect in unspecified isoforms (N = 4; SMD = -2.71, IC 95%: -3.59, -1.84, p < 0.00001, Q2 = 3.38, I2 = 11%) and Aβ1-42 (N = 21; SMD = -1.94, IC 95%: -2.37, -1.51, p < 0.00001, Q2 = 33,37, I2 = 40%). Concerning training, greater effect was found with: 1) swimming (N = 4; SMD = -1.98, IC 95%: -3,28 - -0,68, p = 0.003, Q2 = 9.74, I2 = 69%), 2) moderate intensity (N = 4; SMD = -2.03, IC 95%: -3.31 - -0.75, p < 0.005, Q2 = 12.68, I2 = 76%); 3) duration up to six weeks (N = 6; N = 6; SMD = -2.35, IC 95%: -3.15 - -1.55, p < 0.00001, Q2 = 8.38, I2 = 40%); 4) young animals (SMD = -2.00, IC 95%: -2.59 - -1.42, p < 0.00001, Q2 = 24.90, I2 = 52%); 5) in the amygdala region (N = 1; SMD = -8.56, IC 95%: -12.88 - -4.23, p = 0.0001) and females (N = 4; SMD = -2.14, IC 95%: -3.48 - -0.79, p = 0.002, Q2 = 10.31, I2 = 71%). However, the reduction of Aβ was associated with decrease of amyloidogenic pathway and increase of non-amyloidogenic. Hence, regular physical exercise demonstrated anti-amyloid effect in experimental models of AD through positive alterations in APP processing through different signaling pathways.
Collapse
Affiliation(s)
- Francisco Sérgio Lopes Vasconcelos-Filho
- Pró-reitoria de Cultura, Universidade Federal do Cariri, Juazeiro do Norte, Ceará, Brazil; Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Christyan da Rocha Oliveira
- Departamento de Ciências da Saúde, Faculdade de Medicina, Universidade Federal Rural do Semi-árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | | | - Welton Daniel Nogueira Godinho
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Edna Maria Camelo Chaves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Paula Matias Soares
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
17
|
Li B, Mao Q, Zhao N, Xia J, Zhao Y, Xu B. Treadmill exercise overcomes memory deficits related to synaptic plasticity through modulating ionic glutamate receptors. Behav Brain Res 2021; 414:113502. [PMID: 34331969 DOI: 10.1016/j.bbr.2021.113502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 01/06/2023]
Abstract
Neuronal death and synaptic loss are major pathogensis of Alzheimer's disease (AD), which may be related to the ionic glutamate receptors abnormality. Ionic glutamate receptors are important postsynaptic membrane receptors that regulate excitatory synaptic transmission and are also major component of the postsynaptic density. Beta-Amyloid (Aβ) attacks ionic glutamate receptors to reduce synaptic efficacy and synaptic plasticity, resulting in neuronal death and synaptic loss. The current study aimed to investigate whether exercise-ameliorated AD was associated with changes in ionic glutamate receptors. Transgenic APP/PS1 mice (TgAPP/PS1) and age-matched littermate wild mice were divided into wild type control group, wild type exercise group, transgenic control group and transgenic exercise group. The mice in exercise groups were subjected to treadmill training for 12 weeks. The results showed that 12-week treadmill exercise improved the spatial learning and memory abilities of TgAPP/PS1 mice. Moreover, exercise decreased the contents of Aβ40, Aβ42 and amyloid plaque deposition in hippocampus of TgAPP/PS1 mice. The number of synapses and the length and thickness of postsynaptic densities (PSD) in the hippocampal CA1 region of TgAPP/PS1 mice were significantly increased after exercise. Concomitantly, TgAPP/PS1 displayed obstacles in synaptic plasticity as evidenced by significant decreases in the levels of synaptic structural plasticity-related proteins SYN, PSD95, MAP2 and NCAM, as well as ionic glutamate neuroreceptor subunit proteins GluN2B and GluA1. Interestingly, exercise alleviated these synaptic plasticity disorder in TgAPP/PS1 mice. Thus, this study demonstrates that 12-week treadmill exercise reduces Aβ levels in the hippocampus and mitigates cognitive decline in TgAPP/PS1 mice, which may be mediated by improvements in synaptic structural plasticity and excitatory neurotransmission.
Collapse
Affiliation(s)
- Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qian Mao
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Na Zhao
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Jie Xia
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Yongcai Zhao
- School of Exercise and Health Science, Tianjin University of Sport, Tianjin, China
| | - Bo Xu
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Vasconcelos-Filho FSL, da Rocha Oliveira LC, de Freitas TBC, de Pontes PADS, da Rocha-E-Silva RC, Chaves EMC, da Silva CGL, Soares PM, Ceccatto VM. Neuroprotective mechanisms of chronic physical exercise via reduction of β-amyloid protein in experimental models of Alzheimer's disease: A systematic review. Life Sci 2021; 275:119372. [PMID: 33745893 DOI: 10.1016/j.lfs.2021.119372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 12/09/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common irreversible chronic neurodegenerative disease. It is characterized by the abnormal accumulation of β-amyloid protein (Aβ), which triggers homeostatic breakage in several physiological systems. However, the effect of chronic exercise on the formation of Aβ as an alternative therapy has been investigated. This systematic review examines the antiamyloid effect of different types and intensities of exercise, seeking to elucidate its neuroprotective mechanisms. MAIN METHODS The research was conducted in the electronic databases Pubmed, Embase, Scopus and Web of Science, using the following descriptors: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated through SYRCLE's Risk of Bias for experimental studies. KEY FINDINGS 2268 articles were found, being 36 included in the study. A higher frequency of use of mice with genetic alterations was identified for the Alzheimer's disease (AD) model (n = 29). It was used as chronic training: treadmill running (n = 24), voluntary running wheel (n = 7), swimming (n = 4) and climbing (n = 2). The hippocampus and the cortex were the most investigated regions. However, physiological changes accompanied by the reduction of Aβ and associated with AD progression were verified. It is concluded that exercise reduces the production of Aβ in models of animals with AD. SIGNIFICANCE Nevertheless, this effect contributes to the improvement of several physiological aspects related to Aβ and that contribute to neurological impairment in AD.
Collapse
Affiliation(s)
- Francisco Sérgio Lopes Vasconcelos-Filho
- Pró-reitoria de Cultura, Universidade Federal do Cariri, Juazeiro do Norte, Ceará, Brazil; Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil.
| | - Lucas Christyan da Rocha Oliveira
- Departamento de Ciências da Saúde, Faculdade de Medicina, Universidade Federal Rural do Semi-árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | | | - Edna Maria Camelo Chaves
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Paula Matias Soares
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Vânia Marilande Ceccatto
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Falkenhain K, Ruiz-Uribe NE, Haft-Javaherian M, Ali M, Michelucci PE, Schaffer CB, Bracko O. A pilot study investigating the effects of voluntary exercise on capillary stalling and cerebral blood flow in the APP/PS1 mouse model of Alzheimer's disease. PLoS One 2020; 15:e0235691. [PMID: 32857763 PMCID: PMC7455035 DOI: 10.1371/journal.pone.0235691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022] Open
Abstract
Exercise exerts a beneficial effect on the major pathological and clinical symptoms associated with Alzheimer’s disease in humans and mouse models of the disease. While numerous mechanisms for such benefits from exercise have been proposed, a clear understanding of the causal links remains elusive. Recent studies also suggest that cerebral blood flow in the brain of both Alzheimer’s patients and mouse models of the disease is decreased and that the cognitive symptoms can be improved when blood flow is restored. We therefore hypothesized that the mitigating effect of exercise on the development and progression of Alzheimer’s disease may be mediated through an increase in the otherwise reduced brain blood flow. To test this idea, we performed a pilot study to examine the impact of three months of voluntary wheel running in a small cohort of ~1-year-old APP/PS1 mice on short-term memory function, brain inflammation, amyloid deposition, and baseline cerebral blood flow. Our findings that exercise led to a trend toward improved spatial short-term memory, reduced brain inflammation, markedly increased neurogenesis in the dentate gyrus, and a reduction in hippocampal amyloid-beta deposits are consistent with other reports on the impact of exercise on the progression of Alzheimer’s related symptoms in mouse models. Notably, we did not observe any impact of wheel running on overall baseline blood flow nor on the incidence of non-flowing capillaries, a mechanism we recently identified as one contributing factor to cerebral blood flow deficits in mouse models of Alzheimer’s disease. Overall, our findings add to the emerging picture of differential effects of exercise on cognition and blood flow in Alzheimer’s disease pathology by showing that capillary stalling is not decreased following exercise.
Collapse
Affiliation(s)
- Kaja Falkenhain
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
| | - Nancy E. Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Mohammad Haft-Javaherian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Muhammad Ali
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | | | | | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
20
|
Sex-dependent metabolic effects of pregestational exercise on prenatally stressed mice. J Dev Orig Health Dis 2020; 12:271-279. [PMID: 32406352 DOI: 10.1017/s2040174420000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stressful events during the prenatal period have been related to hyperactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as metabolic changes in adult life. Moreover, regular exercise may contribute to the improvement of the symptoms associated with stress and stress-related chronic diseases. Therefore, this study aims to investigate the effects of exercise, before the gestation period, on the metabolic changes induced by prenatal stress in adult mice. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS) and exercise before the gestational period plus PNS (EX + PNS). When adults, the plasmatic biochemical analysis, oxidative stress, gene expression of metabolic-related receptors and sex differences were assessed in the offspring. Prenatal stress decreased neonatal and adult body weight when compared to the pregestational exercise group. Moreover, prenatal stress was associated with reduced body weight in adult males. PNS and EX + PNS females showed decreased hepatic catalase. Pregestational exercise prevented the stress-induced cholesterol increase in females but did not prevent the liver mRNA expression reduction on the peroxisome proliferator-activated receptors (PPARs) α and γ in PNS females. Conversely, PNS and EX + PNS males showed an increased PPARα mRNA expression. In conclusion, pregestational exercise prevented some effects of prenatal stress on metabolic markers in a sex-specific manner.
Collapse
|
21
|
Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Flotillin: A Promising Biomarker for Alzheimer's Disease. J Pers Med 2020; 10:jpm10020020. [PMID: 32225073 PMCID: PMC7354424 DOI: 10.3390/jpm10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra- and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Correspondence: (M.F.S.); (C.P.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (M.F.S.); (C.P.)
| |
Collapse
|
22
|
Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, Bai Y, Huang T, Xu B. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res 2019; 376:112171. [DOI: 10.1016/j.bbr.2019.112171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|