1
|
Lei Y, Zhou R, Mao Q, Qiu X, Mu D. The roles of pleiotrophin in brain injuries: a narrative review of the literature. Ann Med 2025; 57:2452353. [PMID: 39829367 PMCID: PMC11749013 DOI: 10.1080/07853890.2025.2452353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pleiotrophin (PTN), a secreted multifunctional growth factor, is highly expressed in the developing brain. Recently, many studies have indicated that PTN participates in the development of brain and plays a neuroprotection after brain injury, especially promoting neuronal survival and neurite outgrowth, stimulating oligodendrocyte maturation and myelination, modulating neuroinflammation, and so on. OBJECTIVE However, no reviews comprehensively summarize the roles of PTN in brain injuries. Considering this, this review focuses on the roles and related regulatory pathways of PTN in brain injuries, what is known to date. METHODS PubMed and Embase databases have been searched, and related studies are compiled and summarized. RESULTS Our review has found PTN participates in the repairment of brain injuries, including hypoxic-ischemic brain injury, preterm white matter injury, traumatic brain injury, and neurodegenerative diseases, mainly based on animal data and small sample size studies. Besides, PTN interacts with receptors, such as, Z-type protein tyrosine phosphatase receptor and syndecan-3, regulating related pathways in these events. CONCLUSION It suggests PTN as a promising candidate for the treatment of brain injuries clinically. However, the evidence is early in its development. Further multi-center and large-sample studies are warranted to support our findings and determine the clinical value of PTN for treating brain injuries.
Collapse
Affiliation(s)
- Yupeng Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Gupta SJ, Churchward MA, Todd KG, Winship IR. Pleiotrophin Signals Through ALK Receptor to Enhance the Growth of Neurons in the Presence of Inhibitory Chondroitin Sulfate Proteoglycans. Neurosci Insights 2023; 18:26331055231186993. [PMID: 37465214 PMCID: PMC10350765 DOI: 10.1177/26331055231186993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), one of the major extracellular matrix components of the glial scar that surrounds central nervous system (CNS) injuries, are known to inhibit the regeneration of neurons. This study investigated whether pleiotrophin (PTN), a growth factor upregulated during early CNS development, can overcome the inhibition mediated by CSPGs and promote the neurite outgrowth of neurons in vitro. The data showed that a CSPG matrix inhibited the outgrowth of neurites in primary cortical neuron cultures compared to a control matrix. PTN elicited a dose-dependent increase in the neurite outgrowth even in the presence of the growth inhibitory CSPG matrix, with optimal growth at 15 ng mL-1 of PTN (114.8% of neuronal outgrowth relative to laminin control). The growth-promoting effect of PTN was blocked by inhibition of the receptor anaplastic lymphoma kinase (ALK) by alectinib in a dose-dependent manner. Neurite outgrowth in the presence of this CSPG matrix was induced by activation of the protein kinase B (AKT) pathway, a key downstream mediator of ALK activation. This study identified PTN as a dose-dependent regulator of neurite outgrowth in primary cortical neurons cultured in the presence of a CSPG matrix and identified ALK activation as a key driver of PTN-induced growth.
Collapse
Affiliation(s)
- Somnath J Gupta
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Drake SS, Zaman A, Simas T, Fournier AE. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech Dis 2023; 15:e1594. [PMID: 36600404 DOI: 10.1002/wsbm.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) inflammation is a key factor in multiple sclerosis (MS). Invasion of peripheral immune cells into the CNS resulting from an unknown signal or combination of signals results in activation of resident immune cells and the hallmark feature of the disease: demyelinating lesions. These lesion sites are an amalgam of reactive peripheral and central immune cells, astrocytes, damaged and dying oligodendrocytes, and injured neurons and axons. Sustained inflammation affects cells directly located within the lesion site and further abnormalities are apparent diffusely throughout normal-appearing white matter and grey matter. It is only relatively recently, using animal models, new tissue sampling techniques, and next-generation sequencing, that molecular changes occurring in CNS resident cells have been broadly captured. Advances in cell isolation through Fluorescence Activated Cell Sorting (FACS) and laser-capture microdissection together with the emergence of single-cell sequencing have enabled researchers to investigate changes in gene expression in astrocytes, microglia, and oligodendrocytes derived from animal models of MS as well as from primary patient tissue. The contribution of some dysregulated pathways has been followed up in individual studies; however, corroborating results often go unreported between sequencing studies. To this end, we have consolidated results from numerous RNA-sequencing studies to identify and review novel patterns of differentially regulated genes and pathways occurring within CNS glial cells in MS. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Sienna S Drake
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Aliyah Zaman
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tristan Simas
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Alyson E Fournier
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Gramage E, Sáiz J, Fernández-Calle R, Martín YB, Uribarri M, Ferrer-Alcón M, Barbas C, Herradón G. Metabolomics and biochemical alterations caused by pleiotrophin in the 6-hydroxydopamine mouse model of Parkinson's disease. Sci Rep 2022; 12:3577. [PMID: 35246557 PMCID: PMC8897456 DOI: 10.1038/s41598-022-07419-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Pleiotrophin (PTN) is a cytokine involved in nerve tissue repair processes, neuroinflammation and neuronal survival. PTN expression levels are upregulated in the nigrostriatal pathway of Parkinson's Disease (PD) patients. We aimed to characterize the dopaminergic injury and glial responses in the nigrostriatal pathway of mice with transgenic Ptn overexpression in the brain (Ptn-Tg) after intrastriatal injection of the catecholaminergic toxic 6-hydroxydopamine (6-OHDA) at a low dose (5 µg). Ten days after surgery, the injection of 6-OHDA induced a significant decrease of the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and of the striatal TH contents in Wild type (Wt) mice. In contrast, these effects of 6-OHDA were absent in Ptn-Tg mice. When the striatal Iba1 and GFAP immunoreactivity was studied, no statistical differences were found between vehicle-injected Wt and Ptn-Tg mice. Furthermore, 6-OHDA did not cause robust glial responses neither on Wt or Ptn-Tg mice 10 days after injections. In metabolomics studies, we detected interesting metabolites that significantly discriminate the more injured 6-OHDA-injected Wt striatum and the more protected 6-OHDA-injected Ptn-Tg striatum. Particularly, we detected groups of metabolites, mostly corresponding to phospholipids, whose trends were opposite in both groups. In summary, the data confirm lower 6-OHDA-induced decreases of TH contents in the nigrostriatal pathway of Ptn-Tg mice, suggesting a neuroprotective effect of brain PTN overexpression in this mouse model of PD. New lipid-related PD drug candidates emerge from this study and the data presented here support the increasingly recognized "lipid cascade" in PD.
Collapse
Affiliation(s)
- Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Jorge Sáiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Rosalía Fernández-Calle
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Yasmina B Martín
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.,Departamento de Anatomía, Facultad de Medicina, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda KM 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
5
|
Bertram S, Roll L, Reinhard J, Groß K, Dazert S, Faissner A, Volkenstein S. Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro. Exp Brain Res 2019; 237:2983-2993. [PMID: 31515588 DOI: 10.1007/s00221-019-05644-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, αv integrin, β3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.
Collapse
Affiliation(s)
- Sebastian Bertram
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Katharina Groß
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany.
| |
Collapse
|
6
|
Ishida A, Imamura A, Ueda Y, Shimizu T, Marumoto R, Jung CG, Hida H. A novel biosensor with high signal-to-noise ratio for real-time measurement of dopamine levels in vivo. J Neurosci Res 2017; 96:817-827. [PMID: 29090830 PMCID: PMC5873456 DOI: 10.1002/jnr.24193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023]
Abstract
Fast‐scan cyclic voltammetry (FSCV) is an established method for measuring dopamine (DA) levels in the brain in real time. However, it is difficult to discriminate DA from other monoamines such as serotonin (5‐hydroxytryptamine, 5‐HT) and norepinephrine (NE). We report a novel DA‐specific biosensor consisting of a carbon‐fiber electrode coated with an ion‐exchange membrane, a layer containing monoamine oxidase B, and a cellulose membrane. We performed FSCV using the probe to monitor the amount of DA in vitro and in vivo. First, we measured currents in vitro in phosphate‐buffered saline as we added one micromole each of DA, 5‐HT, and NE. The results confirmed that the biosensor selectively detected DA. Next, we implanted the probe in the striatum of male rats to investigate whether it could selectively detect changes in the DA content in vivo. The probe detected both the tonic change induced by methamphetamine administration and the phasic change induced by electrical stimulation of the medial forebrain bundle. In contrast, the electrode in the 6‐hydroxydopamine–lesioned striatum did not respond to systemic selective serotonin or serotonin/norepinephrine reuptake inhibitors, confirming its selectivity. Furthermore, the probe in the striatum could still detect changes in the DA level 1 week after electrode implantation. The results suggest that the novel biosensor can measure real‐time changes in DA levels in vivo with a relatively high signal‐to‐noise ratio.
Collapse
Affiliation(s)
- Akimasa Ishida
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Imamura
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Intermedical Co., Ltd, Nagoya, Japan
| | - Yoshitomo Ueda
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryosuke Marumoto
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
7
|
Vicente-Rodríguez M, Herradón G, Ferrer-Alcón M, Uribarri M, Pérez-García C. Chronic Cocaine Use Causes Changes in the Striatal Proteome Depending on the Endogenous Expression of Pleiotrophin. Chem Res Toxicol 2015; 28:1443-54. [DOI: 10.1021/acs.chemrestox.5b00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta Vicente-Rodríguez
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Gonzalo Herradón
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Vizcaya, Spain
| | - Carmen Pérez-García
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
8
|
González-Castillo C, Ortuño-Sahagún D, Guzmán-Brambila C, Pallàs M, Rojas-Mayorquín AE. Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci 2015; 8:443. [PMID: 25620911 PMCID: PMC4287103 DOI: 10.3389/fncel.2014.00443] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 02/04/2023] Open
Abstract
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Collapse
Affiliation(s)
- Celia González-Castillo
- Doctorwado en Ciencias en Biología Molecular en Medicina (DCBMM), CUCS, Universidad de Guadalajara Guadalajara, Jalisco, México
| | - Daniel Ortuño-Sahagún
- Instituto de Investigación en Ciencias Biomédicas (IICB), CUCS, Universidad de Guadalajara, Guadalajara Jalisco, México
| | - Carolina Guzmán-Brambila
- Tecnológico de Monterrey, División de Biotecnología y Salud, Escuela de Medicina, Campus Guadalajara Guadalajara, Jalisco, México
| | - Mercè Pallàs
- Department of Pharmacology and Medical Chemistry, Faculty of Pharmacy School of Pharmacy, Institute of Biomedicine (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona Barcelona, Spain
| | | |
Collapse
|
9
|
Wang Y, Qiu B, Liu J, Zhu WG, Zhu S. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway. Neuroscience 2014; 277:103-10. [DOI: 10.1016/j.neuroscience.2014.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/28/2014] [Indexed: 01/11/2023]
|
10
|
Herradón G, Pérez-García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol 2014; 171:837-48. [PMID: 23889475 PMCID: PMC3925022 DOI: 10.1111/bph.12312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Accepted: 07/21/2013] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non-invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- G Herradón
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| | - C Pérez-García
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| |
Collapse
|
11
|
Yao J, Li WY, Li SG, Feng XS, Gao SG. Recombinant lentivirus targeting the pleotrophin gene reduces pleotrophin protein expression in pancreatic cancer cells and inhibits neurite outgrowth of dorsal root ganglion neurons. Mol Med Rep 2014; 9:999-1004. [PMID: 24469464 DOI: 10.3892/mmr.2014.1918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/10/2014] [Indexed: 11/06/2022] Open
Abstract
The objectives of the present study were to construct the recombinant primate lentivirus‑short hairpin RNA-pleiotrophin (pLV-shRNA-PTN) vector, to investigate the silencing effect of pLV-shRNA-PTN on PTN expression in MIA PaCa-2 cells and to observe the inhibition efficiency of pLV-shRNA‑PTN on neurite outgrowth from dorsal root ganglion (DRG) neurons in vitro. The construction procedure for recombinant lentivirus pLV-shRNA-PTN has been described previously. In the present study, pLV-shRNA‑PTN was used to infect MIA PaCa-2 pancreatic cancer cells and the efficiency of the knockdown of the PTN gene on day 7 following infection was analyzed using western blotting. The morphological changes in the cultured DRG neurons were observed by monoculture of DRG neurons and co-culture with MIA PaCa-2 cells in vitro. The recombinant lentivirus pLV-shRNA‑PTN was successfully constructed. The western blot analysis showed that the inhibition rates of PTN expression were 46, 80, 20 and 21%, respectively, following pLV-shRNA‑PTN-A, B, C and D infection. pLV-shRNA-PTN‑B showed the highest knockdown efficiency. DRG neurons co-cultured with infected MIA PaCa-2 cells were decreased in size when compared with the control, and there was a significant decrease in the number and length of neurites. The results suggest that efficient and specific knockdown of PTN in MIA PaCa-2 pancreatic cancer cells and the subsequent reduction in PTN expression results in the inhibition of neurite outgrowth from DRG neurons.
Collapse
Affiliation(s)
- Jun Yao
- Department of Oncology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wen-Yao Li
- Department of Oncology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shuo-Guo Li
- Department of Oncology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiao-Shan Feng
- Department of Oncology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - She-Gan Gao
- Department of Oncology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
12
|
Mei Q, Liu J, Liu Y, Li C, Wang H, Li H, Chen X, Lan X. Expression of proline-rich coiled-coil 2B protein in developing rat brains. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2013.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Vicente-Rodríguez M, Pérez-García C, Gramage E, Herradón G. Genetic inactivation of pleiotrophin but not midkine potentiates clonidine-induced alpha-2 adrenergic-mediated analgesia. Pharmacol Biochem Behav 2013; 110:185-91. [DOI: 10.1016/j.pbb.2013.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/21/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023]
|
14
|
Yang S, Xue DD, Wu B, Sun HM, Li XS, Dong F, Li WS, Ji FQ, Zhou DS. Pleiotrophin is involved in the amniotic epithelial cell-induced differentiation of human umbilical cord blood-derived mesenchymal stem cells into dopaminergic neuron-like cells. Neurosci Lett 2013; 539:86-91. [DOI: 10.1016/j.neulet.2013.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
|
15
|
Abstract
Astrocytosis, a process in which astrocytes undergo proliferation and enhancement of glial fibrillary acidic protein (GFAP) expression, has been suggested to play important roles in the maintenance of dependence to amphetamine and its derivatives. It was previously shown that mice with genetic deletion of pleiotrophin (PTN), a neurotrophic factor upregulated in different brain areas after administration of amphetamine, show a longer lasting amphetamine-induced conditioned place preference (CPP) when compared to wild type mice. In this work, we aimed to pursue the possibility of a different astrocytic response induced by amphetamine in PTN-/- and PTN+/+ mice, which could underlie the higher vulnerability of PTN-/- mice to maintain amphetamine CPP. In confirmation of previous studies, we found that PTN-/- mice significantly maintained amphetamine (3mg/kg)-induced CPP 5 days after the last drug administration compared to PTN+/+ mice. Interestingly, the number of astrocytes in nucleus accumbens (NAcc), cingulate cortex (CG) and caudate putamen (CPu) did not differ between mice that maintained and did not maintain amphetamine-induced CPP independently of the genotype considered. However, we found that PTN-/- mice showed significantly decreased numbers of astrocytes in CG and CPu compared to PTN+/+ mice independently of whether they maintained amphetamine-induced CPP 5 days after the last drug administration or not. The data demonstrate that maintenance of amphetamine-induced CPP depends on the endogenous expression of PTN. The data tend to discard a correlation between activated astrocytes and maintenance of amphetamine conditioning effects and suggest PTN as a potential modulator of activation of astrocytes after amphetamine treatment.
Collapse
|
16
|
Long P, Samnakay P, Jenner P, Rose S. A yeast two-hybrid screen reveals that osteopontin associates with MAP1A and MAP1B in addition to other proteins linked to microtubule stability, apoptosis and protein degradation in the human brain. Eur J Neurosci 2012; 36:2733-42. [DOI: 10.1111/j.1460-9568.2012.08189.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Gramage E, Martín YB, Herradon G. The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms. Pharmacol Biochem Behav 2012; 101:387-93. [PMID: 22342918 DOI: 10.1016/j.pbb.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 01/04/2023]
Abstract
Genetic deletion of pleiotrophin (PTN) impairs spinal nociceptive transmission suggesting that this heparin binding growth factor could play roles in acute pain processing. Despite the high functional redundancy between PTN and midkine (MK), the only other member of this family of growth factors, we now demonstrate that genetic inactivation of MK does not alter acute nociceptive transmission since pain responses of female MK genetically deficient (MK-/-) and wild type (WT+/+) mice were found to be similar in the hot-plate and tail-immersion tests. It has also been shown that morphine administration significantly regulates MK levels within the brain, suggesting that MK could play a role in morphine-induced antinociceptive effects. To test this hypothesis, we have now studied morphine-induced antinociceptive effects in female MK-/- and WT+/+ mice. We did not find differences among genotypes using different doses of morphine (2.5, 5 and 10 mg/kg) in the hot-plate test. In contrast, we found that morphine significantly delayed pain responses in MK-/- mice compared to WT+/+ mice in the tail-immersion test. In confirmation of previous results from our group, we also found significantly enhanced morphine-induced antinociceptive effects in PTN-/- mice in the tail-immersion test. In addition, we now demonstrate that enhanced morphine analgesic effects in PTN-/- and MK-/- mice are not caused by a different contribution of descending noradrenergic inhibitory pathways since the α(2)-adrenergic antagonist yohimbine failed to alter morphine-induced analgesia in all genotypes. The data demonstrate that MK is an endogenous modulator of morphine antinociceptive effects, identify significant differences between PTN and MK in the control of pain processing at the spinal level, and support the hypothesis that inhibitors of the PTN/MK signaling pathway could potentiate opioid analgesia which may be relevant in opioid-refractory pain cases.
Collapse
Affiliation(s)
- Esther Gramage
- Lab. Pharmacology and Toxicology, Univ. San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | |
Collapse
|
18
|
Gombash SE, Lipton JW, Collier TJ, Madhavan L, Steece-Collier K, Cole-Strauss A, Terpstra BT, Spieles-Engemann AL, Daley BF, Wohlgenant SL, Thompson VB, Manfredsson FP, Mandel RJ, Sortwell CE. Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model. Mol Ther 2011; 20:544-54. [PMID: 22008908 DOI: 10.1038/mt.2011.216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.
Collapse
Affiliation(s)
- Sara E Gombash
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gramage E, Martín Y, Ramanah P, Pérez-García C, Herradón G. Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine. Neuroscience 2011; 190:307-17. [DOI: 10.1016/j.neuroscience.2011.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 12/22/2022]
|
20
|
Taravini IR, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ, Gershanik OS. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Mol Neurodegener 2011; 6:40. [PMID: 21649894 PMCID: PMC3130680 DOI: 10.1186/1750-1326-6-40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 06/07/2011] [Indexed: 01/15/2023] Open
Abstract
Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration.
Collapse
Affiliation(s)
- Irene Re Taravini
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yao J, Zhang M, Ma QY, Wang Z, Wang LC, Zhang D. PAd-shRNA-PTN reduces pleiotrophin of pancreatic cancer cells and inhibits neurite outgrowth of DRG. World J Gastroenterol 2011; 17:2667-73. [PMID: 21677838 PMCID: PMC3110932 DOI: 10.3748/wjg.v17.i21.2667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/19/2010] [Accepted: 10/26/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the silencing effects of pAd-shRNA-pleiotrophin (PTN) on PTN in pancreatic cancer cells, and to observe the inhibition of pAd-shRNA-PTN on neurite outgrowth from dorsal root ganglion (DRG) neurons in vitro.
METHODS: PAd-shRNA-PTN was used to infect pancreatic cancer BxPC-3 cells; assays were conducted for knockdown of the PTN gene on the 0th, 1st, 3rd, 5th, 7th and 9th d after infection using immunocytochemistry, real-time quantitative polymerase chain reaction (PCR), and Western blotting analysis. The morphologic changes of cultured DRG neurons were observed by mono-culture of DRG neurons and co-culture with BXPC-3 cells in vitro.
RESULTS: The real-time quantitative PCR showed that the inhibition rates of PTN mRNA expression in the BxPC-3 cells were 20%, 80%, 50% and 25% on the 1st, 3rd, 5th and 7th d after infection. Immunocytochemistry and Western blotting analysis also revealed the same tendency. In contrast to the control, the DRG neurons co-cultured with the infected BxPC-3 cells shrunk; the number and length of neurites were significantly decreased.
CONCLUSION: Efficient and specific knockdown of PTN in pancreatic cancer cells and the reduction in PTN expression resulted in the inhibition of neurite outgrowth from DRG neurons.
Collapse
|
22
|
Genetic deletion of pleiotrophin leads to disruption of spinal nociceptive transmission: Evidence for pleiotrophin modulation of morphine-induced analgesia. Eur J Pharmacol 2010; 647:97-102. [DOI: 10.1016/j.ejphar.2010.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/11/2010] [Accepted: 08/21/2010] [Indexed: 01/06/2023]
|
23
|
Gramage E, Putelli A, Polanco MJ, González-Martín C, Ezquerra L, Alguacil LF, Pérez-Pinera P, Deuel TF, Herradón G. The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from pleiotrophin knockout mice. Addict Biol 2010; 15:403-12. [PMID: 20192945 DOI: 10.1111/j.1369-1600.2009.00202.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pleiotrophin (PTN), a neurotrophic factor with important roles in survival and differentiation of dopaminergic neurons, is up-regulated in the nucleus accumbens after amphetamine administration suggesting that PTN could modulate amphetamine-induced pharmacological or neuroadaptative effects. To test this hypothesis, we have studied the effects of amphetamine administration in PTN genetically deficient (PTN -/-) and wild type (WT, +/+) mice. In conditioning studies, we found that amphetamine induces conditioned place preference in both PTN -/- and WT (+/+) mice. When these mice were re-evaluated after a 5-day period without amphetamine administration, we found that WT (+/+) mice did not exhibit amphetamine-seeking behaviour, whereas, PTN -/- mice still showed a robust drug-seeking behaviour. In immunohystochemistry studies, we found that amphetamine (10 mg/kg, four times, every 2 hours) causes a significant increase of glial fibrillary acidic protein positive cells in the striatum of amphetamine-treated PTN -/- mice compared with WT mice 4 days after last administration of the drug, suggesting an enhanced amphetamine-induced astrocytosis in the absence of endogenous PTN. Interestingly, we found in concomitant in vitro studies that PTN (3 µM) limits amphetamine (1 mM)-induced loss of viability of PC12 cell cultures, effect that could be related to the ability of PTN to induce the phosphorylation of Akt and ERK1/2. To test this possibility, we used specific Akt and ERK1/2 inhibitors uncovering for the first time that PTN-induced protective effects against amphetamine-induced toxicity in PC12 cells are mediated by the ERK1/2 signalling pathway. The data suggest an important role of PTN to limit amphetamine-induced neurotoxic and rewarding effects.
Collapse
Affiliation(s)
- Esther Gramage
- Laboratory Pharmacology and Toxicology, Univ. San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gramage E, Rossi L, Granado N, Moratalla R, Herradón G. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience 2010; 170:308-16. [PMID: 20620199 DOI: 10.1016/j.neuroscience.2010.06.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/26/2010] [Accepted: 06/29/2010] [Indexed: 01/04/2023]
Abstract
Pleiotrophin (PTN) is a neurotrophic factor with important effects in survival and differentiation of dopaminergic neurons that has been suggested to play important roles in drug of abuse-induced neurotoxicity. To test this hypothesis, we have studied the effects of amphetamine (10 mg/kg, four times, every 2 h) on the nigrostriatal pathway of PTN genetically deficient (PTN-/-) mice. We found that amphetamine causes a significantly enhanced loss of dopaminergic terminals in the striatum of PTN-/- mice compared to wild type (WT+/+) mice. In addition, we found a significant decrease ( approximately 20%) of tyrosine hydroxylase (TH)-positive neurons only in the substantia nigra of amphetamine-treated PTN-/- mice, whereas this area of WT+/+ animals remained unaffected after amphetamine treatment. This effect was accompanied by enhanced amphetamine-induced astrocytosis in the substantia nigra of PTN-/- mice. Interestingly, we found a significant decrease in the phosphorylation levels of p42 extracellular-signal regulated kinase (ERK2) in both saline- and amphetamine-treated PTN-/- mice, whereas phosphorylation of p44 ERK (ERK1) was almost abolished in the striatum of PTN-/- mice compared to WT+/+ mice, suggesting that basal deficiencies in the phosphorylation levels of ERK1/2 could underlie the higher vulnerability of PTN-/- mice to amphetamine-induced neurotoxic effects. The data suggest an important role of PTN in the protection of nigrostriatal pathways against amphetamine insult.
Collapse
Affiliation(s)
- E Gramage
- Lab. Pharmacology and Toxicology, University San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Piltonen M, Bespalov MM, Ervasti D, Matilainen T, Sidorova YA, Rauvala H, Saarma M, Männistö PT. Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Exp Neurol 2009; 219:499-506. [DOI: 10.1016/j.expneurol.2009.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/15/2009] [Accepted: 07/07/2009] [Indexed: 12/17/2022]
|
26
|
Schneeberg J, Riek-Burchardt M, Braun H, Landgraf P, Kreutz MR, Reymann KG. Neuroprotective effects of the survival promoting peptide Y-P30. Eur J Pharmacol 2009; 616:81-5. [PMID: 19490911 DOI: 10.1016/j.ejphar.2009.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 12/14/2022]
Abstract
Y-P30 is a polypeptide survival promoting factor that has significant impact on the survival and differentiation of neurons in the developing brain. To address its potential role in brain injury we tested its neuroprotective effects in the oxygen-glucose deprivation (OGD) model with hippocampal slice cultures as an in vitro assay for ischemia. We could demonstrate that supplementation with Y-P30 leads to a significant neuroprotection at concentrations of 200 nM and 2 microM when it was added to the medium of hippocampal slice cultures 2 h before starting the deprivation of oxygen and glucose. A significant neuroprotective effect was found when the peptide was applied 2 h after injury. Y-P30 oligomerises in large complexes, which might hinder the passage through the culture membranes in our system. We therefore also applied Y-P30 directly on the hippocampal slices, which led to the most robust neuroprotection even at very low concentrations.
Collapse
Affiliation(s)
- Jenny Schneeberg
- Leibniz Institute for Neurobiology, Project Group Neuropharmacology, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Jin L, Jianghai C, Juan L, Hao K. Pleiotrophin and peripheral nerve injury. Neurosurg Rev 2009; 32:387-93. [DOI: 10.1007/s10143-009-0202-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/14/2009] [Indexed: 01/11/2023]
|
28
|
Ferrario JE, Rojas-Mayorquín AE, Saldaña-Ortega M, Salum C, Gomes MZ, Hunot S, Raisman-Vozari R. Pleiotrophin receptor RPTP-ζ/β expression is up-regulated by l-DOPA in striatal medium spiny neurons of parkinsonian rats. J Neurochem 2008; 107:443-52. [DOI: 10.1111/j.1471-4159.2008.05640.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|