1
|
The biology of aggressive behavior in bipolar disorder: A systematic review. Neurosci Biobehav Rev 2020; 119:9-20. [DOI: 10.1016/j.neubiorev.2020.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023]
|
2
|
Glutamate receptor metabotropic 7 (GRM7) gene polymorphisms in mood disorders and attention deficit hyperactive disorder. Neurochem Int 2019; 129:104483. [DOI: 10.1016/j.neuint.2019.104483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
|
3
|
Zhang L, Huang Y, Wang M, Guo Y, Liang J, Yang X, Qi W, Wu Y, Si J, Zhu S, Li Z, Li R, Shi C, Wang S, Zhang Q, Tang Z, Wang L, Li K, Fei JF, Lan G. Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease. iScience 2019; 19:162-176. [PMID: 31376679 PMCID: PMC6677790 DOI: 10.1016/j.isci.2019.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023] Open
Abstract
Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.
Collapse
Affiliation(s)
- Li Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuemeng Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Yafen Guo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenjing Qi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanjun Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhe Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Chao Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qunjie Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ji-Feng Fei
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Lu S, Zhu ZG, Lu WC. Inferring novel genes related to colorectal cancer via random walk with restart algorithm. Gene Ther 2019; 26:373-385. [PMID: 31308477 DOI: 10.1038/s41434-019-0090-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. In recent decades, genomic analysis has played an increasingly important role in understanding the molecular mechanisms of CRC. However, its pathogenesis has not been fully uncovered. Identification of genes related to CRC as complete as possible is an important way to investigate its pathogenesis. Therefore, we proposed a new computational method for the identification of novel CRC-associated genes. The proposed method is based on existing proven CRC-associated genes, human protein-protein interaction networks, and random walk with restart algorithm. The utility of the method is indicated by comparing it to the methods based on Guilt-by-association or shortest path algorithm. Using the proposed method, we successfully identified 298 novel CRC-associated genes. Previous studies have validated the involvement of the majority of these 298 novel genes in CRC-associated biological processes, thus suggesting the efficacy and accuracy of our method.
Collapse
Affiliation(s)
- Sheng Lu
- Department of General Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Surgery, Shanghai, 200025, China
| | - Zheng-Gang Zhu
- Department of General Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Surgery, Shanghai, 200025, China
| | - Wen-Cong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Vázquez-Villa H, Trabanco AA. Progress toward allosteric ligands of metabotropic glutamate 7 (mGlu7) receptor: 2008-present. MEDCHEMCOMM 2019; 10:193-199. [PMID: 30881607 PMCID: PMC6390470 DOI: 10.1039/c8md00524a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Metabotropic glutamate type 7 (mGlu7) receptor is a member of the group III family of mGlu receptors. It is widely distributed in the central nervous system (CNS) and is preferentially expressed on presynaptic nerve terminals where it is thought to play a critical role in modulating normal neuronal function and synaptic transmission, making it particularly relevant in neuropharmacology. The lack of small-molecule mGlu7 ligands with adequate potency, selectivity and drug-like properties has resulted in difficulties in the preclinical validation of mGlu7 modulation in disease models. In the last decade, allosteric modulators of mGlu7 receptors have emerged as valuable tools with good potency, selectivity and physicochemical properties to study and unleash the therapeutic potential of mGlu7 receptors. This review focusses on the medicinal chemistry of mGlu7 receptor allosteric ligands discovered since 2008.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica , Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain .
| | - Andrés A Trabanco
- Discovery Sciences , Medicinal Chemistry Department , Janssen Research & Development , c/ Jarama 75A , 45007 Toledo , Spain .
| |
Collapse
|
6
|
Two novel genomic regions associated with fearfulness in dogs overlap human neuropsychiatric loci. Transl Psychiatry 2019; 9:18. [PMID: 30655508 PMCID: PMC6336819 DOI: 10.1038/s41398-018-0361-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Anxiety disorders are among the leading health issues in human medicine. The complex phenotypic and allelic nature of these traits as well as the challenge of establishing reliable measures of the heritable component of behaviour from the associated environmental factors hampers progress in their molecular aetiology. Dogs exhibit large natural variation in fearful and anxious behaviour and could facilitate progress in the molecular aetiology due to their unique genetic architecture. We have performed a genome-wide association study with a canine high-density SNP array in a cohort of 330 German Shepherds for two phenotypes, fear of loud noises (noise sensitivity) and fear of strangers or in novel situations. Genome-widely significant loci were discovered for the traits on chromosomes 20 and 7, respectively. The regions overlap human neuropsychiatric loci, including 18p11.2, with physiologically relevant candidate genes that contribute to glutamatergic and dopaminergic neurotransmission in the brain. In addition, the noise-sensitivity locus includes hearing-related candidate genes. These results indicate a genetic contribution for canine fear and suggest a shared molecular aetiology of anxiety across species. Further characterisation of the identified loci will pave the way to molecular understanding of the conditions as a prerequisite for improved therapy.
Collapse
|
7
|
van Hulzen KJE, Scholz CJ, Franke B, Ripke S, Klein M, McQuillin A, Sonuga-Barke EJ, Kelsoe JR, Landén M, Andreassen OA, Lesch KP, Weber H, Faraone SV, Arias-Vasquez A, Reif A. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biol Psychiatry 2017; 82:634-641. [PMID: 27890468 PMCID: PMC7027938 DOI: 10.1016/j.biopsych.2016.08.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BPD) are frequently co-occurring and highly heritable mental health conditions. We hypothesized that BPD cases with an early age of onset (≤21 years old) would be particularly likely to show genetic covariation with ADHD. METHODS Genome-wide association study data were available for 4609 individuals with ADHD, 9650 individuals with BPD (5167 thereof with early-onset BPD), and 21,363 typically developing controls. We conducted a cross-disorder genome-wide association study meta-analysis to identify whether the observed comorbidity between ADHD and BPD could be due to shared genetic risks. RESULTS We found a significant single nucleotide polymorphism-based genetic correlation between ADHD and BPD in the full and age-restricted samples (rGfull = .64, p = 3.13 × 10-14; rGrestricted = .71, p = 4.09 × 10-16). The meta-analysis between the full BPD sample identified two genome-wide significant (prs7089973 = 2.47 × 10-8; prs11756438 = 4.36 × 10-8) regions located on chromosomes 6 (CEP85L) and 10 (TAF9BP2). Restricting the analyses to BPD cases with an early onset yielded one genome-wide significant association (prs58502974 = 2.11 × 10-8) on chromosome 5 in the ADCY2 gene. Additional nominally significant regions identified contained known expression quantitative trait loci with putative functional consequences for NT5DC1, NT5DC2, and CACNB3 expression, whereas functional predictions implicated ABLIM1 as an allele-specific expressed gene in neuronal tissue. CONCLUSIONS The single nucleotide polymorphism-based genetic correlation between ADHD and BPD is substantial, significant, and consistent with the existence of genetic overlap between ADHD and BPD, with potential differential genetic mechanisms involved in early and later BPD onset.
Collapse
Affiliation(s)
- Kimm J E van Hulzen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Claus J Scholz
- Core Unit Systems Medicine, University of Würzburg, Würzburg
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | | | | | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Mikael Landén
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo
| | - Klaus-Peter Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg
| | - Heike Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stephen V Faraone
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
8
|
Manchia M, Fanos V. Targeting aggression in severe mental illness: The predictive role of genetic, epigenetic, and metabolomic markers. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:32-41. [PMID: 28372995 DOI: 10.1016/j.pnpbp.2017.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022]
Abstract
Human aggression is a complex and widespread social behavior that is overrepresented in individuals affected by severe mental illness (SMI), such as schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD). A substantial proportion of the liability threshold for aggressive behavior is determined by genetic factors, and environmental moderators might precipitate the manifestation of this behavioral phenotype through modification of gene expression via the epigenetic machinery. These specific alterations in the genetic and epigenetic make-up of aggressive individuals might determine distinct biochemical signatures detectable through metabolomics. An additional pathophysiological component playing a role in aggressive behavior might be determined by alterations of gut microbiota. Here, we present a selective review of human data on genetic, epigenetic, and metabolomic markers of aggressive behavior in SMI, discussing also the available evidence on the role of microbiome alterations. Clinical implication of these evidences, as well as future perspectives, will be discussed.
Collapse
Affiliation(s)
- Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy; Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, Cagliari, Italy.
| |
Collapse
|
9
|
Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders. Neuropsychopharmacology 2017; 42:787-800. [PMID: 27510426 PMCID: PMC5312057 DOI: 10.1038/npp.2016.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Collapse
|
10
|
Qiu F, Akiskal HS, Kelsoe JR, Greenwood TA. Factor analysis of temperament and personality traits in bipolar patients: Correlates with comorbidity and disorder severity. J Affect Disord 2017; 207:282-290. [PMID: 27741464 PMCID: PMC5107122 DOI: 10.1016/j.jad.2016.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/07/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Temperament and personality traits have been suggested as endophenotypes for bipolar disorder based on several lines of evidence, including heritability. Previous work suggested an anxious-reactive factor identified across temperament and personality inventories that produced significant group discrimination and could potentially be useful in genetic analyses. We have attempted to further characterize this factor structure in a sample of bipolar patients. METHODS A sample of 1195 subjects with bipolar I disorder was evaluated, all with complete data available. Dimension reduction across two inventories identified 18 factors explaining 39% of the variance. RESULTS The two largest factors reflected affective instability and general anxiety/worry, respectively. Subsequent analyses of the clinical features associated with bipolar disorder revealed specificity for the factors in a predictable pattern. Cluster analysis of the factors identified a subgroup defined by a strong lack of general anxiety and low affective instability represented by the first two factors. The remaining subjects could be distinguished into two clusters by the presence of either more positive characteristics, including persistence/drive, spirituality, expressivity, and humor, or more negative characteristics of depression and anxiety. LIMITATIONS These analyses involved bipolar I subjects only and must be extended to other bipolar spectrum diagnoses, unaffected relatives, and individuals at risk. CONCLUSIONS These results suggest that temperament and personality measures access latent traits associated with important clinical features of bipolar disorder. By translating clinical variables into quantitative traits, we may identify subgroups of bipolar patients with distinct clinical profiles, thereby facilitating both individual treatment strategies and genetic analyses.
Collapse
Affiliation(s)
- Frank Qiu
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | | | - Hagop S. Akiskal
- Department of Psychiatry, University of California San Diego, La Jolla, CA,San Diego Veterans Affairs Healthcare System, San Diego, CA,International Mood Center, La Jolla, CA
| | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA,San Diego Veterans Affairs Healthcare System, San Diego, CA,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | - Tiffany A. Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Address correspondence to: Tiffany A. Greenwood, Ph.D. Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0689, La Jolla, CA 92093, Phone: 858-246-1897,
| |
Collapse
|
11
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
12
|
Melroy-Greif WE, Vadasz C, Kamens HM, McQueen MB, Corley RP, Stallings MC, Hopfer CJ, Krauter KS, Brown SA, Hewitt JK, Ehringer MA. Test for association of common variants in GRM7 with alcohol consumption. Alcohol 2016; 55:43-50. [PMID: 27788777 DOI: 10.1016/j.alcohol.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 10/21/2022]
Abstract
Recent work using a mouse model has identified the glutamate metabotropic receptor 7 (Grm7) gene as a strong candidate gene for alcohol consumption. Although there has been some work examining the effect of human glutamate metabotropic receptor 7 (GRM7) polymorphisms on human substance use disorders, the majority of the work has focused on other psychiatric disorders such as ADHD, major depressive disorder, schizophrenia, bipolar disorder, panic disorder, and autism spectrum disorders. The current study aimed to evaluate evidence for association between GRM7 and alcohol behaviors in humans using a single nucleotide polymorphism (SNP) approach, as well as a gene-based approach. Using 1803 non-Hispanic European Americans (EAs) (source: the Colorado Center on Antisocial Drug Dependence [CADD]) and 1049 EA subjects from an independent replication sample (source: the Genetics of Antisocial Drug Dependence [GADD]), two SNPs in GRM7 were examined for possible association with alcohol consumption using two family-based association tests implemented in FBAT and QTDT. Rs3749380 was suggestively associated with alcohol consumption in the CADD sample (p = 0.010) with the minor T allele conferring risk. There was no evidence for association in the GADD sample. A gene-based test using four Genome-Wide Association Studies (GWAS) revealed no association between variation in GRM7 and alcohol consumption. This study had several limitations: the SNPs chosen likely do not tag expression quantitative trait loci; a human alcohol consumption phenotype was used, complicating the interpretation with respect to rodent studies that found evidence for a cis-regulatory link between alcohol preference and Grm7; and only common SNPs imputed in all four datasets were included in the gene-based test. These limitations highlight the fact that rare variants, some potentially important common signals in the gene, and regions farther upstream were not examined.
Collapse
|
13
|
Aebi M, van Donkelaar MMJ, Poelmans G, Buitelaar JK, Sonuga‐Barke EJS, Stringaris A, consortium IMAGE, Faraone SV, Franke B, Steinhausen H, van Hulzen KJE. Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2016; 171:573-88. [PMID: 26184070 PMCID: PMC4715802 DOI: 10.1002/ajmg.b.32346] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/29/2015] [Indexed: 12/02/2022]
Abstract
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention-deficit-hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5-HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome-wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for "parental ability to cope with disruptive behavior." None of the hypothesis-driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome-wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top-ranked genes functionally interact in a molecular landscape centered around Beta-catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcel Aebi
- Department of Forensic Psychiatry, Child and Youth Forensic ServiceUniversity Hospital of PsychiatryZurichSwitzerland
- Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
| | - Marjolein M. J. van Donkelaar
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Geert Poelmans
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Molecular Animal PhysiologyDonders Institute for Brain, Cognition and Behavior, Radboud Institute for Molecular Life Sciences, Radboud UniversityNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Edmund J. S. Sonuga‐Barke
- Developmental Brain‐Behaviour LaboratoryDepartment of PsychologyUniversity of SouthamptonSouthamptonUK
- Department of Experimental Clinical and Health PsychologyGhent UniversityGhentBelgium
| | | | - IMAGE consortium
- Department of Forensic Psychiatry, Child and Youth Forensic ServiceUniversity Hospital of PsychiatryZurichSwitzerland
| | - Stephen V. Faraone
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew York
- Departmentof Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuseNew York
- Department of BiomedicineK.G. Jebsen Centre for Psychiatric DisordersUniversity of BergenBergenNorway
| | - Barbara Franke
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Hans‐Christoph Steinhausen
- Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
- Department of Psychology, Clinical Psychology and EpidemiologyUniversity of BaselBaselSwitzerland
- Research Unit for Child and Adolescent Psychiatry, Psychiatric HospitalAalborg University HospitalAalborgDenmark
| | - Kimm J. E. van Hulzen
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| |
Collapse
|
14
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Mathieu F, Etain B, Dizier MH, Lajnef M, Lathrop M, Cabon C, Leboyer M, Henry C, Bellivier F. Genetics of emotional reactivity in bipolar disorders. J Affect Disord 2015; 188:101-6. [PMID: 26349599 DOI: 10.1016/j.jad.2015.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Emotional reactivity has been proposed as a relevant intermediate phenotype of bipolar disorder (BD). Our goal was to identify genetic factors underlying emotional reactivity in a sample of bipolar patients. METHODS Affect intensity (a proxy measure of emotional reactivity) was measured in a sample of 281 euthymic patients meeting DSM-IV criteria for BD. We use a validated dimensional tool, the 40-item self-report Affect Intensity Measure scale developed by Larsen and Diener. Patients with BD were genotyped for 475. 740 SNPs (using Illumina HumanHap550 Beadchips or HumanHap610 Quad chip). Association was investigated with a general mixed regression model of the continuous trait against genotypes, including gender as covariate. RESULTS Four regions (1p31.3, 3q13.11, 11p15.1 and 11q14.4) with a p-value lower or equal to 5×10(-6) were identified. In these regions, the joint effect of the four variants accounted for 24.5% of the variance of AIM score. Epistasis analysis did not detect interaction between these variants. In the 11p15.1 region, the rs10766743 located in the intron of the NELL1 gene remained significant after correction for multiple testing (p=2×10(-7)). CONCLUSIONS These findings illustrate that focusing on quantitative intermediate phenotypes can facilitate the identification of genetic susceptibility variants in BD.
Collapse
Affiliation(s)
- F Mathieu
- Inserm, UMRS-958, Paris, France; Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | - B Etain
- INSERM U955, Equipe de Psychiatrie Translationelle, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, DHU Pepsy, Pôle de Psychiatrie, Créteil, France; Fondation FondaMental, Créteil, France
| | - M H Dizier
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France; INSERM, UMR-S946, Paris, France
| | - M Lajnef
- INSERM U955, Equipe de Psychiatrie Translationelle, Créteil, France
| | - M Lathrop
- Commissariat à l'Energie Atomique, Institut de Génomique, Centre National de Génotypage, Evry, France
| | - C Cabon
- AP-HP, Groupe Hospitalier Henri Mondor, Plateforme de Ressources Biologiques Centre d'Investigation Clinique, Créteil F-94000, France; AP-HP, Groupe Hospitalier Saint-Louis, Lariboisière, F. Widal, Service de Psychiatrie, Paris; INSERM U955, Equipe de Psychiatrie Translationelle, Créteil, France
| | - M Leboyer
- INSERM U955, Equipe de Psychiatrie Translationelle, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, DHU Pepsy, Pôle de Psychiatrie, Créteil, France; Fondation FondaMental, Créteil, France
| | - C Henry
- INSERM U955, Equipe de Psychiatrie Translationelle, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpitaux Universitaires Henri Mondor, DHU Pepsy, Pôle de Psychiatrie, Créteil, France; Fondation FondaMental, Créteil, France
| | - F Bellivier
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, France; Fondation FondaMental, Créteil, France; INSERM UMR-S1144, Paris, France
| |
Collapse
|
16
|
Barr T, Girke T, Sureshchandra S, Nguyen C, Grant K, Messaoudi I. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes. THE JOURNAL OF IMMUNOLOGY 2015; 196:182-95. [PMID: 26621857 DOI: 10.4049/jimmunol.1501527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/30/2015] [Indexed: 12/25/2022]
Abstract
Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations < 50 mg/dl) enhanced, T and B cell responses to modified vaccinia Ankara vaccination in a nonhuman primate model of voluntary ethanol consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set.
Collapse
Affiliation(s)
- Tasha Barr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Thomas Girke
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521; and
| | - Suhas Sureshchandra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521
| | - Kathleen Grant
- Division of Neurosciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Ilhem Messaoudi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521;
| |
Collapse
|
17
|
Ashbrook DG, Williams RW, Lu L, Hager R. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder. Front Behav Neurosci 2015; 9:171. [PMID: 26190982 PMCID: PMC4486840 DOI: 10.3389/fnbeh.2015.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, University of Tennessee Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, University of Tennessee Memphis, TN, USA ; Jiangsu Key Laboratory of Neuroregeneration, Nantong University Nantong, China
| | - Reinmar Hager
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
18
|
Jacobsen KK, Nievergelt CM, Zayats T, Greenwood TA, Anttila V, Akiskal HS, Haavik J, Fasmer OB, Kelsoe JR, Johansson S, Oedegaard KJ. Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder. J Affect Disord 2015; 172:453-61. [PMID: 25451450 PMCID: PMC4394021 DOI: 10.1016/j.jad.2014.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Migraine is a common comorbidity among individuals with bipolar disorder, but the underlying mechanisms for this co-occurrence are poorly understood. The aim of this study was to investigate the genetic background of bipolar patients with and without migraine. METHODS We performed a genome-wide association analysis contrasting 460 bipolar migraneurs with 914 bipolar patients without migraine from the Bipolar Genome Study (BiGS). RESULTS We identified one genome-wide significant association between migraine in bipolar disorder patients and rs1160720, an intronic single nucleotide polymorphism (SNP) in the NBEA gene (P=2.97 × 10(-8), OR: 1.82, 95% CI: 1.47-2.25), although this was not replicated in a smaller sample of 289 migraine cases. LIMITATIONS Our study is based on self-reported migraine. CONCLUSIONS NBEA encodes neurobeachin, a scaffolding protein primarily expressed in the brain and involved in trafficking of vesicles containing neurotransmitter receptors. This locus has not previously been implicated in migraine per se. We found no evidence of association in data from the GWAS migraine meta-analysis consortium (n=118,710 participants) suggesting that the association might be specific to migraine co-morbid with bipolar disorder.
Collapse
Affiliation(s)
- Kaya K. Jacobsen
- Department of Biomedicine, University of Bergen, Norway,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway,K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway
| | | | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Norway,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway,K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway
| | | | - Verneri Anttila
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA,lnstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Hagop S. Akiskal
- Department of Psychiatry, University of California San Diego, USA,Department of Psychiatry, VA Hospital, San Diego, USA
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway,K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ole Bernt Fasmer
- K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,Department of Clinical Medicine, Section for Psychiatry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, USA,Department of Psychiatry, VA Hospital, San Diego, USA
| | - Stefan Johansson
- Department of Biomedicine, University of Bergen, Norway,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway,K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway,Department of Clinical Science, University of Bergen, Norway
| | - Ketil J. Oedegaard
- K. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,Department of Clinical Medicine, Section for Psychiatry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| |
Collapse
|
19
|
Laplana M, Royo JL, García LF, Aluja A, Gomez-Skarmeta JL, Fibla J. SIRPB1
copy-number polymorphism as candidate quantitative trait locus for impulsive-disinhibited personality. GENES BRAIN AND BEHAVIOR 2014; 13:653-62. [DOI: 10.1111/gbb.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/12/2014] [Accepted: 07/03/2014] [Indexed: 01/20/2023]
Affiliation(s)
- M. Laplana
- Department of Basic Medical Sciences; University of Lleida
- Institute of Biomedical Research of Lleida (IRBLleida); Lleida Catalonia
| | - J. L. Royo
- Department of Basic Medical Sciences; University of Lleida
- Institute of Biomedical Research of Lleida (IRBLleida); Lleida Catalonia
| | - L. F. García
- Department of Biological and Health Psychology; Autonomous University of Madrid; Madrid
| | - A. Aluja
- Institute of Biomedical Research of Lleida (IRBLleida); Lleida Catalonia
- Department of Pedagogy and Psychology; University of Lleida; Lleida Catalonia
| | - J. L. Gomez-Skarmeta
- Developmental Biology Center of Andalucia; Pablo de Olavide University-Junta de Andalucia-CSIC; Seville Spain
| | - J. Fibla
- Department of Basic Medical Sciences; University of Lleida
- Institute of Biomedical Research of Lleida (IRBLleida); Lleida Catalonia
| |
Collapse
|
20
|
A hypothesis-driven pathway analysis reveals myelin-related pathways that contribute to the risk of schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:140-5. [PMID: 24447946 DOI: 10.1016/j.pnpbp.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/23/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are both severe neuropsychiatric disorders with a strong and potential overlapping genetic background. Multiple lines of evidence, including genetic studies, gene expression studies and neuroimaging studies, have suggested that both disorders are closely related to myelin and oligodendrocyte dysfunctions. In the current study, we hypothesized that the holistic effect of the myelin-related pathway contributes to the genetic susceptibility to both SZ and BD. We extracted pathway data from the canonical pathway database, Gene Ontology (GO), and selected a 'compiled' pathway based on previous literature. We then performed hypothesis-driven pathway analysis on GWAS data from the Psychiatric Genomics Consortium (PGC). As a result, we identified three myelin-related pathways with a joint effect significantly associated with both disorders: 'Myelin sheath' pathway (P(SZ) = 2.45E-7, P(BD) = 1.22E-3), 'Myelination' pathway (P(SZ) = 2.10E-4, P(BD) = 2.53E-24), and 'Compiled' pathway (P(SZ) = 4.57E-8, P(BD) = 2.61E-9). In comparing the SNPs and genes in these three pathways across the two diseases, we identified a substantial overlap in nominally associated SNPs and genes, which could be susceptibility SNPs and genes for both disorders. From these observations, we propose that myelin-related pathways may be involved in the etiologies of both SZ and BD.
Collapse
|
21
|
Kandaswamy R, McQuillin A, Curtis D, Gurling H. Allelic association, DNA resequencing and copy number variation at the metabotropic glutamate receptor GRM7 gene locus in bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:365-72. [PMID: 24804643 PMCID: PMC4231221 DOI: 10.1002/ajmg.b.32239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
Genetic markers at the GRM7 gene have shown allelic association with bipolar disorder (BP) in several case-control samples including our own sample. In this report, we present results of resequencing the GRM7 gene in 32 bipolar samples and 32 random controls selected from 553 bipolar cases and 547 control samples (UCL1). Novel and potential etiological base pair changes discovered by resequencing were genotyped in the entire UCL case-control sample. We also report on the association between GRM7 and BP in a second sample of 593 patients and 642 controls (UCL2). The three most significantly associated SNPs in the original UCL1 BP GWAS sample were genotyped in the UCL2 sample, of which none were associated. After combining the genotype data for the two samples only two (rs1508724 and rs6769814) of the original three SNP markers remained significantly associated with BP. DNA sequencing revealed mutations in three cases which were absent in control subjects. A 3'-UTR SNP rs56173829 was found to be significantly associated with BP in the whole UCL sample (P = 0.035; OR = 0.482), the rare allele being less common in cases compared to controls. Bioinformatic analyses predicted a change in the centroid secondary structure of RNA and alterations in the miRNA binding sites for the mutated base of rs56173829. We also validated two deletions and a duplication within GRM7 using quantitative-PCR which provides further support for the pre-existing evidence that copy number variants at GRM7 may have a role in the etiology of BP.
Collapse
Affiliation(s)
- Radhika Kandaswamy
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK,* Correspondence to: Andrew McQuillin, Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College London, Rockefeller Building, 21 University Street, London WC1E 6BT, UK. E-mail:
| | - David Curtis
- Department of Psychological Medicine, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of LondonLondon, UK
| | - Hugh Gurling
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, Faculty of Brain Sciences, University College LondonLondon, UK
| |
Collapse
|
22
|
Vimaleswaran KS, Cavadino A, Berry DJ, Mangino M, Andrews P, Moore JH, Spector TD, Power C, Järvelin MR, Hyppönen E. Interaction between allelic variations in vitamin D receptor and retinoid X receptor genes on metabolic traits. BMC Genet 2014; 15:37. [PMID: 24641809 PMCID: PMC4004151 DOI: 10.1186/1471-2156-15-37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/10/2014] [Indexed: 01/20/2023] Open
Abstract
Background Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. Results After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). Conclusions Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
Collapse
Affiliation(s)
- Karani S Vimaleswaran
- Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Greenwood TA, Badner JA, Byerley W, Keck PE, McElroy SL, Remick RA, Sadovnick AD, Kelsoe JR. Heritability and linkage analysis of personality in bipolar disorder. J Affect Disord 2013; 151:748-755. [PMID: 23972719 PMCID: PMC3797235 DOI: 10.1016/j.jad.2013.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/14/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND The many attempts that have been made to identify genes for bipolar disorder (BD) have met with limited success, which may reflect an inadequacy of diagnosis as an informative and biologically relevant phenotype for genetic studies. Here we have explored aspects of personality as quantitative phenotypes for bipolar disorder through the use of the Temperament and Character Inventory (TCI), which assesses personality in seven dimensions. Four temperament dimensions are assessed: novelty seeking (NS), harm avoidance (HA), reward dependence (RD), and persistence (PS). Three character dimensions are also included: self-directedness (SD), cooperativeness (CO), and self-transcendence (ST). METHODS We compared personality scores between diagnostic groups and assessed heritability in a sample of 101 families collected for genetic studies of BD. A genome-wide SNP linkage analysis was then performed in the subset of 51 families for which genetic data was available. RESULTS Significant group differences were observed between BD subjects, their first-degree relatives, and independent controls for all but RD and PS, and all but HA and RD were found to be significantly heritable in this sample. Linkage analysis of the heritable dimensions produced several suggestive linkage peaks for NS (chromosomes 7q21 and 10p15), PS (chromosomes 6q16, 12p13, and 19p13), and SD (chromosomes 4q35, 8q24, and 18q12). LIMITATIONS The relatively small size of our linkage sample likely limited our ability to reach genome-wide significance in this study. CONCLUSIONS While not genome-wide significant, these results suggest that aspects of personality may prove useful in the identification of genes underlying BD susceptibility.
Collapse
Affiliation(s)
| | | | - William Byerley
- Department of Psychiatry, University of California San Francisco, San Francisco, CA,San Francisco Department of Veterans Affairs Medical Center, San Francisco, CA
| | - Paul E. Keck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Susan L. McElroy
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH,Lindner Center of HOPE, Mason, OH
| | | | | | - John R. Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA,San Diego Veterans Affairs Healthcare System, San Diego, CA,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
24
|
Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol Teratol 2013; 40:46-58. [PMID: 24126255 DOI: 10.1016/j.ntt.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Congenital malformations are a prevalent cause of infant mortality in the United States and their induction has been linked to a variety of factors, including exposure to teratogens. However, the molecular mechanisms of teratogenicity are not fully understood. MicroRNAs are an important group of small, non-coding RNAs that regulate mRNA expression. MicroRNA roles in early embryonic development are well established, and their disruption during development can cause abnormalities. We hypothesized that developmental exposure to teratogens such as valproic acid alters microRNA expression profiles in developing embryos. Valproic acid is an anticonvulsant and mood-stabilizing drug used to treat epilepsy, bipolar disorder and migraines. To examine the effects of valproic acid on microRNA expression during development, we used zebrafish embryos as a model vertebrate developmental system. Zebrafish embryos were continuously exposed to valproic acid (1mM) or vehicle control (ethanol) starting from 4h post-fertilization (hpf) and sampled at 48 and 96hpf to determine the miRNA expression profiles prior to and after the onset of developmental defects. At 96hpf, 95% of the larvae showed skeletal deformities, abnormal swimming behavior, and pericardial effusion. Microarray expression profiling was done using Agilent zebrafish miRNA microarrays. Microarray results revealed changes in miRNA expression at both time points. Thirteen miRNAs were differentially expressed at 48hpf and 22 miRNAs were altered at 96hpf. Among them, six miRNAs (miR-16a, 18c, 122, 132, 457b, and 724) were common to both time points. Bioinformatic target prediction and examination of published literature revealed that these miRNAs target several genes involved in the normal functioning of the central nervous system. These results suggest that the teratogenic effects of valproic acid could involve altered miRNA expression.
Collapse
|
25
|
Hyphantis T, Antoniou K, Floros D, Valma V, Pappas A, Douzenis A, Assimakopoulos K, Iconomou G, Kafetzopoulos E, Garyfallos G, Kuhlman M. Assessing personality traits by questionnaire: psychometric properties of the Greek version of the Zuckerman-Kuhlman personality questionnaire and correlations with psychopathology and hostility. Hippokratia 2013; 17:342-350. [PMID: 25031514 PMCID: PMC4097416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND The Zuckerman-Kuhlman Personality Questionnaire (ZKPQ) was developed in an attempt to define the basic factors of personality or temperament. We aimed to assess the factor structure and the psychometric properties of its Greek version and to explore its relation to psychopathological symptoms and hostility features. METHODS ZKPQ was translated into Greek using back-translation and was administered to 1,462 participants (475 healthy participants, 619 medical patients, 177 psychiatric patients and 191 opiate addicts). Confirmatory and exploratory factor analyses were performed. Symptoms Distress Check-List (SCL-90R) and Hostility and Direction of Hostility Questionnaire (HDHQ) were administered to test criterion validity. RESULTS Five factors were identified, largely corresponding to the original version's respective factors. Retest reliabilities were acceptable (rli's: 0.79-0.89) and internal consistency was adequate for Neuroticism-Anxiety (0.87), Impulsive Sensation Seeking (0.80), Aggression-Hostility (0.77) and Activity (0.72), and lower for Sociability (0.64). Most components were able to discriminate psychiatric patients and opiate addicts from healthy participants. Opiate addicts exhibited higher rates on Impulsive Sensation Seeking compared to healthy participants. Neuroticism-Anxiety (p<0.001) and Impulsive Sensation Seeking (p<0.001) were significantly associated with psychological distress and Aggression-Hostility was the most powerful correlate of Total Hostility (p<0.001), and Neuroticism-Anxiety was the stronger correlate of introverted hostility (p<0.001), further supporting the instrument's concurrent validity. CONCLUSIONS Present findings support the applicability of the Greek version of ZKPQ within the Greek population. Future studies could improve its psychometric properties by finding new items, especially for the Sociability scale.
Collapse
Affiliation(s)
- T Hyphantis
- Department of Psychiatry, Medical School, University of Ioannina, Greece
| | - K Antoniou
- Department of Pharmacology, Medical School, University of Ioannina, Greece
| | - Dg Floros
- 2 Department of Psychiatry, Medical School, Aristotle University of Thessaloniki, Greece
| | - V Valma
- Department of Psychiatry, Medical School, University of Ioannina, Greece ; Organization Against Drugs (OKANA), Athens, Greece
| | - Ai Pappas
- Department of Psychiatry, Medical School, University of Ioannina, Greece
| | - A Douzenis
- 2 Department of Psychiatry, University of Athens Medical School, "Attikon" General Hospital, Greece
| | - K Assimakopoulos
- Department of Psychiatry, University of Patras School of Medicine, Rion Patras, Greece
| | - G Iconomou
- Department of Psychiatry, University of Patras School of Medicine, Rion Patras, Greece
| | | | - G Garyfallos
- 2 Department of Psychiatry, Medical School, Aristotle University of Thessaloniki, Greece
| | - M Kuhlman
- Department of Psychology, University of Delaware, Newark, USA
| |
Collapse
|
26
|
Sensation seeking in major depressive patients: relationship to sub-threshold bipolarity and cyclothymic temperament. J Affect Disord 2013; 148:375-83. [PMID: 23414573 DOI: 10.1016/j.jad.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND High levels of sensation seeking (SS) have been traditionally reported for lifetime bipolar disorder (BD) and/or substance use disorder (SUD) rather than major depressive disorder (MDD). Nonetheless, a renewed clinical attention toward the burden of sub-threshold bipolarity in MDD, solicits for a better assessment of "unipolar" major depressive episodes (MDEs) via characterization of putative differential psychopathological patterns, including SS and predominant affective temperament. METHODS Two hundred and eighty currently depressed cases of MDD and 87 healthy controls were screened using the Zuckerman's sensation seeking scale-Form-V, the Hypomania Check List-32-item (HCL-32), the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Auto-questionnaire-110-item, the Barratt Impulsivity Scale-11-item, the State-Trait Anxiety Inventory modules and the Structured Clinical Interview for DSM-IV axis-I disorders. Cases were divided into HCL-32(+)(sub-threshold bipolar)/HCL-32(-)("true" unipolar depressed) depending on the HCL-32 total score. RESULTS Upon correlation and multivariate regression analyses, the HCL-32(+) patients showed the highest levels of SS, higher prevalence of cyclothymic temperament, and higher rates of multiple lifetime axis-I co-morbidities, including SUD. LIMITS Recall bias on some diagnoses, including BD, grossly matched healthy control group, lack of ad-hoc validated measures for ADHD, SUD, or axis-II disorders. CONCLUSIONS In our sample, the occurrence of higher levels of SS in "sub-threshold" bipolar cases outlined a differential psychopathological profile compared to DSM-defined "true unipolar" cases of MDE. If confirmed by replication studies, these findings may aid clinicians in delivering a more accurate diagnosis and a safer use of antidepressants in some MDD cases.
Collapse
|
27
|
Perroud N, Baud P, Ardu S, Krejci I, Mouthon D, Vessaz M, Guillaume S, Jaussent I, Olié E, Malafosse A, Courtet P. Temperament personality profiles in suicidal behaviour: an investigation of associated demographic, clinical and genetic factors. J Affect Disord 2013; 146:246-53. [PMID: 23044284 DOI: 10.1016/j.jad.2012.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Personality traits have been suggested as possible risk factors for suicidal behaviours. Cloninger's model of personality (TCI), given its neurobiological background, might provide an ideal tool for the identification of dimensions associated with suicide attempt. METHODS A number of 1333 suicide attempters and 589 non-suicide attempters suffering from different DSM-IV Axis I disorders were assessed using either the temperament and character inventory (TCI) or the tridimensional personality questionnaire (TPQ), as well as other self-report questionnaires evaluating dimensions associated with suicidal behaviour, such as impulsivity and anger traits. The severity of suicide attempts and the methods used were also assessed. Subjects were genotyped for polymorphisms within the key genes involved in monoaminergic pathways and the HPA axis. RESULTS Compared with non-suicide attempters, suicide attempters scored higher for harm avoidance (HA) and novelty seeking (NS), and lower for self-directedness (SD). The difference was independent of Axis I disorders. Higher HA and NS scores were associated with a greater severity of suicidal behaviour. A multivariate model showed that HA was the single temperamental dimension independently related to suicide attempt history, beside impulsivity and anger-related traits. The genetic factors investigated did not play a significant role in modulating these temperamental dimensions. LIMITATIONS The TCI was available for only half of the sample. CONCLUSIONS Early detection of subjects displaying high HA and low SD, associated with high impulsivity and poor anger control, may help to prevent suicidal behaviours. Physicians should therefore be aware of these risk factors so that they can offer the best primary care intervention.
Collapse
Affiliation(s)
- Nader Perroud
- Department of Psychiatry, School of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Berryessa CM, Cho MK. Ethical, legal, social, and policy implications of behavioral genetics. Annu Rev Genomics Hum Genet 2013; 14:515-34. [PMID: 23452225 DOI: 10.1146/annurev-genom-090711-163743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The field of behavioral genetics has engendered a host of moral and social concerns virtually since its inception. The policy implications of a genetic basis for behaviors are widespread and extend beyond the clinic to the socially important realms of education, criminal justice, childbearing, and child rearing. The development of new techniques and analytic approaches, including whole-genome sequencing, noninvasive prenatal genetic testing, and optogenetics, has clearly changed the study of behavioral genetics. However, the social context of biomedical research has also changed profoundly over the past few decades, and in ways that are especially relevant to behavioral genetics. The ever-widening scope of behavioral genetics raises ethical, legal, social, and policy issues in the potential new applications to criminal justice, education, the military, and reproduction. These issues are especially critical to address because of their potentially disproportionate effects on vulnerable populations such as children, the unborn, and the incarcerated.
Collapse
|
29
|
Velez Edwards DR, Naj AC, Monda K, North KE, Neuhouser M, Magvanjav O, Kusimo I, Vitolins MZ, Manson JE, O'Sullivan MJ, Rampersaud E, Edwards TL. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women's Health Initiative SHARe Study. Hum Genet 2012. [PMID: 23192594 DOI: 10.1007/s00439-012-1246-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies (GWAS) of obesity measures have identified associations with single nucleotide polymorphisms (SNPs). However, no large-scale evaluation of gene-environment interactions has been performed. We conducted a search of gene-environment (G × E) interactions in post-menopausal African-American and Hispanic women from the Women's Health Initiative SNP Health Association Resource GWAS study. Single SNP linear regression on body mass index (BMI) and waist-to-hip circumference ratio (WHR) adjusted for multidimensional-scaling-derived axes of ancestry and age was run in race-stratified data with 871,512 SNPs available from African-Americans (N = 8,203) and 786,776 SNPs from Hispanics (N = 3,484). Tests of G × E interaction at all SNPs for recreational physical activity (m h/week), dietary energy intake (kcal/day), alcohol intake (categorical), cigarette smoking years, and cigarette smoking (ever vs. never) were run in African-Americans and Hispanics adjusted for ancestry and age at interview, followed by meta-analysis of G × E interaction terms. The strongest evidence for concordant G × E interactions in African-Americans and Hispanics was for smoking and marker rs10133840 (Q statistic P = 0.70, beta = -0.01, P = 3.81 × 10(-7)) with BMI as the outcome. The strongest evidence for G × E interaction within a cohort was in African-Americans with WHR as outcome for dietary energy intake and rs9557704 (SNP × kcal = -0.04, P = 2.17 × 10(-7)). No results exceeded the Bonferroni-corrected statistical significance threshold.
Collapse
Affiliation(s)
- Digna R Velez Edwards
- Center for Human Genetics Research, Vanderbilt Epidemiology Center Institute of Medicine and Public Health, Vanderbilt University, 2525 West End Avenue, Suite 600 6th fl, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, de Wit H, Palmer AA. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One 2012; 7:e42646. [PMID: 22952603 PMCID: PMC3429486 DOI: 10.1371/journal.pone.0042646] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 12/11/2022] Open
Abstract
Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8(th) intron of cadherin 13 (CDH13; P = 4.58×10(-8)), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1(st) intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10(-7)), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.
Collapse
Affiliation(s)
- Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara E. Engelhardt
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Computer Science, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret C. Wardle
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Greta Sokoloff
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Abraham A. Palmer
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Non-coding RNAs--novel targets in neurotoxicity. Neurotoxicology 2012; 33:530-44. [PMID: 22394481 DOI: 10.1016/j.neuro.2012.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 12/24/2022]
Abstract
Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity.
Collapse
|
32
|
Pavlov KA, Chistiakov DA, Chekhonin VP. Genetic determinants of aggression and impulsivity in humans. J Appl Genet 2011; 53:61-82. [PMID: 21994088 DOI: 10.1007/s13353-011-0069-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022]
Abstract
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.
Collapse
Affiliation(s)
- Konstantin A Pavlov
- Department of Fundamental and Applied Neurobiology, Serbsky State Research Center of Forensic and Social Psychiatry, Kropotkinsky Pereulok 23, Moscow, Russia
| | | | | |
Collapse
|