1
|
Valeros J, Jerome M, Tseyang T, Vo P, Do T, Fajardo Palomino D, Grotehans N, Kunala M, Jerrett AE, Hathiramani NR, Mireku M, Magesh RY, Yenilmez B, Rosen PC, Mann JL, Myers JW, Kunchok T, Manning TL, Boercker LN, Carr PE, Munim MB, Lewis CA, Sabatini DM, Kelly M, Xie J, Czech MP, Gao G, Shepherd JN, Walker AK, Kim H, Watson EV, Spinelli JB. Rhodoquinone carries electrons in the mammalian electron transport chain. Cell 2025; 188:1084-1099.e27. [PMID: 39909039 PMCID: PMC11845293 DOI: 10.1016/j.cell.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
Ubiquinone (UQ), the only known electron carrier in the mammalian electron transport chain (ETC), preferentially delivers electrons to the terminal electron acceptor oxygen (O2). In hypoxia, ubiquinol (UQH2) diverts these electrons onto fumarate instead. Here, we identify rhodoquinone (RQ), an electron carrier detected in mitochondria purified from certain mouse and human tissues that preferentially delivers electrons to fumarate through the reversal of succinate dehydrogenase, independent of environmental O2 levels. The RQ/fumarate ETC is strictly present in vivo and is undetectable in cultured mammalian cells. Using genetic and pharmacologic tools that reprogram the ETC from the UQ/O2 to the RQ/fumarate pathway, we establish that these distinct ETCs support unique programs of mitochondrial function and that RQ confers protection upon hypoxia exposure in vitro and in vivo. Thus, in discovering the presence of RQ in mammals, we unveil a tractable therapeutic strategy that exploits flexibility in the ETC to ameliorate hypoxia-related conditions.
Collapse
Affiliation(s)
- Jonathan Valeros
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tenzin Tseyang
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Thang Do
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Fajardo Palomino
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nils Grotehans
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Manisha Kunala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Alexandra E Jerrett
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicolai R Hathiramani
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Mireku
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Rayna Y Magesh
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paul C Rosen
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica L Mann
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob W Myers
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Tanner L Manning
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Lily N Boercker
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Paige E Carr
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | | | - Caroline A Lewis
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Boston Branch, 840 Memorial Drive, Cambridge, MA 02139, USA
| | - Mark Kelly
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Disease Research, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Amy K Walker
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hahn Kim
- Small Molecule Screening Center, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Emma V Watson
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Orywal K, Socha K, Iwaniuk P, Kaczyński P, Farhan JA, Zoń W, Łozowicka B, Perkowski M, Mroczko B. Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1333. [PMID: 39941101 PMCID: PMC11818229 DOI: 10.3390/ijms26031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), which are a consequence of the progressive loss of neuronal function and structure, cause significant cognitive impairment. The incidence of these diseases in the world's population is constantly increasing as a result of an aging population. Although genetic and environmental factors are most often mentioned as the pathogenetic factors of these diseases, increasing evidence points to the important role of proper nutrition in the prevention and support of the treatment of these disorders. A healthy, balanced diet can mitigate the risks associated with the risk factors mentioned above and slow the progression of the disease by reducing oxidative stress and inflammation. Vitamins B, D, E, C, K, and A have been shown to support cognitive functions and protect the nervous system. This review demonstrates the importance of vitamins in preventing and supporting the therapy of neurodegenerative diseases. Information regarding the health-promoting properties of these vitamins must be effectively communicated to consumers seeking to protect their health, particularly in the context of neurodegenerative diseases. Consequently, this review also examines the authorized health claims under EU food law related to these vitamins, assessing their role in promoting awareness of the vitamins' potential benefits for neuroprotection and the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Shi W, He L, Li R, Cao J. Role of mitochondrial complex I genes in host plant expansion of Bactrocera tau (Tephritidae: Diptera) by CRISPR/Cas9 system. INSECT SCIENCE 2025. [PMID: 39829059 DOI: 10.1111/1744-7917.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 01/22/2025]
Abstract
Host expansion facilitates tephritid flies to expand their ranges. Unraveling the mechanisms of host expansion will help to efficiently control these pests. Our previous works showed mitochondrial complex I genes Ndufs1, Ndufs3, and Ndufa7 being upregulated during host expansion of Bactrocera tau (Walker), one of the highly hazardous species of tephritids. However, their roles in the host expansion of B. tau remain unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) editing system for the first time, a stable homozygous Ndufa7 strain (Btndufa7-/-), heterozygous Ndufs1 (Btndufs1+/-), and Ndufs3 strains (Btndufs3+/-) were obtained from F3 generation of B. tau, after gene knockout. Reduced sizes of larvae and pupae of the Ndufa7 knockout strain were first observed. Notably, the mean values of fitness estimation (pupal numbers, single-pupal weight and emergence rate) and Ndufa7 gene expression in the Ndufa7 knockout strain were slightly reduced on 2 native hosts (summer squash and cucumber), while it sharply decreased on the novel host banana and the potential host pitaya, compared with those of the wild-type strain. Furthermore, the Ndufa7 knockout strain did not survive on the novel host guava. These results suggested that Ndufa7 disturbs the survival on native hosts, expansion to novel hosts, and further expansion to potential hosts of B. tau. Homozygous lethality occurred after the knockout of Ndufs1 or Ndufs3, suggesting that these 2 genes play a role in the early development of B. tau. This study revealed that Ndufa7 is a target gene for the management of tephritids and opens a new avenue for pest control research.
Collapse
Affiliation(s)
- Wei Shi
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Linsheng He
- School of Life Science, Yunnan University, Kunming, China
| | - Ruixiang Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Jun Cao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Roumeliotis S, Kontogiorgos I, de Vries F, Maresz K, Jeanne JF, Leivaditis K, Schurgers LJ. The role of vitamin K2 in cognitive impairment: linking vascular health to brain health. Front Aging Neurosci 2025; 16:1527535. [PMID: 39881683 PMCID: PMC11775153 DOI: 10.3389/fnagi.2024.1527535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Cognitive impairment, marked by a decline in essential mental aspects such as attention, memory, and problem-solving, is significantly correlated with advancing age. This condition presents a major challenge for the elderly, adversely affecting quality of life, diminishing independence, and imposing substantial burdens on healthcare systems. Recent research indicates that vitamin K2 may be vital for preserving brain health and cognitive function. Traditionally recognized primarily for its role in blood coagulation, vitamin K has emerged in recent years as a nutrient with diverse biological effects essential for healthy aging. A growing body of evidence from both observational and interventional studies underscores the pivotal role of vitamin K2 in mitigating arterial calcification. This mechanism may link vascular health to cognitive function, suggesting that vitamin K2 could play a critical role in the prevention of cognitive impairment in aging populations.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Second Department of Nephrology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kontogiorgos
- Second Department of Nephrology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Femke de Vries
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | - Jean-François Jeanne
- Gnosis by Lesaffre, Lesaffre International, R&D Department, Marcq-En-Baroeul, France
| | - Konstantinos Leivaditis
- Second Department of Nephrology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| |
Collapse
|
5
|
Delamotte P, Montagne J. Dietary Lipids and Their Metabolism in the Midgut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39565560 DOI: 10.1007/5584_2024_835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Animals use dietary lipids to sustain their growth and survival. Insects can synthesize fatty acids (FAs) and are autotroph for a number of lipids, but auxotroph for specific lipids classes (e.g. sterols, polyunsaturated FAs). Once ingested, lipids are hydrolysed in the intestinal lumen and taken up into intestinal cells within specific regions of the insect digestive tract. These lipids can be either stored in the intestinal cells or exported through the haemolymph circulation to specific organs. In this chapter, we describe the various lipids provided by insect diets, their extracellular hydrolysis in the gut lumen and their intake and metabolic fate in the intestinal cells. This chapter emphasizes the critical role of the digestive tract and its regionalization in processing dietary lipids prior to their transfer to the requiring tissues.
Collapse
Affiliation(s)
- Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
7
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
9
|
Ushida K, Kinoshita K, Ichihara Y, Hirata Y, Kurauchi Y, Seki T, Katsuki H. Menaquinone-4 Alleviates Neurological Deficits Associated with Intracerebral Hemorrhage by Preserving Corticospinal Tract in Mice. Neurochem Res 2024; 49:1838-1850. [PMID: 38727984 DOI: 10.1007/s11064-024-04150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Menaquinone-4 (MK-4) is an isoform of vitamin K2 that has been shown to exert various biological actions besides its functions in blood coagulation and bone metabolism. Here we examined the effect of MK-4 on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of 200 mg/kg MK-4 starting from 3 h after induction of ICH by intrastriatal collagenase injection significantly ameliorated neurological deficits. Unexpectedly, MK-4 produced no significant effects on various histopathological parameters, including the decrease of remaining neurons and the increase of infiltrating neutrophils within the hematoma, the increased accumulation of activated microglia/macrophages and astrocytes around the hematoma, as well as the injury volume and brain swelling by hematoma formation. In addition, ICH-induced increases in nitrosative/oxidative stress reflected by changes in the immunoreactivities against nitrotyrosine and heme oxygenase-1 as well as the contents of malondialdehyde and glutathione were not significantly affected by MK-4. In contrast, MK-4 alleviated axon tract injury in the internal capsule as revealed by neurofilament-H immunofluorescence. Enhanced preservation of the corticospinal tract by MK-4 was also confirmed by retrograde labeling of neurons in the primary motor cortex innervating the spinal cord. These results suggest that MK-4 produces therapeutic effect on ICH by protecting structural integrity of the corticospinal tract.
Collapse
Affiliation(s)
- Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, Hyogo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
10
|
Feng X, Zheng Y, Mao N, Shen M, Chu L, Fang Y, Pang M, Wang Z, Lin Z. Menaquinone-4 alleviates hypoxic-ischemic brain damage in neonatal rats by reducing mitochondrial dysfunction via Sirt1-PGC-1α-TFAM signaling pathway. Int Immunopharmacol 2024; 134:112257. [PMID: 38759366 DOI: 10.1016/j.intimp.2024.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major contributor to neonatal mortality and neurodevelopmental disorders, but currently there is no effective therapy drug for HIE. Mitochondrial dysfunction plays a pivotal role in hypoxic-ischemic brain damage(HIBD). Menaquinone-4 (MK-4), a subtype of vitamin K2 prevalent in the brain, has been shown to enhance mitochondrial function and exhibit protective effects against ischemia-reperfusion injury. However, the impact and underlying molecular mechanism of MK-4 in HIE have not been fully elucidated. METHODS In this study, we established the neonatal rats HIBD model in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) of primary neurons in vitro to explore the neuroprotective effects of MK-4 on HI damage, and illuminate the potential mechanism. RESULTS Our findings revealed that MK-4 ameliorated mitochondrial dysfunction, reduced oxidative stress, and prevented HI-induced neuronal apoptosis by activating the Sirt1-PGC-1α-TFAM signaling pathway through Sirt1 mediation. Importantly, these protective effects were partially reversed by EX-527, a Sirt1 inhibitor. CONCLUSION Our study elucidated the potential therapeutic mechanism of MK-4 in neonatal HIE, suggesting its viability as an agent for enhancing recovery from HI-induced cerebral damage in newborns. Further exploration into MK-4 could lead to novel interventions for HIE therapy.
Collapse
Affiliation(s)
- Xiaoli Feng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Ming Shen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Liuxi Chu
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, China
| | - Yu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Mengdan Pang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Zhouguang Wang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
11
|
Hardiyanti W, Djabir YY, Fatiah D, Pratama MR, Putri TZA, Chaeratunnisa R, Latada NP, Mudjahid M, Asri RM, Nainu F. Evaluating the Impact of Vitamin D 3 on NF-κB and JAK/STAT Signaling Pathways in Drosophila melanogaster. ACS OMEGA 2024; 9:20135-20141. [PMID: 38737056 PMCID: PMC11079875 DOI: 10.1021/acsomega.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
This study delved into the consequences of prolonged administration of vitamin D3 on innate immune systems, particularly NF-κB and JAK/STAT, in Drosophila melanogaster. The outcomes indicated that vitamin D3 treatment exhibited a notable capacity to improve the survival of adult flies with compromised immune functions, a condition induced by the loss of PGRP-LB, particularly when the flies were exposed to heat-killed Escherichia coli. The PGRP-LBΔ mutant line that was treated with heat-killed E. coli experienced reduced survival. Treatment of heat-killed E. coli-treated PGRP-LBΔ with vitamin D3 resulted in improved survival, and this phenotypic feature might be due to the downregulation of gene expression in the NF-κB and JAK/STAT pathways. However, a higher concentration of vitamin D3 was associated with decreased survival, potentially linked to intricate immunological responses. The research also underscored the influence of vitamin D3 on the expression of antioxidant genes, sod1 and sod2, indicating an augmented resistance to oxidative stress. Further, this study revealed the effect of vitamin D3 on the reproductive status of the autoinflammatory model, showing an increase in pupae and adult flies with a treatment of 10 mM vitamin D3, suggesting the potential benefits of vitamin D3 on the reproductive profile. Overall, this study provides preliminary insights into the complex interactions between vitamin D3, immune pathways, oxidative responses in the cell, and reproduction in Drosophila.
Collapse
Affiliation(s)
- Widya Hardiyanti
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Yulia Yusrini Djabir
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| | - Dewita Fatiah
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Muhammad Rasul Pratama
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Tenri Zulfa Ayu
Dwi Putri
- Postgraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Rizkya Chaeratunnisa
- Undergraduate
Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Nadila Pratiwi Latada
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Mukarram Mudjahid
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
| | - Rangga Meidianto Asri
- Department
of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department
of Pharmacy, Faculty of Pharmacy, Hasanuddin
University, Tamalanrea, Makassar 90245, Indonesia
- Unhas
Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| |
Collapse
|
12
|
Diachenko AI, Rodin IA, Krasnova TN, Klychnikov OI, Nefedova LN. The Role of Vitamin K in the Development of Neurodegenerative Diseases. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S57-S70. [PMID: 38621744 DOI: 10.1134/s0006297924140049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 04/17/2024]
Abstract
Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.
Collapse
Affiliation(s)
- Anna I Diachenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana N Krasnova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia N Nefedova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Orticello M, Cavallaro RA, Antinori D, Raia T, Lucarelli M, Fuso A. Amyloidogenic and Neuroinflammatory Molecular Pathways Are Contrasted Using Menaquinone 4 (MK4) and Reduced Menaquinone 7 (MK7R) in Association with Increased DNA Methylation in SK-N-BE Neuroblastoma Cell Line. Cells 2023; 13:58. [PMID: 38201262 PMCID: PMC10778373 DOI: 10.3390/cells13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Besides its role in coagulation, vitamin K seems to be involved in various other mechanisms, including inflammation and age-related diseases, also at the level of gene expression. This work examined the roles of two vitamin K2 (menaquinones) vitamers, namely, menaquinone-4 (MK4) and reduced menaquinone-7 (MK7R), as gene modulator compounds, as well as their potential role in the epigenetic regulation of genes involved in amyloidogenesis and neuroinflammation. The SK-N-BE human neuroblastoma cells provided a "first-line" model for screening the neuroinflammatory and neurodegenerative molecular pathways. MK7R, being a new vitamin K form, was first tested in terms of solubilization, uptake and cell viability, together with MK4 as an endogenous control. We assessed the expression of key factors in amyloidogenesis and neuroinflammation, observing that the MK7R treatment was associated with the downregulation of neurodegeneration- (PSEN1 and BACE1) and neuroinflammation- (IL-1β and IL-6) associated genes, whereas genes retaining protective roles toward amiloidogenesis were upregulated (ADAM10 and ADAM17). By profiling the DNA methylation patterns of genes known to be epigenetically regulated, we observed a correlation between hypermethylation and the downregulation of PSEN1, IL-1β and IL-6. These results suggest a possible role of MK7R in the treatment of cognitive impairment, giving a possible base for further preclinical experiments in animal models of neurodegenerative disease.
Collapse
Affiliation(s)
- Michela Orticello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | | | - Daniele Antinori
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | - Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy (D.A.); (T.R.); (M.L.)
| |
Collapse
|
14
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
15
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
17
|
Emekli-Alturfan E, Alturfan AA. The emerging relationship between vitamin K and neurodegenerative diseases: a review of current evidence. Mol Biol Rep 2023; 50:815-828. [PMID: 36329336 DOI: 10.1007/s11033-022-07925-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Neurodegenerative disease refers to a group of disorders that predominantly damage the neurons in the brain. Despite significant progress in the knowledge of neurodegenerative diseases, there is currently no disease-modifying drug available. Vitamin K was first established for its involvement in blood clotting, but there is now compelling evidence indicating its role in the neurological system. In particular, the results of recent studies on the effects of vitamin K2 on preventing apoptosis, oxidative stress, and microglial activation in neuron cells through its role in electron transport are very promising against Alzheimer's disease. In addition to its protective effect on cognitive functions, its inhibitory effects on inflammation and α-synuclein fibrillization in Parkinson's disease, which has been revealed in recent years, are remarkable. Although there are many studies on the mechanism and possible treatment methods of neurodegenerative diseases, especially Parkinson's and Alzheimer's disease, studies on the relationship between vitamin K and neurodegenerative diseases are very limited, yet have promising findings. Vitamin K has also been proposed for therapeutic use in multiple sclerosis patients to lower the intensity or to slow down the progression of the disease. Accordingly, the aim of this study is to review the current evidence for the use of vitamin K supplementation in neurodegenerative diseases, in particular Alzheimer's disease, Parkinson's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey.
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
18
|
Nouri Z, Sajadimajd S, Hoseinzadeh L, Bahrami G, Arkan E, Moradi S, Abdi F, Farzaei MH. Neuroprotective effect of naringenin-loaded solid lipid nanoparticles against streptozocin-induced neurotoxicity through autophagy blockage. J Food Biochem 2022; 46:e14408. [PMID: 36129161 DOI: 10.1111/jfbc.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 01/13/2023]
Abstract
Autophagy is a pivotal contributing factor to modulate the progression of neurodegenerative diseases. Although naringenin (Nar) has shown beneficial effects against neurodegenerative diseases, its poor solubility and bioavailability have limited its application. The present research aimed to design a nanostructured formulation of Nar to achieve an enhanced therapeutic effect. Herein, Nar-loaded solid lipid nanoparticles (Nar-SLNs) were prepared and characterized. Then, PC12 cells were exposed to streptozocin (STZ) and/or Nar and Nar-SLNs in vitro to clarify the protective effect of Nar and its nanoformulation against STZ-stimulated neurotoxicity. The empty SLNs and Nar-SLNs indicated a narrow polydispersity index value with a negative zeta potential. As determined by the scanning electron microscopy images, the nanoparticles had a spherical shape and were less than 20 nm in size. FTIR results demonstrated the interaction between Nar and SLNs and supported the presence of Nar in the nanoparticle. The nanoformulation revealed an initial burst release followed by a sustained release manner. Treatment of PC12 cells with STZ resulted in mitochondrial dysfunction and increased autophagic markers, including LC3-II, Beclin1, Akt, ATG genes, and accumulation of miR-21 and miR-22. Both Nar and Nar-SLNs pre-treatment improved cell survival and augmented mitochondrial membrane potential, accompanied by reduced autophagic markers expression. However, Nar-SLNs were more effective than free Nar. As a result, our findings suggested that SLNs effectively enhance the neuroprotective effect of Nar, and Nar-SLNs may be a promising candidate to suppress or prevent STZ-elicited neurotoxicity. PRACTICAL APPLICATIONS: According to the beneficial effect of Nar in the management of neurodegenerative diseases, we evaluated the protective effect of Nar and Nar-SLNs against STZ-stimulated neurotoxicity and analyzed the role of autophagy in STZ-stimulated neurotoxicity. Our results proposed that Nar-SLNs could be a promising option for neurological disorders prevention through autophagy suppression.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Leila Hoseinzadeh
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereshteh Abdi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Asthana J, Shravage BV. Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson’s disease. Front Aging Neurosci 2022; 14:986849. [PMID: 36337696 PMCID: PMC9632658 DOI: 10.3389/fnagi.2022.986849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most popular age-associated neurodegenerative disorder after Alzheimer’s disease. The degeneration of dopaminergic neurons, aggregation of α-synuclein (α-syn), and locomotor defects are the main characteristic features of PD. The main cause of a familial form of PD is associated with a mutation in genes such as SNCA, PINK1, Parkin, DJ-1, LRKK2, and others. Recent advances have uncovered the different underlying mechanisms of PD but the treatment of PD is still unknown due to the unavailability of effective therapies and preventive medicines in the current scenario. The pathophysiology and genetics of PD have been strongly associated with mitochondria in disease etiology. Several studies have investigated a complex molecular mechanism governing the identification and clearance of dysfunctional mitochondria from the cell, a mitochondrial quality control mechanism called mitophagy. Reduced mitophagy and mitochondrial impairment are found in both sporadic and familial PD. Pharmacologically modulating mitophagy and accelerating the removal of defective mitochondria are of common interest in developing a therapy for PD. However, despite the extensive understanding of the mitochondrial quality control pathway and its underlying mechanism, the therapeutic potential of targeting mitophagy modulation and its role in PD remains to be explored. Thus, targeting mitophagy using chemical agents and naturally occurring phytochemicals could be an emerging therapeutic strategy in PD prevention and treatment. We discuss the current research on understanding the role of mitophagy modulators in PD using Drosophila melanogaster as a model. We further explore the contribution of Drosophila in the pathophysiology of PD, and discuss comprehensive genetic analysis in flies and pharmacological drug screening to develop potential therapeutic molecules for PD.
Collapse
Affiliation(s)
- Jyotsna Asthana
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Bhupendra V. Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
- *Correspondence: Bhupendra V. Shravage,
| |
Collapse
|
20
|
Zhao Y, Qin R. Vitamin D3 affects browning of white adipocytes by regulating autophagy via PI3K/Akt/mTOR/p53 signaling in vitro and in vivo. Apoptosis 2022; 27:992-1003. [DOI: 10.1007/s10495-022-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
21
|
Yan QY, Lv JL, Shen XY, Ou-Yang XN, Yang JZ, Nie RF, Lu J, Huang YJ, Wang JY, Shen X. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice. Acta Pharmacol Sin 2022; 43:2226-2241. [PMID: 35091686 PMCID: PMC9433381 DOI: 10.1038/s41401-021-00857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERβ is largely distributed in the hippocampus and cardiovascular system, suggesting that ERβ selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERβ agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERβ with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 μM) dose-dependently increased phagocytosis of o-FAM-Aβ42 in primary microglia and BV2 cells through enhancing ERβ/TLR4 signaling; PTA treatment ameliorated o-Aβ25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERβ/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aβ25-35-induced oxidative stress in primary neurons through targeting ERβ and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERβ agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.
Collapse
Affiliation(s)
- Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Lu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Yi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Jie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
23
|
Vitamin K2 Holds Promise for Alzheimer's Prevention and Treatment. Nutrients 2021; 13:nu13072206. [PMID: 34199021 PMCID: PMC8308377 DOI: 10.3390/nu13072206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Recent studies have highlighted the importance of vitamin K2 (VK2) in human health. However, there have been no clinical studies investigating the role of VK2 in the prevention or treatment of Alzheimer's disease (AD), a debilitating disease for which currently there is no cure. In reviewing basic science research and clinical studies that have connected VK2 to factors involved in AD pathogenesis, we have found a growing body of evidence demonstrating that VK2 has the potential to slow the progression of AD and contribute to its prevention. In our review, we consider the antiapoptotic and antioxidant effects of VK2 and its impact on neuroinflammation, mitochondrial dysfunction, cognition, cardiovascular health, and comorbidities in AD. We also examine the link between dysbiosis and VK2 in the context of the microbiome's role in AD pathogenesis. Our review is the first to consider the physiological roles of VK2 in the context of AD, and, given the recent shift in AD research toward nonpharmacological interventions, our findings emphasize the timeliness and need for clinical studies involving VK2.
Collapse
|
24
|
Shandilya S, Kesari KK, Ruokolainen J. Vitamin K2 Modulates Organelle Damage and Tauopathy Induced by Streptozotocin and Menadione in SH-SY5Y Cells. Antioxidants (Basel) 2021; 10:983. [PMID: 34202933 PMCID: PMC8234639 DOI: 10.3390/antiox10060983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K2, known for its antioxidative and anti-inflammatory properties, can act as a potent neuroprotective molecule. Despite its action against mitochondrial dysfunction, the mechanism underlying the links between the protective effects of vitamin K2 and endoplasmic reticulum (ER) stress along with basal levels of total tau protein and amyloid-beta 42 (Aβ42) has not been elucidated yet. To understand the neuroprotective effect of vitamin K2 during metabolic complications, SH-SY5Y cells were treated with streptozotocin for 24 h and menadione for 2 h in a dose-dependent manner, followed by post-treatment of vitamin K2 for 5 h. The modulating effects of vitamin K2 on cell viability, lactate dehydrogenase release, reactive oxygen species (ROS), mitochondrial membrane potential, ER stress marker (CHOP), an indicator of unfolded protein response (UPR), inositol requiring enzyme 1 (p-IRE1α), glycogen synthase kinase 3 (GSK3α/β), total tau and Aβ42 were studied. Results showed that vitamin K2 significantly reduces neuronal cell death by inhibiting cytotoxicity and ROS levels and helps in the retainment of mitochondrial membrane potential. Moreover, vitamin K2 significantly decreased the expression of CHOP protein along with the levels and the nuclear localization of p-IRE1α, thus showing its significant role in inhibiting chronic ER stress-mediated UPR and eventually cell death. In addition, vitamin K2 significantly down-regulated the expression of GSK3α/β together with the levels of total tau protein, with a petite effect on secreted Aβ42 levels. These results suggested that vitamin K2 alleviated mitochondrial damage, ER stress and tauopathy-mediated neuronal cell death, which highlights its role as new antioxidative therapeutics targeting related cellular processes.
Collapse
Affiliation(s)
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| |
Collapse
|