1
|
Aghamohammadi-Sereshki A, McMorris CA, Gibbard WB, Tortorelli C, Pike GB, Lebel C. Properties of the prefrontal tracts and cingulum bundle in children with prenatal alcohol exposure. J Affect Disord 2025; 369:164-173. [PMID: 39341291 DOI: 10.1016/j.jad.2024.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) significantly impacts brain structure and function, including cognition and behavior. The cingulum bundle and frontal lobe mediate social-, emotional- and cognitive-related functioning that are affected by PAE. However, the neurobehavioural development of the cingulum and intra-frontal tracts has not been examined in people with PAE. METHODS We recruited 29 children and adolescents with PAE and 42 age- and gender-matched unexposed controls. Diffusion magnetic resonance imaging (MRI) data were acquired on a 3 T scanner. The rostral, dorsal and parahippocampal cingulum as well as medio-orbitofrontal, lateral-orbitofrontal, dorsolateral-prefrontal and medial-prefrontal tracts, were delineated and their fractional anisotropy and mean (MD), radial (RD), and axial (AD) diffusivities were calculated using constrained spherical deconvolution and deterministic tractography. We measured behavioural and emotional difficulties using the Behavior Assessment System for Children, 2nd Edition, Parent Rating Scale, and then explored their associations with diffusion metrics that differed between groups. RESULTS We found lower MD, RD, and AD in the right parahippocampal cingulum and multiple intra-frontal tracts in youth with PAE compared to controls; however, these differences did not withstand correction for multiple comparisons. While, youth with PAE showed significantly more emotional and behavioural difficulties compared to unexposed controls, these challenges were not associated with differences in diffusion metrics between groups. CONCLUSION PAE may be weakly associated with restricted diffusion in the right parahippocampal cingulum and multiple intra-frontal tracts. However, diffusivity changes related to PAE might not be the primary contributor to emotional and behavioural challenges in children and adolescents with PAE.
Collapse
Affiliation(s)
| | - Carly A McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, Alberta, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Huang Y, Flentke GR, Rivera OC, Saini N, Mooney SM, Smith SM. Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain. Cells 2024; 13:440. [PMID: 38474404 PMCID: PMC10931382 DOI: 10.3390/cells13050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5-E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol's actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - George R. Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Olivia C. Rivera
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA (N.S.); (S.M.M.)
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
3
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Xu F, Thomas JD, Goldowitz D, Hamre KM. The ameliorative effects of choline on ethanol-induced cell death in the neural tube of susceptible BXD strains of mice. Front Neurosci 2023; 17:1203597. [PMID: 37790585 PMCID: PMC10543688 DOI: 10.3389/fnins.2023.1203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the leading preventable cause of intellectual disability, providing the impetus for evaluating various potential treatments to ameliorate ethanol's teratogenic effects, particularly in the nervous system. One treatment is the dietary supplement choline which has been shown to mitigate at least some of ethanol's teratogenic effects. The present study was designed to investigate the effects of genetics on choline's efficacy in ameliorating cell death in the developing neural tube. Previously, we examined BXD recombinant inbred mice, and their parental C57BL/6 J (B6) and DBA/2 J strains, and identified strains that were sensitive to ethanol's teratogenic actions. Thus, we used these strains to identify response to choline treatment. Materials and methods Timed pregnant mice from 4 strains (B6, BXD51, BXD73, BXD2) were given either ethanol or isocaloric maltose-dextrin (5.8 g/kg in two administrations separated by 2 h) with choline at one of 3 doses: 0, 100 or 250 mg/kg. Subjects were exposed via intragastric gavage on embryonic day 9 and embryos were collected 7 h after the initial ethanol administrations. Cell death was analyzed using TUNEL staining in the developing forebrain and brainstem. Results Choline ameliorated the ethanol-induced cell death across all 4 strains without causing enhanced cell death in control mice. Choline was effective in both the developing telencephalon and in the brainstem. Both doses diminished cell death, with some differences across strains and brain regions, although the 100 mg/kg dose was most consistent in mitigating ethanol-related cell death. Comparisons across strains showed that there was an effect of strain, particularly in the forebrain at the higher dose. Discussion These results show that choline is effective in ameliorating ethanol-induced cell death at this early stage of nervous system development. However, there were some strain differences in its efficacy, especially at the high dose, providing further evidence of the importance of genetics in influencing the ability of choline to protect against prenatal alcohol exposure.
Collapse
Affiliation(s)
- Fannia Xu
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
| | - Dan Goldowitz
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Kristin M. Hamre
- Department Anatomy and Neurobiology, University Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
Davies S, Nelson DE, Shrestha S, Savage DD. Impact of two different rodent diets on maternal ethanol consumption, serum ethanol concentration and pregnancy outcome measures. Alcohol 2023; 111:39-49. [PMID: 37225109 PMCID: PMC10527634 DOI: 10.1016/j.alcohol.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Recent studies report varying levels of ethanol consumption by rodents maintained on different commercially available laboratory diets. As varied ethanol consumption by dams may impact offspring outcome measures in prenatal ethanol exposure paradigms, we compared ethanol consumption by rats maintained on the Envigo 2920 diet, used in our vivarium, with an isocalorically equivalent PicoLab 5L0D diet used in some alcohol consumption studies. Compared to 5L0D diet, female rats maintained on 2920 diet consumed 14% less ethanol during daily 4-h drinking sessions prior to pregnancy and 28% less ethanol during gestation. Rat dams consuming 5L0D diet gained significantly less weight during pregnancy. However, their pup birth weights were significantly higher. A subsequent study revealed that hourly ethanol consumption was not different between diets during the first 2 h, but was significantly lower on 2920 diet at the end of the third and fourth hours. The mean serum ethanol concentration in 5L0D dams after the first 2 h of drinking was 46 mg/dL compared to 25 mg/dL in 2920 dams. Further, ethanol consumption at the 2-h blood sampling time point was more variable in 2920 dams compared to 5L0D dams. An in vitro analysis mixing each powdered diet with 5% ethanol in acidified saline revealed that a 2920 diet suspension adsorbed more aqueous medium than the 5L0D diet suspension. The total ethanol remaining in aqueous supernatant of 5L0D mixtures was nearly twice the amount of ethanol in supernatants of the 2920 mixtures. These results suggest that the 2920 diet expands to a greater extent in aqueous medium than the 5L0D diet. We speculate that increasing adsorption of water and ethanol by the 2920 diet may reduce or delay the amount of ethanol absorbed and may decrease serum ethanol concentration to a greater extent than would be predicted from the amount of ethanol consumed.
Collapse
Affiliation(s)
- Suzy Davies
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Danika E Nelson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Sumi Shrestha
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States
| | - Daniel D Savage
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States.
| |
Collapse
|
6
|
Derme M, Piccioni MG, Brunelli R, Crognale A, Denotti M, Ciolli P, Scomparin D, Tarani L, Paparella R, Terrin G, Di Chiara M, Mattia A, Nicotera S, Salomone A, Ceccanti M, Messina MP, Maida NL, Ferraguti G, Petrella C, Fiore M. Oxidative Stress in a Mother Consuming Alcohol during Pregnancy and in Her Newborn: A Case Report. Antioxidants (Basel) 2023; 12:1216. [PMID: 37371946 DOI: 10.3390/antiox12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a set of conditions resulting from prenatal alcohol exposure (PAE). FASD is estimated to affect between 2% and 5% of people in the United States and Western Europe. The exact teratogenic mechanism of alcohol on fetal development is still unclear. Ethanol (EtOH) contributes to the malfunctioning of the neurological system in children exposed in utero by decreasing glutathione peroxidase action, with an increase in the production of reactive oxygen species (ROS), which causes oxidative stress. We report a case of a mother with declared alcohol abuse and cigarette smoking during pregnancy. By analyzing the ethyl glucuronide (EtG, a metabolite of alcohol) and the nicotine/cotinine in the mother's hair and meconium, we confirmed the alcohol and smoking abuse magnitude. We also found that the mother during pregnancy was a cocaine abuser. As a result, her newborn was diagnosed with fetal alcohol syndrome (FAS). At the time of the delivery, the mother, but not the newborn, had an elevation in oxidative stress. However, the infant, a few days later, displayed marked potentiation in oxidative stress. The clinical complexity of the events involving the infant was presented and discussed, underlining also the importance that for cases of FASD, it is crucial to have more intensive hospital monitoring and controls during the initial days.
Collapse
Affiliation(s)
- Martina Derme
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Brunelli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Crognale
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Marika Denotti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Paola Ciolli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Debora Scomparin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Alessandro Mattia
- Dipartimento Della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, Ministero dell'Interno, 00185 Roma, Italy
| | - Simona Nicotera
- Dipartimento Della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, Ministero dell'Interno, 00185 Roma, Italy
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Alberto Salomone
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento Dell'alcolismo e le sue Complicanze, 00185 Rome, Italy
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Nunzia La Maida
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
7
|
Bariselli S, Reuveni N, Westcott N, Mateo Y, Lovinger DM. Postnatal ethanol exposure impairs social behavior and operant extinction in the adult female mouse offspring. Front Neurosci 2023; 17:1160185. [PMID: 37260840 PMCID: PMC10229070 DOI: 10.3389/fnins.2023.1160185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) comprises a group of neurodevelopmental deficits caused by alcohol exposure during pregnancy. Clinical studies suggest that while the male progeny experiences serious neurodevelopmental defects, female patients have more severe cognitive, social, and affective symptoms. Other than sex, dose, frequency, and timing of exposure determine the neurobehavioral outcomes in young and adult progeny. In this regard, human studies indicate that some individuals relapse during late-term gestational periods. In mice, this interval corresponds to the first 10 days after birth (postnatal, P0-P10). In our model of postnatal ethanol exposure (PEEP0-P10), we tested whether adult female and male offspring show deficits in sociability, anxiety-like, reward consumption, and action-outcome associations. We report that female PEEP0-P10 offspring have mild social impairments and altered extinction of operant responding in the absence of anxiety-like traits and reward consumption defects. None of these deficits were detected in the male PEEP0-P10 offspring. Our data provide novel information on sex-specific neurobehavioral outcomes of postnatal ethanol exposure in female adult offspring.
Collapse
|