1
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
2
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Zhang X, Ye P, Wang D, Liu Y, Cao L, Wang Y, Xu Y, Zhu C. Involvement of RhoA/ROCK Signaling in Aβ-Induced Chemotaxis, Cytotoxicity and Inflammatory Response of Microglial BV2 Cells. Cell Mol Neurobiol 2019; 39:637-650. [PMID: 30852720 PMCID: PMC11462834 DOI: 10.1007/s10571-019-00668-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Reactive microglia clustering around amyloid plaques in brain is a histopathological feature of Alzheimer's disease (AD) and reflects the contribution of neuroinflammation in AD pathogenesis. β-Amyloid peptide (Aβ) has been shown to induce a range of microglial responses including chemotaxis, cytotoxicity and inflammation, but the underlying mechanism is poorly understood. Considering the fundamental role of RhoA/ROCK signaling in cell migration and its broad implication in AD and neuroinflammation, we hypothesized that RhoA/ROCK signaling might be involved in Aβ-induced microglial responses. From in vivo mouse models including APP/PS1 transgene and fibrillar Aβ stereotactic injection, we observed the elevated expression level of RhoA in reactive microglia. Through a series in vitro cell migration, cytotoxicity and biochemistry assays, we found that RhoA/ROCK signaling plays an essential role in Aβ-induced responses of microglial BV2 cells. Small molecular agents Fasudil and Y27632 showed prominent beneficial effects, which implies the therapeutic potential of RhoA/ROCK signaling inhibitors in AD treatment.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Piao Ye
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Dandan Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yunsheng Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Lan Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yancong Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China
| | - Yuxia Xu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China.
| | - Cuiqing Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Kim C, Cho ED, Kim HK, You S, Lee HJ, Hwang D, Lee SJ. β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Exp Mol Med 2014; 46:e91. [PMID: 24743837 PMCID: PMC3972795 DOI: 10.1038/emm.2014.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022] Open
Abstract
Chronic neuroinflammation is an integral pathological feature of major neurodegenerative diseases. The recruitment of microglia to affected brain regions and the activation of these cells are the major events leading to disease-associated neuroinflammation. In a previous study, we showed that neuron-released α-synuclein can activate microglia through activating the Toll-like receptor 2 (TLR2) pathway, resulting in proinflammatory responses. However, it is not clear whether other signaling pathways are involved in the migration and activation of microglia in response to neuron-released α-synuclein. In the current study, we demonstrated that TLR2 activation is not sufficient for all of the changes manifested by microglia in response to neuron-released α-synuclein. Specifically, the migration of and morphological changes in microglia, triggered by neuron-released α-synuclein, did not require the activation of TLR2, whereas increased proliferation and production of cytokines were strictly under the control of TLR2. Construction of a hypothetical signaling network using computational tools and experimental validation with various peptide inhibitors showed that β1-integrin was necessary for both the morphological changes and the migration. However, neither proliferation nor cytokine production by microglia was dependent on the activation of β1-integrin. These results suggest that β1-integrin signaling is specifically responsible for the recruitment of microglia to the disease-affected brain regions, where neurons most likely release relatively high levels of α-synuclein.
Collapse
Affiliation(s)
- Changyoun Kim
- 1] Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea [2] IBST, Konkuk University, Seoul, Korea
| | - Eun-Deok Cho
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | | | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - He-Jin Lee
- 1] IBST, Konkuk University, Seoul, Korea [2] Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, POSTECH, Pohang, Kyoungbuk, Korea
| | - Seung-Jae Lee
- 1] Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea [2] IBST, Konkuk University, Seoul, Korea
| |
Collapse
|
5
|
Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, Joe EH, Choe M, Kwon HJ, Kim HC, Kim YS, Park JB. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal 2013; 25:1861-9. [PMID: 23707391 DOI: 10.1016/j.cellsig.2013.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 11/16/2022]
Abstract
Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS. Indeed, both fAβ1-42 and fAβ25-35 induced superoxide production in BV2 cells. fAβ25-35 produced superoxide, although fAβ25-35 is not phagocytosed into BV2 cells. Thus, superoxide production by fAβ does not seem to be dependent on phagocytosis of fAβ. Herein we studied how fAβ produces superoxide in BV2. Transfection of dominant negative (DN) RhoA (N19) cDNA plasmid, small hairpin (sh)-RhoA forming plasmid, and Y27632, an inhibitor of Rho-kinase, abrogated the superoxide formation in BV2 cells stimulated by fAβ. Furthermore, fAβ elevated GTP-RhoA level as well as Rac1 and Cdc42. Tat-C3 toxin, sh-RhoA, and Y27632 inhibited the phosphorylation of p47(PHOX). Moreover, peritoneal macrophages from p47(PHOX) (-/-) knockout mouse could not produce superoxide in response to fAβ. These results suggest that RhoA closely engages in the regulation of superoxide production induced by fAβ through phosphorylation of p47(PHOX) in microglial BV2 cells.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lioudyno MI, Broccio M, Sokolov Y, Rasool S, Wu J, Alkire MT, Liu V, Kozak JA, Dennison PR, Glabe CG, Lösche M, Hall JE. Effect of synthetic aβ peptide oligomers and fluorinated solvents on Kv1.3 channel properties and membrane conductance. PLoS One 2012; 7:e35090. [PMID: 22563377 PMCID: PMC3338507 DOI: 10.1371/journal.pone.0035090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 03/12/2012] [Indexed: 01/07/2023] Open
Abstract
The impact of synthetic amyloid β (1–42) (Aβ1–42) oligomers on biophysical properties of voltage-gated potassium channels Kv 1.3 and lipid bilayer membranes (BLMs) was quantified for protocols using hexafluoroisopropanol (HFIP) or sodium hydroxide (NaOH) as solvents prior to initiating the oligomer formation. Regardless of the solvent used Aβ1–42 samples contained oligomers that reacted with the conformation-specific antibodies A11 and OC and had similar size distributions as determined by dynamic light scattering. Patch-clamp recordings of the potassium currents showed that synthetic Aβ1–42 oligomers accelerate the activation and inactivation kinetics of Kv 1.3 current with no significant effect on current amplitude. In contrast to oligomeric samples, freshly prepared, presumably monomeric, Aβ1–42 solutions had no effect on Kv 1.3 channel properties. Aβ1–42 oligomers had no effect on the steady-state current (at −80 mV) recorded from Kv 1.3-expressing cells but increased the conductance of artificial BLMs in a dose-dependent fashion. Formation of amyloid channels, however, was not observed due to conditions of the experiments. To exclude the effects of HFIP (used to dissolve lyophilized Aβ1–42 peptide), and trifluoroacetic acid (TFA) (used during Aβ1–42 synthesis), we determined concentrations of these fluorinated compounds in the stock Aβ1–42 solutions by 19F NMR. After extensive evaporation, the concentration of HFIP in the 100× stock Aβ1–42 solutions was ∼1.7 μM. The concentration of residual TFA in the 70× stock Aβ1–42 solutions was ∼20 μM. Even at the stock concentrations neither HFIP nor TFA alone had any effect on potassium currents or BLMs. The Aβ1–42 oligomers prepared with HFIP as solvent, however, were more potent in the electrophysiological tests, suggesting that fluorinated compounds, such as HFIP or structurally-related inhalational anesthetics, may affect Aβ1–42 aggregation and potentially enhance ability of oligomers to modulate voltage-gated ion channels and biological membrane properties.
Collapse
Affiliation(s)
- Maria I. Lioudyno
- Department of Physiology and Biophysics, University of California Irvine, Irvine, Calfornia, United States of America
| | - Matteo Broccio
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yuri Sokolov
- Department of Physiology and Biophysics, University of California Irvine, Irvine, Calfornia, United States of America
| | - Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Jessica Wu
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael T. Alkire
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, United States of America
| | - Virginia Liu
- Department of Physiology and Biophysics, University of California Irvine, Irvine, Calfornia, United States of America
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, United States of America
| | - J. Ashot Kozak
- Department of Neuroscience, Cell biology, and Physiology, Wright State University, Dayton, Ohio, United States of America
| | - Philip R. Dennison
- Department of Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - James E. Hall
- Department of Physiology and Biophysics, University of California Irvine, Irvine, Calfornia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Miller TW, Isenberg JS, Shih HB, Wang Y, Roberts DD. Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner. PLoS One 2010; 5:e15686. [PMID: 21203512 PMCID: PMC3008726 DOI: 10.1371/journal.pone.0015686] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/21/2010] [Indexed: 11/26/2022] Open
Abstract
Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas W. Miller
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeff S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hubert B. Shih
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Bethesda, Maryland, United States of America
| | - Yichen Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|