1
|
Li Y, Li C, Zhu H, Chu Y. TRPV1 in Dorsal Root Ganglion Contributed to Chronic Pancreatitis Pain. J Pain Palliat Care Pharmacother 2025:1-9. [PMID: 40371900 DOI: 10.1080/15360288.2025.2500984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Abstract
Chronic pancreatitis presents a formidable challenge in pain management, often leading to significant suffering and reduced quality of life for affected individuals. The intricate interplay of factors contributing to this pain, including inflammation and neural sensitization, has garnered increasing attention in recent research. Among the key players in this scenario are the transient receptor potential vanilloid 1(TRPV1) channels located in dorsal root ganglion (DRG) neurons. These channels, known for their role in pain perception, exhibit heightened sensitivity and altered expression patterns in the context of chronic pancreatitis. Sensitization of TRPV1 channels amplifies their response to various pain triggers, exacerbating the perception of discomfort. Furthermore, dysregulated expression of TRPV1 within DRG neurons contributes to the chronic pain phenotype associated with pancreatitis. Understanding the nuanced mechanisms governing TRPV1 modulation in DRG neurons promises to unlock novel therapeutic avenues for managing chronic pancreatitis pain. By targeting TRPV1 channels specifically in DRG neurons, researchers aim to develop treatments that alleviate pain while minimizing adverse effects, ultimately offering hope for improved outcomes and enhanced well-being for individuals grappling with this debilitating condition.
Collapse
Affiliation(s)
- Yali Li
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Chenshuai Li
- Department of Pediatrics, Tianjin Beichen Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Haiyun Zhu
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yuru Chu
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
2
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
3
|
Wang W, Sun T. Impact of TRPV1 on Pathogenesis and Therapy of Neurodegenerative Diseases. Molecules 2023; 29:181. [PMID: 38202764 PMCID: PMC10779880 DOI: 10.3390/molecules29010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a transmembrane and non-selective cation channel protein, which can be activated by various physical and chemical stimuli. Recent studies have shown the strong pathogenetic associations of TRPV1 with neurodegenerative diseases (NDs), in particular Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) via regulating neuroinflammation. Therapeutic effects of TRPV1 agonists and antagonists on the treatment of AD and PD in animal models also are emerging. We here summarize the current understanding of TRPV1's effects and its agonists and antagonists as a therapeutic means in neurodegenerative diseases, and highlight future treatment strategies using natural TRPV1 agonists. Developing new targets and applying natural products are becoming a promising direction in the treatment of chronic disorders, especially neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China;
| |
Collapse
|
4
|
Deep sequencing and miRNA profiles in alcohol-induced neuroinflammation and the TLR4 response in mice cerebral cortex. Sci Rep 2018; 8:15913. [PMID: 30374194 PMCID: PMC6206094 DOI: 10.1038/s41598-018-34277-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse can induce brain injury and neurodegeneration, and recent evidence shows the participation of immune receptors toll-like in the neuroinflammation and brain damage. We evaluated the role of miRNAs as potential modulators of the neuroinflammation associated with alcohol abuse and the influence of the TLR4 response. Using mice cerebral cortex and next-generation sequencing (NGS), we identified miRNAs that were differentially expressed in the chronic alcohol-treated versus untreated WT or TLR4-KO mice. We observed a differentially expression of miR-183 Cluster (C) (miR-96/-182/-183), miR-200a and miR-200b, which were down-regulated, while mirR-125b was up-regulated in alcohol-treated WT versus (vs.) untreated mice. These miRNAs modulate targets genes related to the voltage-gated sodium channel, neuron hyperexcitability (Nav1.3, Trpv1, Smad3 and PP1-γ), as well as genes associated with innate immune TLR4 signaling response (Il1r1, Mapk14, Sirt1, Lrp6 and Bdnf). Functional enrichment of the miR-183C and miR-200a/b family target genes, revealed neuroinflammatory pathways networks involved in TLR4 signaling and alcohol abuse. The changes in the neuroinflammatory targets genes associated with alcohol abuse were mostly abolished in the TLR4-KO mice. Our results show the relationship between alcohol intake and miRNAs expression and open up new therapeutically targets to prevent deleterious effects of alcohol on the brain.
Collapse
|
5
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Yamamoto M, Nishiyama M, Iizuka S, Suzuki S, Suzuki N, Aiso S, Nakahara J. Transient receptor potential vanilloid 1-immunoreactive signals in murine enteric glial cells. World J Gastroenterol 2016; 22:9752-9764. [PMID: 27956799 PMCID: PMC5124980 DOI: 10.3748/wjg.v22.i44.9752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the possible involvement of transient receptor potential vanilloid 1 (TRPV1) in maturation of enteric glial cells (EGCs).
METHODS Immunohistochemical and immunocytochemical techniques were used to analyze EGC markers in myenteric plexus (MP) as well as cultured MP cells and EGCs using TRPV1 knockout (KO) mice.
RESULTS We detected TRPV1-immunoreactive signals in EGC in the MP of wild-type (WT) but not KO mice. Expression of glial fibrillary acidic protein (GFAP) immunoreactive signals was lower at postnatal day (PD) 6 in KO mice, though the difference was not clear at PD 13 and PD 21. When MP cells were isolated and cultured from isolated longitudinal muscle-MP preparation from WT and KO mice, the yield of KO EGC was lower than that of WT EGC, while the yield of KO and WT smooth muscle cells showed no difference. Addition of BCTC, a TRPV1 antagonist, to enriched EGC culture resulted in a decrease in the protein ratio of GFAP to S100B, another EGC/astrocyte-specific marker.
CONCLUSION These results address the possibility that TRPV1 may be involved in the maturation of EGC, though further studies are necessary to validate this possibility.
Collapse
|
7
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
8
|
Radler ME, Hale MW, Kent S. Calorie restriction attenuates lipopolysaccharide (LPS)-induced microglial activation in discrete regions of the hypothalamus and the subfornical organ. Brain Behav Immun 2014; 38:13-24. [PMID: 24291211 DOI: 10.1016/j.bbi.2013.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to increase longevity and elicit many health promoting benefits including delaying immunosenescence and attenuating neurodegeneration in animal models of Alzheimer's disease and Parkinson's disease. CR also suppresses microglial activation following cortical injury and aging. We previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and shifts hypothalamic signaling pathways to an anti-inflammatory bias; however, the effects of CR on LPS-induced microglial activation remain largely unexplored. The current study investigated regional changes in LPS-induced microglial activation in mice exposed to 50% CR for 28days. Immunohistochemistry was conducted to examine changes in ionized calcium-binding adapter molecule-1 (Iba1), a protein constitutively expressed by microglia, in a total of 27 brain regions involved in immunity, stress, and/or thermoregulation. Exposure to CR attenuated LPS-induced fever, and LPS-induced microglial activation in a subset of regions: the arcuate nucleus (ARC) and ventromedial nucleus of the hypothalamus (VMH) and the subfornical organ (SFO). Microglial activation in the ARC and VMH was positively correlated with body temperature. These data suggest that CR exerts effects on regionally specific populations of microglia; particularly, in appetite-sensing regions of the hypothalamus, and/or regions lacking a complete blood brain barrier, possibly through altered pro- and anti-inflammatory signaling in these regions.
Collapse
Affiliation(s)
- Morgan E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Endo Y, Shoji N, Shimada Y, Kasahara E, Iikubo M, Sato T, Sasano T, Ichikawa H. Prednisolone induces microglial activation in the subnucleus caudalis of the rat trigeminal sensory complex. Cell Mol Neurobiol 2014; 34:95-100. [PMID: 24077857 PMCID: PMC11488875 DOI: 10.1007/s10571-013-9990-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
Abstract
Prednisolone is a member of synthetic glucocorticoids which are widely used to treat chronic inflammatory diseases. In this study, neuronal degeneration and cell death, and glial reaction were investigated in the rat trigeminal ganglion (TG) and brainstem after subcutaneous injection of prednisolone for 7 days. Expression of c-Jun activating transcription factor 3 and caspase-3 was absent or infrequent in the TG, and cranial sensory and motor nuclei of saline- and prednisolone-treated animals. In these animals, distribution of calcitonin gene-related peptide-immunoreactive (-IR) neurons and nerve fibers was similar in the brainstem. In addition, the number of Iba1- and glial fibrillary acidic protein (GFAP)-IR cells with some processes in the brainstem was barely affected by prednisolone treatment. However, the treatment increased ramification of Iba1-IR processes in the subnucleus caudalis of the trigeminal sensory complex. Prednisolone scarcely influenced the morphology of GFAP-IR cells in the brainstem. Expression of p38 mitogen-activated protein kinase was very rare in the brainstem of saline- and prednisolone-treated animals. The present study suggests that microglia are activated by prednisolone in the subnucleus caudalis of the trigeminal sensory complex. The glucocorticoid may affect nociceptive transmission in the brainstem.
Collapse
Affiliation(s)
- Yu Endo
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Noriaki Shoji
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Yusuke Shimada
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Eriko Kasahara
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Masahiro Iikubo
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Tadasu Sato
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Takashi Sasano
- Divisions of Oral Diagnosis, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| | - Hiroyuki Ichikawa
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi 980-8575 Japan
| |
Collapse
|
10
|
Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2013; 15:43-53. [PMID: 24281245 DOI: 10.1038/nrn3617] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CNS is endowed with an elaborated response repertoire termed 'neuroinflammation', which enables it to cope with pathogens, toxins, traumata and degeneration. On the basis of recent publications, we deduce that orchestrated actions of immune cells, vascular cells and neurons that constitute neuroinflammation are not only provoked by pathological conditions but can also be induced by increased neuronal activity. We suggest that the technical term 'neurogenic neuroinflammation' should be used for inflammatory reactions in the CNS in response to neuronal activity. We believe that neurogenic neuro-inflammation maintains homeostasis to enable the CNS to cope with enhanced metabolic demands and increases the computational power and plasticity of CNS neuronal networks. However, neurogenic neuroinflammation may also become maladaptive and aggravate the outcomes of pain, stress and epilepsy.
Collapse
|