1
|
Harrill JA. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. Methods Mol Biol 2018; 1683:305-338. [PMID: 29082500 DOI: 10.1007/978-1-4939-7357-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Toxicology and Environmental Health, LLC, 5120 Northshore Drive, Little Rock, AR, 72118, USA.
| |
Collapse
|
2
|
Narendra Talabattula VA, Morgan P, Frech MJ, Uhrmacher AM, Herchenröder O, Pützer BM, Rolfs A, Luo J. Non-canonical pathway induced by Wnt3a regulates β-catenin via Pyk2 in differentiating human neural progenitor cells. Biochem Biophys Res Commun 2017; 491:40-46. [DOI: 10.1016/j.bbrc.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
3
|
Abstract
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.
Collapse
|
4
|
D'Avanzo C, Sliwinski C, Wagner SL, Tanzi RE, Kim DY, Kovacs DM. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. FASEB J 2015; 29:3335-41. [PMID: 25903103 DOI: 10.1096/fj.15-271015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/05/2015] [Indexed: 02/02/2023]
Abstract
Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.
Collapse
Affiliation(s)
- Carla D'Avanzo
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Sliwinski
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Steven L Wagner
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Doo Yeon Kim
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Dora M Kovacs
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|
6
|
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 2014; 515:274-8. [PMID: 25307057 DOI: 10.1038/nature13800] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/26/2014] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Se Hoon Choi
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2]
| | - Young Hye Kim
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Division of Mass Spectrometry Research, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, South Korea [3]
| | - Matthias Hebisch
- 1] Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Christopher Sliwinski
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Hechao Chen
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Caroline Asselin
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Julien Muffat
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Justin B Klee
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brian J Wainger
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn and Hertie Foundation, 53127 Bonn, Germany
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
7
|
Morgan PJ, Hübner R, Rolfs A, Frech MJ. Spontaneous Calcium Transients in Human Neural Progenitor Cells Mediated by Transient Receptor Potential Channels. Stem Cells Dev 2013; 22:2477-86. [DOI: 10.1089/scd.2013.0061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Peter J. Morgan
- University of Rostock, Albrecht-Kossel-Institute for Neuroregeneration, Rostock, Germany
| | - Rayk Hübner
- University of Rostock, Albrecht-Kossel-Institute for Neuroregeneration, Rostock, Germany
| | - Arndt Rolfs
- University of Rostock, Albrecht-Kossel-Institute for Neuroregeneration, Rostock, Germany
| | - Moritz J. Frech
- University of Rostock, Albrecht-Kossel-Institute for Neuroregeneration, Rostock, Germany
| |
Collapse
|
8
|
Lemcke H, Nittel ML, Weiss DG, Kuznetsov SA. Neuronal differentiation requires a biphasic modulation of gap junctional intercellular communication caused by dynamic changes of connexin43 expression. Eur J Neurosci 2013; 38:2218-28. [PMID: 23607708 DOI: 10.1111/ejn.12219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
It was suggested that gap junctional intercellular communication (GJIC) and connexin (Cx) proteins play a crucial role in cell proliferation and differentiation. However, the mechanisms of cell coupling in regulating cell fate during embryonic development are poorly understood. To study the role of GJIC in proliferation and differentiation, we used a human neural progenitor cell line derived from the ventral mesencephalon. Fluorescence recovery after photobleaching (FRAP) showed that dye coupling was extensive in proliferating cells but diminished after the induction of differentiation, as indicated by a 2.5-fold increase of the half-time of fluorescence recovery. Notably, recovery half-time decreased strongly (five-fold) in the later stage of differentiation. Western blot analysis revealed a similar time-dependent expression profile of Cx43, acting as the main gap junction-forming protein. Interestingly, large amounts of cytoplasmic Cx43 were retained mainly in the Golgi network during proliferation but decreased when differentiation was induced. Furthermore, down-regulation of Cx43 by small interfering RNA reduced functional cell coupling, which in turn resulted in a 50% decrease of both the proliferation rate and neuronal differentiation. Our findings suggest a dual function of Cx43 and GJIC in the neural development of ReNcell VM197 human progenitor cells. GJIC accompanied by high Cx43 expression is necessary (1) to maintain cells in a proliferative state and (2) to complete neuronal differentiation, including the establishment of a neural network. However, uncoupling of cells is crucial in the early stage of differentiation during cell fate commitment.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Animal Physiology, Cell Biology and Biosystems Technology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059, Rostock, Germany
| | | | | | | |
Collapse
|
9
|
Liedmann A, Frech S, Morgan PJ, Rolfs A, Frech MJ. Differentiation of human neural progenitor cells in functionalized hydrogel matrices. Biores Open Access 2013; 1:16-24. [PMID: 23515105 PMCID: PMC3560381 DOI: 10.1089/biores.2012.0209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogel-based three-dimensional (3D) scaffolds are widely used in the field of regenerative medicine, translational medicine, and tissue engineering. Recently, we reported the effect of scaffold formation on the differentiation and survival of human neural progenitor cells (hNPCs) using PuraMatrix™ (RADA-16) scaffolds. Here, we were interested in the impact of PuraMatrix modified by the addition of short peptide sequences, based on a bone marrow homing factor and laminin. The culture and differentiation of the hNPCs in the modified matrices resulted in an approximately fivefold increase in neuronal cells. The examination of apoptotic and necrotic cells, as well as the level of the anti-apoptotic protein Bcl-2, indicates benefits for cells hosted in the modified formulations. In addition, we found a trend to lower proportions of apoptotic or necrotic neuronal cells in the modified matrices. Interestingly, the neural progenitor cell pool was increased in all the tested matrices in comparison to the standard 2D culture system, while no difference was found between the modified matrices. We conclude that a combination of elevated neuronal differentiation and a protective effect of the modified matrices underlies the increased proportion of neuronal cells.
Collapse
Affiliation(s)
- Andrea Liedmann
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock , Rostock, Germany
| | | | | | | | | |
Collapse
|
10
|
Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS One 2012; 7:e42792. [PMID: 22952611 PMCID: PMC3431164 DOI: 10.1371/journal.pone.0042792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/11/2012] [Indexed: 01/03/2023] Open
Abstract
Human neural progenitor cells (hNPCs) form a new prospect for replacement therapies in the context of neurodegenerative diseases. The Wnt/β-catenin signaling pathway is known to be involved in the differentiation process of hNPCs. RVM cells form a common cell model of hNPCs for in vitro investigation. Previous observations in RVM cells raise the question of whether observed kinetics of the Wnt/β-catenin pathway in later differentiation phases are subject to self-induced signaling. However, a concern when investigating RVM cells is that experimental results are possibly biased by the asynchrony of cells w.r.t. the cell cycle. In this paper, we present, based on experimental data, a computational modeling study on the Wnt/β-catenin signaling pathway in RVM cell populations asynchronously distributed w.r.t. to their cell cycle phases. Therefore, we derive a stochastic model of the pathway in single cells from the reference model in literature and extend it by means of cell populations and cell cycle asynchrony. Based on this, we show that the impact of the cell cycle asynchrony on wet-lab results that average over cell populations is negligible. We then further extend our model and the thus-obtained simulation results provide additional evidence that self-induced Wnt signaling occurs in RVM cells. We further report on significant stochastic effects that directly result from model parameters provided in literature and contradict experimental observations.
Collapse
|
11
|
Liedmann A, Rolfs A, Frech MJ. Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel. J Vis Exp 2012:e3830. [PMID: 22258286 DOI: 10.3791/3830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influence of 3-dimensional (3D) scaffolds on growth, proliferation and finally neuronal differentiation is of great interest in order to find new methods for cell-based and standardised therapies in neurological disorders or neurodegenerative diseases. 3D structures are expected to provide an environment much closer to the in vivo situation than 2D cultures. In the context of regenerative medicine, the combination of biomaterial scaffolds with neural stem and progenitor cells holds great promise as a therapeutic tool. Culture systems emulating a three dimensional environment have been shown to influence proliferation and differentiation in different types of stem and progenitor cells. Herein, the formation and functionalisation of the 3D-microenviroment is important to determine the survival and fate of the embedded cells. Here we used PuraMatrix (RADA16, PM), a peptide based hydrogel scaffold, which is well described and used to study the influence of a 3D-environment on different cell types. PuraMatrix can be customised easily and the synthetic fabrication of the nano-fibers provides a 3D-culture system of high reliability, which is in addition xeno-free. Recently we have studied the influence of the PM-concentration on the formation of the scaffold. In this study the used concentrations of PM had a direct impact on the formation of the 3D-structure, which was demonstrated by atomic force microscopy. A subsequent analysis of the survival and differentiation of the hNPCs revealed an influence of the used concentrations of PM on the fate of the embedded cells. However, the analysis of survival or neuronal differentiation by means of immunofluorescence techniques posses some hurdles. To gain reliable data, one has to determine the total number of cells within a matrix to obtain the relative number of e.g. neuronal cells marked by βIII-tubulin. This prerequisites a technique to analyse the scaffolds in all 3-dimensions by a confocal microscope or a comparable technique like fluorescence microscopes able to take z-stacks of the specimen. Furthermore this kind of analysis is extremely time consuming. Here we demonstrate a method to release cells from the 3D-scaffolds for the later analysis e.g. by flow cytometry. In this protocol human neural progenitor cells (hNPCs) of the ReNcell VM cell line (Millipore USA) were cultured and differentiated in 3D-scaffolds consisting of PuraMatrix (PM) or PuraMatrix supplemented with laminin (PML). In our hands a PM-concentration of 0.25% was optimal for the cultivation of the cells, however the concentration might be adapted to other cell types. The released cells can be used for e.g. immunocytochemical studies and subsequently analysed by flow cytometry. This speeds up the analysis and more over, the obtained data rest upon a wider base, improving the reliability of the data.
Collapse
Affiliation(s)
- Andrea Liedmann
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock
| | | | | |
Collapse
|
12
|
Morgan PJ, Liedmann A, Hübner R, Hovakimyan M, Rolfs A, Frech MJ. Human neural progenitor cells show functional neuronal differentiation and regional preference after engraftment onto hippocampal slice cultures. Stem Cells Dev 2011; 21:1501-12. [PMID: 21867424 DOI: 10.1089/scd.2011.0335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transplantation of stem cells offers potential therapies for many neurodegenerative disorders that currently have limited or no treatment options. However, relatively little is known about how the host environment affects the development and integration of these cells. In this study we have engrafted immortalized human midbrain neural progenitor cells (NPCs) onto rat hippocampal brain slice cultures to examine the influence of a neural environment on differentiation. Patch clamp recordings revealed that the transplanted progenitor cells could express neuronal-type voltage-gated currents and rapidly receive synaptic input from the hippocampal brain slice. The distribution of progenitor cells across the hippocampal slices was strongly influenced by the neural architecture, with most cells located in the fissural regions and sending processes parallel to the laminar structure, while in contrast, cells located in the dentate gyrus showed no organized pattern. Almost no cells were found in the stratum radiatum or pyramidal cell layers. Together, these results demonstrate the potential for the architecture of the host environment to regulate the integration of transplanted cells, and highlight the utility of coculture systems for studying the mechanisms underlying the migration, integration, and differentiation of human NPCs in structured neural environments.
Collapse
Affiliation(s)
- Peter J Morgan
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Quantitative and kinetic profile of Wnt/β-catenin signaling components during human neural progenitor cell differentiation. Cell Mol Biol Lett 2011; 16:515-38. [PMID: 21805133 PMCID: PMC6275579 DOI: 10.2478/s11658-011-0021-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 12/30/2022] Open
Abstract
ReNcell VM is an immortalized human neural progenitor cell line with the ability to differentiate in vitro into astrocytes and neurons, in which the Wnt/β-catenin pathway is known to be involved. However, little is known about kinetic changes of this pathway in human neural progenitor cell differentiation. In the present study, we provide a quantitative profile of Wnt/β-catenin pathway dynamics showing its spatio-temporal regulation during ReNcell VM cell differentiation. We show first that T-cell factor dependent transcription can be activated by stabilized β-catenin. Furthermore, endogenous Wnt ligands, pathway receptors and signaling molecules are temporally controlled, demonstrating changes related to differentiation stages. During the first three hours of differentiation the signaling molecules LRP6, Dvl2 and β-catenin are spatio-temporally regulated between distinct cellular compartments. From 24 h onward, components of the Wnt/β-catenin pathway are strongly activated and regulated as shown by mRNA up-regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -9, and co-receptors, and target genes including Axin2. This detailed temporal profile of the Wnt/β-catenin pathway is a first step to understand, control and to orientate, in vitro, human neural progenitor cell differentiation.
Collapse
|
14
|
Selective activation of metabotropic glutamate receptor 7 induces inhibition of cellular proliferation and promotes astrocyte differentiation of ventral mesencephalon human neural stem/progenitor cells. Neurochem Int 2011; 59:421-31. [PMID: 21624409 DOI: 10.1016/j.neuint.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/04/2011] [Accepted: 04/11/2011] [Indexed: 11/22/2022]
Abstract
Expression of group III metabotropic glutamate receptors (mGluR) was established by RT-PCR and immunocytochemistry on a cultured clonal human neural stem/progenitor cell (hNSPC) line derived from fetal ventral mesencephalon (VM). Selective activation of these receptors by the group III mGluR agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) prevented increases in cAMP levels following forskolin stimulation, suggesting these receptors are coupled to their canonical G-protein coupled signal transduction pathway. Tonic exposure of undifferentiated cultures to L-AP4 resulted in a decrease in cellular metabolism and proliferation in the absence of toxicity, as measured by MTT and LDH assays, in a dose-dependent manner. This was confirmed by a reduction in BrdU incorporation into nuclear DNA, suggestive of an anti-proliferative effect of L-AP4. This effect was rescued by co-addition of the broad-spectrum group III mGluR competitive antagonist (RS)-a-cyclopropyl-4-phosphonophenylglycine (CPPG), demonstrating a receptor-mediated mechanism, but not mimicked by application of the cell permeable cAMP analogue dibutyrl cAMP (db-cAMP). The potency of these effects of L-AP4 indicates that this is an mGlu7 subtype-mediated effect. Tonic exposure of undifferentiated cultures to the mGlu7 selective allosteric agonist N,N'-bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082), but not the mGlu4 selective allosteric agonist (±)-cis-2-(3,5-dicholorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), or the mGlu8 selective agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) resulted in an identical anti-proliferative effect to L-AP4, confirming the involvement of the mGlu7 subtype. In differentiating cultures, tonic exposure to L-AP4 or AMN082 resulted in a significant shift towards an astrocyte cell fate. The mGlu7 receptor therefore provides a new opportunity to influence the proliferation and differentiation of ventral mesencephalon-derived hNSPC.
Collapse
|
15
|
Giese AK, Frahm J, Hübner R, Luo J, Wree A, Frech MJ, Rolfs A, Ortinau S. Erythropoietin and the effect of oxygen during proliferation and differentiation of human neural progenitor cells. BMC Cell Biol 2010; 11:94. [PMID: 21126346 PMCID: PMC3018408 DOI: 10.1186/1471-2121-11-94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
Background Hypoxia plays a critical role in various cellular mechanisms, including proliferation and differentiation of neural stem and progenitor cells. In the present study, we explored the impact of lowered oxygen on the differentiation potential of human neural progenitor cells, and the role of erythropoietin in the differentiation process. Results In this study we demonstrate that differentiation of human fetal neural progenitor cells under hypoxic conditions results in an increased neurogenesis. In addition, expansion and proliferation under lowered oxygen conditions also increased neuronal differentiation, although proliferation rates were not altered compared to normoxic conditions. Erythropoietin partially mimicked these hypoxic effects, as shown by an increase of the metabolic activity during differentiation and protection of differentiated cells from apoptosis. Conclusion These results provide evidence that hypoxia promotes the differentiation of human fetal neural progenitor cells, and identifies the involvement of erythropoietin during differentiation as well as different cellular mechanisms underlying the induction of differentiation mediated by lowered oxygen levels.
Collapse
Affiliation(s)
- Anne-Katrin Giese
- Albrecht-Kossel-Institute for Neuroregeneration, Centre for Mental Health Disease, University of Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ortinau S, Schmich J, Block S, Liedmann A, Jonas L, Weiss DG, Helm CA, Rolfs A, Frech MJ. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells. Biomed Eng Online 2010; 9:70. [PMID: 21070668 PMCID: PMC2996398 DOI: 10.1186/1475-925x-9-70] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 11/11/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. METHODS In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. RESULTS Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. CONCLUSIONS Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.
Collapse
Affiliation(s)
- Stefanie Ortinau
- Albrecht-Kossel-Institute for Neuroregeneration, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hübner R, Schmöle AC, Liedmann A, Frech MJ, Rolfs A, Luo J. Differentiation of human neural progenitor cells regulated by Wnt-3a. Biochem Biophys Res Commun 2010; 400:358-62. [DOI: 10.1016/j.bbrc.2010.08.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/17/2010] [Indexed: 02/03/2023]
|
18
|
Schmöle AC, Brennführer A, Karapetyan G, Jaster R, Pews-Davtyan A, Hübner R, Ortinau S, Beller M, Rolfs A, Frech MJ. Novel indolylmaleimide acts as GSK-3β inhibitor in human neural progenitor cells. Bioorg Med Chem 2010; 18:6785-95. [DOI: 10.1016/j.bmc.2010.07.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 12/24/2022]
|
19
|
Pews-Davtyan A, Tillack A, Schmöle AC, Ortinau S, Frech MJ, Rolfs A, Beller M. A new facile synthesis of 3-amidoindole derivatives and their evaluation as potential GSK-3beta inhibitors. Org Biomol Chem 2010; 8:1149-53. [PMID: 20165807 DOI: 10.1039/b920861e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
3-Amidoindoles were synthesized from commercially available arylhydrazines and propargylamines over Zn-salt mediated one pot procedure in excellent regioselectivity and up to 94% yield.
Collapse
Affiliation(s)
- Anahit Pews-Davtyan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, D-18059, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|