1
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
2
|
Xue X, Mei S, Huang A, Wu Z, Zeng J, Song H, An J, Zhang L, Liu G, Zhou L, Cai Y, Xu B, Xu E, Chan P. Alzheimer's Disease Related Biomarkers Were Associated with Amnestic Cognitive Impairment in Parkinson's Disease: A Cross-Sectional Cohort Study. Brain Sci 2024; 14:787. [PMID: 39199480 PMCID: PMC11352303 DOI: 10.3390/brainsci14080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Cognitive impairment is common in patients with Parkinson's disease (PD) and occurs through multiple mechanisms, including Alzheimer's disease (AD) pathology and the involvement of α-synucleinopathies. We aimed to investigate the pathological biomarkers of both PD and AD in plasma and neuronal extracellular vesicles (EVs) and their association with different types of cognitive impairment in PD patients. METHODS A total of 122 patients with PD and 30 healthy controls were included in this cross-sectional cohort study between March 2021 and July 2023. Non-dementia PD patients were divided into amnestic and non-amnestic groups according to the memory domain of a neuropsychological assessment. Plasma and neuronal EV biomarkers, including α-synuclein (α-syn), beta-amyloid (Aβ), total tau (T-tau), phosphorylated tau181 (p-tau181), and glial fibrillary acidic protein (GFAP), were measured using a single-molecule array and a chemiluminescence immunoassay, respectively. RESULTS Neuronal EV but not plasma α-syn levels, were significantly increased in PD as compared to healthy controls, and they were positively associated with UPDRS part III scores and the severity of cognitive impairment. A lower plasma Aβ42 level and higher neuronal EV T-tau level were found in the amnestic PD group compared to the non-amnestic PD group. CONCLUSIONS The results of the current study demonstrate that neuronal EV α-syn levels can be a sensitive biomarker for assisting in the diagnosis and disease severity prediction of PD. Both AD and PD pathologies are important factors in cognitive impairment associated with PD, and AD pathologies are more involved in amnestic memory deficit in PD.
Collapse
Affiliation(s)
- Xiaofan Xue
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China;
| | - Shanshan Mei
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Anqi Huang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Zhiyue Wu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Jingrong Zeng
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Haixia Song
- Department of Neurology, The People’s Hospital of Shijiazhuang, Shijiazhuang 050000, China;
| | - Jing An
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Lijuan Zhang
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Guozhen Liu
- Parkinson’s Disease Cloud Medical Technology Company, Beijing 100055, China;
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China;
| | - Yanning Cai
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital of Capital Medical University, Beijing 100053, China;
| | - Baolei Xu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Erhe Xu
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| | - Piu Chan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; (X.X.); (S.M.); (A.H.); (Z.W.); (J.Z.); (B.X.); (E.X.)
| |
Collapse
|
3
|
Liu Q, Li S. Exosomal circRNAs: Novel biomarkers and therapeutic targets for urinary tumors. Cancer Lett 2024; 588:216759. [PMID: 38417667 DOI: 10.1016/j.canlet.2024.216759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Exosomal circRNAs have emerged as promising biomarkers and therapeutic targets for urinary tumors. In this review, we explored the intricate role of exosomal circRNAs in urological cancers, focusing on their biological functions, dysregulation in tumors, and potential clinical applications. The review delves into the mechanisms by which exosomal circRNAs contribute to tumor progression and highlights their diagnostic and therapeutic implications. By synthesizing current research findings, we present a compelling case for the significance of exosomal circRNAs in the context of urinary tumors. Furthermore, the review discusses the challenges and opportunities associated with utilizing exosomal circRNAs as diagnostic tools and targeted therapeutic agents. There is a need for further research to elucidate the specific mechanisms of exosomal circRNA secretion and delivery, as well as to enhance the detection methods for clinical translational applications. Overall, this comprehensive review underscores the pivotal role of exosomal circRNAs in urinary tumors and underscores their potential as valuable biomarkers and therapeutic tools in the management of urological cancers.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
4
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
5
|
Aliakbari F, Stocek NB, Cole-André M, Gomes J, Fanchini G, Pasternak SH, Christiansen G, Morshedi D, Volkening K, Strong MJ. A methodological primer of extracellular vesicles isolation and characterization via different techniques. Biol Methods Protoc 2024; 9:bpae009. [PMID: 38425334 PMCID: PMC10902684 DOI: 10.1093/biomethods/bpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
We present four different protocols of varying complexity for the isolation of cell culture-derived extracellular vesicles (EVs)/exosome-enriched fractions with the objective of providing researchers with easily conducted methods that can be adapted for many different uses in various laboratory settings and locations. These protocols are primarily based on polymer precipitation, filtration and/or ultracentrifugation, as well as size-exclusion chromatography (SEC) and include: (i) polyethylene glycol and sodium chloride supplementation of the conditioned medium followed by low-speed centrifugation; (ii) ultracentrifugation of conditioned medium; (iii) filtration of conditioned media through a 100-kDa exclusion filter; and (iv) isolation using a standard commercial kit. These techniques can be followed by further purification by ultracentrifugation, sucrose density gradient centrifugation, or SEC if needed and the equipment is available. HEK293 and SH-SY5Y cell cultures were used to generate conditioned medium containing exosomes. This medium was then depleted of cells and debris, filtered through a 0.2-µM filter, and supplemented with protease and RNAse inhibitors prior to exosomal isolation. The purified EVs can be used immediately or stably stored at 4°C (up to a week for imaging or using intact EVS downstream) or at -80°C for extended periods and then used for biochemical study. Our aim is not to compare these methodologies but to present them with descriptors so that researchers can choose the "best method" for their work under their individual conditions.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Noah B Stocek
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Maxximuss Cole-André
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Janice Gomes
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Giovanni Fanchini
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Stephen H Pasternak
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Gunna Christiansen
- Department of Health Science and Technology, The Faculty of Medicine, Medical Microbiology and Immunology, Aalborg University, Aalborg Ø 9220, Denmark
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O. Box 14965/161, Iran
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
6
|
Liu Z, Cheng L, Zhang L, Shen C, Wei S, Wang L, Qiu Y, Li C, Xiong Y, Zhang X. Emerging role of mesenchymal stem cells-derived extracellular vesicles in vascular dementia. Front Aging Neurosci 2024; 16:1329357. [PMID: 38389559 PMCID: PMC10881761 DOI: 10.3389/fnagi.2024.1329357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its pathological mechanism encompasses neuronal damage, synaptic dysfunction, vascular abnormalities, neuroinflammation, and oxidative stress, among others. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered significant attention as an emerging therapeutic strategy. Current research indicates that MSC-derived extracellular vesicles (MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. Thus, this article delves into the recent advancements of MSC-EVs in VD, discussing the mechanisms by which EVs influence the pathophysiological processes of VD. These mechanisms form the theoretical foundation for their neuroprotective effect in VD treatment. Additionally, the article highlights the potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present a promising innovative treatment strategy for VD. With rigorous research and ongoing innovation, this concept can transition into practical clinical treatment, providing more effective options for VD patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Lushun Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chunxiao Shen
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Shufei Wei
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Liangliang Wang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yuemin Qiu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuan Li
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|