1
|
Koyyalagunta D, Ganesh K, Morris Q. Inferring cancer type-specific patterns of metastatic spread using Metient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602790. [PMID: 39282311 PMCID: PMC11398359 DOI: 10.1101/2024.07.09.602790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cancers differ in how they establish metastases. These differences can be studied by reconstructing the metastatic spread of a cancer from sequencing data of multiple tumors. Current methods to do so are limited by computational scalability and rely on technical assumptions that do not reflect current clinical knowledge. Metient overcomes these limitations using gradient-based, multi-objective optimization to generate multiple hypotheses of metastatic spread and rescores these hypotheses using independent data on genetic distance and organotropism. Unlike current methods, Metient can be used with both clinical sequencing data and barcode-based lineage tracing in preclinical models, enhancing its translatability across systems. In a reanalysis of metastasis in 169 patients and 490 tumors, Metient automatically identifies cancer type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma, and non-small cell lung cancer. Its reconstructions often align with expert analyses but frequently reveal more plausible migration histories, including those with more metastasis-to-metastasis seeding and higher polyclonal seeding, offering new avenues for targeting metastatic cells. Metient's findings challenge existing assumptions about metastatic spread, enhance our understanding of cancer type-specific metastasis, and offer insights that inform future clinical treatment strategies of metastasis.
Collapse
Affiliation(s)
- Divya Koyyalagunta
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quaid Morris
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
2
|
Garushyants SK, Sane M, Selifanova MV, Agashe D, Bazykin GA, Gelfand MS. Mutational Signatures in Wild Type Escherichia coli Strains Reveal Predominance of DNA Polymerase Errors. Genome Biol Evol 2024; 16:evae035. [PMID: 38401265 PMCID: PMC10995721 DOI: 10.1093/gbe/evae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.
Collapse
Affiliation(s)
- Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mrudula Sane
- National Centre for Biological Sciences, Bengaluru, India
| | - Maria V Selifanova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Deepa Agashe
- National Centre for Biological Sciences, Bengaluru, India
| | - Georgii A Bazykin
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
3
|
Papkou A, Garcia-Pastor L, Escudero JA, Wagner A. A rugged yet easily navigable fitness landscape. Science 2023; 382:eadh3860. [PMID: 37995212 DOI: 10.1126/science.adh3860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023]
Abstract
Fitness landscape theory predicts that rugged landscapes with multiple peaks impair Darwinian evolution, but experimental evidence is limited. In this study, we used genome editing to map the fitness of >260,000 genotypes of the key metabolic enzyme dihydrofolate reductase in the presence of the antibiotic trimethoprim, which targets this enzyme. The resulting landscape is highly rugged and harbors 514 fitness peaks. However, its highest peaks are accessible to evolving populations via abundant fitness-increasing paths. Different peaks share large basins of attraction that render the outcome of adaptive evolution highly contingent on chance events. Our work shows that ruggedness need not be an obstacle to Darwinian evolution but can reduce its predictability. If true in general, the complexity of optimization problems on realistic landscapes may require reappraisal.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Lucia Garcia-Pastor
- Departamento de Sanidad Animal and VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Escudero
- Departamento de Sanidad Animal and VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
4
|
Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access to beneficial mutations. Proc Natl Acad Sci U S A 2023; 120:e2207355120. [PMID: 37216547 PMCID: PMC10235995 DOI: 10.1073/pnas.2207355120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Gaurav D. Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Bioquant, University of Heidelberg,69120Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Bhoomika A. Bhat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
| | - Lindi M. Wahl
- Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| |
Collapse
|
5
|
Dimitriu T, Souissi W, Morwool P, Darby A, Crickmore N, Raymond B. Selecting for infectivity across metapopulations can increase virulence in the social microbe
Bacillus thuringiensis. Evol Appl 2023; 16:705-720. [PMID: 36969139 PMCID: PMC10033855 DOI: 10.1111/eva.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virulence is complex because selection on parasites occurs across multiple spatial scales with potentially different conflicts operating on parasites with different life histories. For example, in social microbes, strong selection on replication rate within hosts can lead to cheating and loss of virulence, because investment in public goods virulence reduces replication rate. In this study, we tested how varying mutation supply and selection for infectivity or pathogen yield (population size in hosts) affected the evolution of virulence against resistant hosts in the specialist insect pathogen Bacillus thuringiensis, aiming to optimize methods for strain improvement against a difficult to kill insect target. We show that selection for infectivity using competition between subpopulations in a metapopulation prevents social cheating, acts to retain key virulence plasmids, and facilitates increased virulence. Increased virulence was associated with reduced efficiency of sporulation, and possible loss of function in putative regulatory genes but not with altered expression of the primary virulence factors. Selection in a metapopulation provides a broadly applicable tool for improving the efficacy of biocontrol agents. Moreover, a structured host population can facilitate artificial selection on infectivity, while selection on life-history traits such as faster replication or larger population sizes can reduce virulence in social microbes.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Wided Souissi
- School of Life Sciences University of Sussex Brighton UK
| | - Peter Morwool
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Alistair Darby
- Centre for Genomic Research, Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Neil Crickmore
- School of Life Sciences University of Sussex Brighton UK
| | - Ben Raymond
- Centre for Ecology and Conservation University of Exeter Penryn UK
| |
Collapse
|
6
|
Pennings PS, Ogbunugafor CB, Hershberg R. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs. G3 (BETHESDA, MD.) 2022; 12:jkac190. [PMID: 35920784 PMCID: PMC9434179 DOI: 10.1093/g3journal/jkac190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/02/2021] [Indexed: 06/15/2023]
Abstract
The dynamics of adaptation, reversion, and compensation have been central topics in microbial evolution, and several studies have attempted to resolve the population genetics underlying how these dynamics occur. However, questions remain regarding how certain features-the evolution of mutators and whether compensatory mutations alleviate costs fully or partially-may influence the evolutionary dynamics of compensation and reversion. In this study, we attempt to explain findings from experimental evolution by utilizing computational and theoretical approaches toward a more refined understanding of how mutation rate and the fitness effects of compensatory mutations influence adaptive dynamics. We find that high mutation rates increase the probability of reversion toward the wild type when compensation is only partial. However, the existence of even a single fully compensatory mutation is associated with a dramatically decreased probability of reversion to the wild type. These findings help to explain specific results from experimental evolution, where compensation was observed in nonmutator strains, but reversion (sometimes with compensation) was observed in mutator strains, indicating that real-world compensatory mutations are often unable to fully alleviate the costs associated with adaptation. Our findings emphasize the potential role of the supply and quality of mutations in crafting the dynamics of adaptation and reversal, with implications for theoretical population genetics and for biomedical contexts like the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Pleuni S Pennings
- Corresponding author: Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | |
Collapse
|
7
|
Katz S, Avrani S, Yavneh M, Hilau S, Gross J, Hershberg R. Dynamics of Adaptation During Three Years of Evolution Under Long-Term Stationary Phase. Mol Biol Evol 2021; 38:2778-2790. [PMID: 33734381 PMCID: PMC8233507 DOI: 10.1093/molbev/msab067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate-enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.
Collapse
Affiliation(s)
- Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Meitar Yavneh
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
9
|
Raynes Y, Weinreich D. Selection on mutators is not frequency-dependent. eLife 2019; 8:51177. [PMID: 31697233 PMCID: PMC6867826 DOI: 10.7554/elife.51177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022] Open
Abstract
The evolutionary fate of mutator mutations – genetic variants that raise the genome-wide mutation rate – in asexual populations is often described as being frequency (or number) dependent. Mutators can invade a population by hitchhiking with a sweeping beneficial mutation, but motivated by earlier experiments results, it has been repeatedly suggested that mutators must be sufficiently frequent to produce such a driver mutation before non-mutators do. Here, we use stochastic, agent-based simulations to show that neither the strength nor the sign of selection on mutators depend on their initial frequency, and while the overall probability of hitchhiking increases predictably with frequency, the per-capita probability of fixation remains unchanged.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Daniel Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| |
Collapse
|
10
|
Khil PP, Dulanto Chiang A, Ho J, Youn JH, Lemon JK, Gea-Banacloche J, Frank KM, Parta M, Bonomo RA, Dekker JP. Dynamic Emergence of Mismatch Repair Deficiency Facilitates Rapid Evolution of Ceftazidime-Avibactam Resistance in Pseudomonas aeruginosa Acute Infection. mBio 2019; 10:e01822-19. [PMID: 31530672 PMCID: PMC6751058 DOI: 10.1128/mbio.01822-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023] Open
Abstract
Strains of Pseudomonas aeruginosa with deficiencies in DNA mismatch repair have been studied in the context of chronic infection, where elevated mutational rates ("hypermutation") may facilitate the acquisition of antimicrobial resistance. Whether P. aeruginosa hypermutation can also play an adaptive role in the more dynamic context of acute infection remains unclear. In this work, we demonstrate that evolved mismatch repair deficiencies may be exploited by P. aeruginosa to facilitate rapid acquisition of antimicrobial resistance in acute infection, and we directly document rapid clonal succession by such a hypermutating lineage in a patient. Whole-genome sequencing (WGS) was performed on nine serially cultured blood and respiratory isolates from a patient in whom ceftazidime-avibactam (CZA) resistance emerged in vivo over the course of days. The CZA-resistant clone was differentiated by 14 mutations, including a gain-of-function G183D substitution in the PDC-5 chromosomal AmpC cephalosporinase conferring CZA resistance. This lineage also contained a substitution (R656H) at a conserved position in the ATPase domain of the MutS mismatch repair (MMR) protein, and elevated mutational rates were confirmed by mutational accumulation experiments with WGS of evolved lineages in conjunction with rifampin resistance assays. To test whether MMR-deficient hypermutation could facilitate rapid acquisition of CZA resistance, in vitro adaptive evolution experiments were performed with a mutS-deficient strain. These experiments demonstrated rapid hypermutation-facilitated acquisition of CZA resistance compared with the isogenic wild-type strain. Our results suggest a possibly underappreciated role for evolved MMR deficiency in facilitating rapid adaptive evolution of P. aeruginosa in the context of acute infection.IMPORTANCE Antimicrobial resistance in bacteria represents one of the most consequential problems in modern medicine, and its emergence and spread threaten to compromise central advances in the treatment of infectious diseases. Ceftazidime-avibactam (CZA) belongs to a new class of broad-spectrum beta-lactam/beta-lactamase inhibitor combinations designed to treat infections caused by multidrug-resistant bacteria. Understanding the emergence of resistance to this important new drug class is of critical importance. In this work, we demonstrate that evolved mismatch repair deficiency in P. aeruginosa, an important pathogen responsible for significant morbidity and mortality among hospitalized patients, may facilitate rapid acquisition of resistance to CZA in the context of acute infection. These findings are relevant for both diagnosis and treatment of antimicrobial resistance emerging in acute infection in the hypermutator background and additionally have implications for the emergence of more virulent phenotypes.
Collapse
Affiliation(s)
- Pavel P Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Jonathan Ho
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie K Lemon
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Karen M Frank
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Fredrick, Maryland, USA
| | - Robert A Bonomo
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John P Dekker
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| |
Collapse
|
11
|
Natali F, Rancati G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front Genet 2019; 10:713. [PMID: 31447882 PMCID: PMC6691094 DOI: 10.3389/fgene.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
The mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes). In this review, we first provide an overview of what we learned from model organisms about the roles of these genes and the genome instability that arises as a consequence of their dysregulation. We then discuss our current understanding of how mutator phenotypes shape the evolution of bacteria and yeast species. We end by bringing clinical evidence that lessons learned from single-cell organisms can be applied to tumor evolution.
Collapse
Affiliation(s)
- Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
12
|
Engelhardt D, Shakhnovich EI. Mutation rate variability as a driving force in adaptive evolution. Phys Rev E 2019; 99:022424. [PMID: 30934244 DOI: 10.1103/physreve.99.022424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Mutation rate is a key determinant of the pace as well as outcome of evolution, and variability in this rate has been shown in different scenarios to play a key role in evolutionary adaptation and resistance evolution under stress caused by selective pressure. Here we investigate the dynamics of resistance fixation in a bacterial population with variable mutation rates, and we show that evolutionary outcomes are most sensitive to mutation rate variations when the population is subject to environmental and demographic conditions that suppress the evolutionary advantage of high-fitness subpopulations. By directly mapping a biophysical fitness function to the system-level dynamics of the population, we show that both low and very high, but not intermediate, levels of stress in the form of an antibiotic result in a disproportionate effect of hypermutation on resistance fixation. We demonstrate how this behavior is directly tied to the extent of genetic hitchhiking in the system, the propagation of high-mutation rate cells through association with high-fitness mutations. Our results indicate a substantial role for mutation rate flexibility in the evolution of antibiotic resistance under conditions that present a weak advantage over wildtype to resistant cells.
Collapse
Affiliation(s)
- Dalit Engelhardt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
13
|
Sprouffske K, Aguilar-Rodríguez J, Sniegowski P, Wagner A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet 2018; 14:e1007324. [PMID: 29702649 PMCID: PMC5942850 DOI: 10.1371/journal.pgen.1007324] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 05/09/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
14
|
Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes. Nat Commun 2017; 8:2112. [PMID: 29235478 PMCID: PMC5727395 DOI: 10.1038/s41467-017-02323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Sexual recombination and mutation rate are theorized to play different roles in adaptive evolution depending on the fitness landscape; however, direct experimental support is limited. Here we examine how these factors affect the rate of adaptation utilizing a “genderless” strain of Escherichia coli capable of continuous in situ sexual recombination. The results show that the populations with increased mutation rate, and capable of sexual recombination, outperform all the other populations. We further characterize two sexual and two asexual populations with increased mutation rate and observe maintenance of beneficial mutations in the sexual populations through mutational sweeps. Furthermore, we experimentally identify the molecular signature of a mating event within the sexual population that combines two beneficial mutations to generate a fitter progeny; this evidence suggests that the recombination event partially alleviates clonal interference. We present additional data suggesting that stochasticity plays an important role in the combinations of mutations observed. Sexual recombination and mutation rate may play different roles in adaptive evolution depending on the fitness landscape. Here, Peabody et al. examine how the two factors affect the rate of adaptation of an E. coli strain capable of sexual recombination, under different conditions during experimental evolution.
Collapse
|
15
|
Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K, Verstrepen KJ, Fauvart M, Verstraeten N, Michiels J. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. eLife 2017; 6. [PMID: 28460660 PMCID: PMC5429094 DOI: 10.7554/elife.22939] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy.
Collapse
Affiliation(s)
- Toon Swings
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sander Wuyts
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Eline Oeyen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium.,Smart Systems and Emerging Technologies Unit, Imec (Interuniversity Micro-Electronics Centre), Leuven, Belgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Skelly DA, Magwene PM, Meeks B, Murphy HA. Known mutator alleles do not markedly increase mutation rate in clinical Saccharomyces cerevisiae strains. Proc Biol Sci 2017; 284:20162672. [PMID: 28404772 PMCID: PMC5394658 DOI: 10.1098/rspb.2016.2672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/17/2017] [Indexed: 11/12/2022] Open
Abstract
Natural selection has the potential to act on all phenotypes, including genomic mutation rate. Classic evolutionary theory predicts that in asexual populations, mutator alleles, which cause high mutation rates, can fix due to linkage with beneficial mutations. This phenomenon has been demonstrated experimentally and may explain the frequency of mutators found in bacterial pathogens. By contrast, in sexual populations, recombination decouples mutator alleles from beneficial mutations, preventing mutator fixation. In the facultatively sexual yeast Saccharomyces cerevisiae, segregating alleles of MLH1 and PMS1 have been shown to be incompatible, causing a high mutation rate when combined. These alleles had never been found together naturally, but were recently discovered in a cluster of clinical isolates. Here we report that the incompatible mutator allele combination only marginally elevates mutation rate in these clinical strains. Genomic and phylogenetic analyses provide no evidence of a historically elevated mutation rate. We conclude that the effect of the mutator alleles is dampened by background genetic modifiers. Thus, the relationship between mutation rate and microbial pathogenicity may be more complex than once thought. Our findings provide rare observational evidence that supports evolutionary theory suggesting that sexual organisms are unlikely to harbour alleles that increase their genomic mutation rate.
Collapse
Affiliation(s)
| | | | - Brianna Meeks
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - Helen A Murphy
- Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
17
|
Singh T, Hyun M, Sniegowski P. Evolution of mutation rates in hypermutable populations of Escherichia coli propagated at very small effective population size. Biol Lett 2017; 13:20160849. [PMID: 28250208 PMCID: PMC5377030 DOI: 10.1098/rsbl.2016.0849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
Mutation is the ultimate source of the genetic variation-including variation for mutation rate itself-that fuels evolution. Natural selection can raise or lower the genomic mutation rate of a population by changing the frequencies of mutation rate modifier alleles associated with beneficial and deleterious mutations. Existing theory and observations suggest that where selection is minimized, rapid systematic evolution of mutation rate either up or down is unlikely. Here, we report systematic evolution of higher and lower mutation rates in replicate hypermutable Escherichia coli populations experimentally propagated at very small effective size-a circumstance under which selection is greatly reduced. Several populations went extinct during this experiment, and these populations tended to evolve elevated mutation rates. In contrast, populations that survived to the end of the experiment tended to evolve decreased mutation rates. We discuss the relevance of our results to current ideas about the evolution, maintenance and consequences of high mutation rates.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith Hyun
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Sniegowski
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations. Genetics 2017; 205:1305-1318. [PMID: 28100591 DOI: 10.1534/genetics.116.194597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation. Haldane's application of single-type branching process theory showed that genetic drift alone could cause the extinction of newly arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a newly arising beneficial mutation as a multitype branching process. Our approach accounts for the combined effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination We first study the lineage-contamination phenomenon in isolation, deriving dynamics and survival probabilities (the complement of extinction probabilities) of beneficial lineages. We find that survival probability is zero when [Formula: see text] where U is deleterious mutation rate and [Formula: see text] is the selective advantage of the beneficial mutation in question, and is otherwise depressed below classical predictions by a factor bounded from below by [Formula: see text] We then put the lineage contamination phenomenon into the context of an evolving population by incorporating the effects of background selection. We find that, under the combined effects of lineage contamination and background selection, ensemble survival probability is never zero but is depressed below classical predictions by a factor bounded from below by [Formula: see text] where [Formula: see text] is mean selective advantage of beneficial mutations, and [Formula: see text] This factor, and other bounds derived from it, are independent of the fitness effects of deleterious mutations. At high enough mutation rates, lineage contamination can depress fixation probabilities to values that approach zero. This fact suggests that high mutation rates can, perhaps paradoxically, (1) alleviate competition among beneficial mutations, or (2) potentially even shut down the adaptive process. We derive critical mutation rates above which these two events become likely.
Collapse
|
19
|
Evolution of Mutation Rates in Rapidly Adapting Asexual Populations. Genetics 2016; 204:1249-1266. [PMID: 27646140 DOI: 10.1534/genetics.116.193565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022] Open
Abstract
Mutator and antimutator alleles often arise and spread in both natural microbial populations and laboratory evolution experiments. The evolutionary dynamics of these mutation rate modifiers are determined by indirect selection on linked beneficial and deleterious mutations. These indirect selection pressures have been the focus of much earlier theoretical and empirical work, but we still have a limited analytical understanding of how the interplay between hitchhiking and deleterious load influences the fates of modifier alleles. Our understanding is particularly limited when clonal interference is common, which is the regime of primary interest in laboratory microbial evolution experiments. Here, we calculate the fixation probability of a mutator or antimutator allele in a rapidly adapting asexual population, and we show how this quantity depends on the population size, the beneficial and deleterious mutation rates, and the strength of a typical driver mutation. In the absence of deleterious mutations, we find that clonal interference enhances the fixation probability of mutators, even as they provide a diminishing benefit to the overall rate of adaptation. When deleterious mutations are included, natural selection pushes the population toward a stable mutation rate that can be suboptimal for the adaptation of the population as a whole. The approach to this stable mutation rate is not necessarily monotonic: even in the absence of epistasis, selection can favor mutator and antimutator alleles that "overshoot" the stable mutation rate by substantial amounts.
Collapse
|
20
|
Moura de Sousa JA, Alpedrinha J, Campos PRA, Gordo I. Competition and fixation of cohorts of adaptive mutations under Fisher geometrical model. PeerJ 2016; 4:e2256. [PMID: 27547562 PMCID: PMC4975028 DOI: 10.7717/peerj.2256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022] Open
Abstract
One of the simplest models of adaptation to a new environment is Fisher’s Geometric Model (FGM), in which populations move on a multidimensional landscape defined by the traits under selection. The predictions of this model have been found to be consistent with current observations of patterns of fitness increase in experimentally evolved populations. Recent studies investigated the dynamics of allele frequency change along adaptation of microbes to simple laboratory conditions and unveiled a dramatic pattern of competition between cohorts of mutations, i.e., multiple mutations simultaneously segregating and ultimately reaching fixation. Here, using simulations, we study the dynamics of phenotypic and genetic change as asexual populations under clonal interference climb a Fisherian landscape, and ask about the conditions under which FGM can display the simultaneous increase and fixation of multiple mutations—mutation cohorts—along the adaptive walk. We find that FGM under clonal interference, and with varying levels of pleiotropy, can reproduce the experimentally observed competition between different cohorts of mutations, some of which have a high probability of fixation along the adaptive walk. Overall, our results show that the surprising dynamics of mutation cohorts recently observed during experimental adaptation of microbial populations can be expected under one of the oldest and simplest theoretical models of adaptation—FGM.
Collapse
Affiliation(s)
| | | | - Paulo R A Campos
- Departamento de Fisica, Cidade Universitária, Universidade Federal de Pernambuco , Recife , Pernambuco , Brazil
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência , Oeiras , Portugal
| |
Collapse
|
21
|
Sprouffske K, Aguilar-Rodríguez J, Wagner A. How Archiving by Freezing Affects the Genome-Scale Diversity of Escherichia coli Populations. Genome Biol Evol 2016; 8:1290-8. [PMID: 26988250 PMCID: PMC4898790 DOI: 10.1093/gbe/evw054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the experimental evolution of microbes such as Escherichia coli, many replicate populations are evolved from a common ancestor. Freezing a population sample supplemented with the cryoprotectant glycerol permits later analysis or restarting of an evolution experiment. Typically, each evolving population, and thus each sample archived in this way, consists of many unique genotypes and phenotypes. The effect of archiving on such a heterogeneous population is unknown. Here, we identified optimal archiving conditions for E. coli. We also used genome sequencing of archived samples to study the effects that archiving has on genomic population diversity. We observed no allele substitutions and mostly small changes in allele frequency. Nevertheless, principal component analysis of genome-scale allelic diversity shows that archiving affects diversity across many loci. We showed that this change in diversity is due to selection rather than drift. In addition, ∼1% of rare alleles that occurred at low frequencies were lost after treatment. Our observations imply that archived populations may be used to conduct fitness or other phenotypic assays of populations, in which the loss of a rare allele may have negligible effects. However, caution is appropriate when sequencing populations restarted from glycerol stocks, as well as when using glycerol stocks to restart or replay evolution. This is because the loss of rare alleles can alter the future evolutionary trajectory of a population if the lost alleles were strongly beneficial.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
22
|
Abstract
Adaptation is the process in which organisms improve their fitness by changing their phenotype using genetic or non-genetic mechanisms. The adaptation toolbox consists of varied molecular and genetic means that we posit span an almost continuous "adaptation spectrum." Different adaptations are characterized by the time needed for organisms to attain them and by their duration. We suggest that organisms often adapt by progressing the adaptation spectrum, starting with rapidly attained physiological and epigenetic adaptations and culminating with slower long-lasting genetic ones. A tantalizing possibility is that earlier adaptations facilitate realization of later ones.
Collapse
|
23
|
Abstract
Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability-the ability to adapt-and adaptedness-the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)-the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Karve SM, Daniel S, Chavhan YD, Anand A, Kharola SS, Dey S. Escherichia coli populations in unpredictably fluctuating environments evolve to face novel stresses through enhanced efflux activity. J Evol Biol 2015; 28:1131-43. [PMID: 25865653 DOI: 10.1111/jeb.12640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
There is considerable understanding about how laboratory populations respond to predictable (constant or deteriorating environment) selection for single environmental variables such as temperature or pH. However, such insights may not apply when selection environments comprise multiple variables that fluctuate unpredictably, as is common in nature. To address this issue, we grew replicate laboratory populations of Escherichia coli in nutrient broth whose pH and concentrations of salt (NaCl) and hydrogen peroxide (H2 O2 ) were randomly changed daily. After ~170 generations, the fitness of the selected populations had not increased in any of the three selection environments. However, these selected populations had significantly greater fitness in four novel environments which have no known fitness-correlation with tolerance to pH, NaCl or H2 O2 . Interestingly, contrary to expectations, hypermutators did not evolve. Instead, the selected populations evolved an increased ability for energy-dependent efflux activity that might enable them to throw out toxins, including antibiotics, from the cell at a faster rate. This provides an alternate mechanism for how evolvability can evolve in bacteria and potentially lead to broad-spectrum antibiotic resistance, even in the absence of prior antibiotic exposure. Given that environmental variability is increasing in nature, this might have serious consequences for public health.
Collapse
Affiliation(s)
- S M Karve
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - S Daniel
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Y D Chavhan
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - A Anand
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India.,Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal, India
| | - S S Kharola
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - S Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
25
|
Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity (Edinb) 2014; 113:375-80. [PMID: 24849169 DOI: 10.1038/hdy.2014.49] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/01/2023] Open
Abstract
Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.
Collapse
|
26
|
Raynes Y, Halstead AL, Sniegowski PD. The effect of population bottlenecks on mutation rate evolution in asexual populations. J Evol Biol 2013; 27:161-9. [PMID: 24330404 DOI: 10.1111/jeb.12284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/20/2023]
Abstract
In the absence of recombination, a mutator allele can spread through a population by hitchhiking with beneficial mutations that appear in its genetic background. Theoretical studies over the past decade have shown that the survival and fixation probability of beneficial mutations can be severely reduced by population size bottlenecks. Here, we use computational modelling and evolution experiments with the yeast S. cerevisiae to examine whether population bottlenecks can affect mutator dynamics in adapting asexual populations. In simulation, we show that population bottlenecks can inhibit mutator hitchhiking with beneficial mutations and are most effective at lower beneficial mutation supply rates. We then subjected experimental populations of yeast propagated at the same effective population size to three different bottleneck regimes and observed that the speed of mutator hitchhiking was significantly slower at smaller bottlenecks, consistent with our theoretical expectations. Our results, thus, suggest that bottlenecks can be an important factor in mutation rate evolution and can in certain circumstances act to stabilize or, at least, delay the progressive elevation of mutation rates in asexual populations. Additionally, our findings provide the first experimental support for the theoretically postulated effect of population bottlenecks on beneficial mutations and demonstrate the usefulness of studying mutator frequency dynamics for understanding the underlying dynamics of fitness-affecting mutations.
Collapse
Affiliation(s)
- Y Raynes
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - A L Halstead
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - P D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Luan G, Cai Z, Gong F, Dong H, Lin Z, Zhang Y, Li Y. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system. Protein Cell 2013; 4:854-62. [PMID: 24214875 PMCID: PMC4875452 DOI: 10.1007/s13238-013-3079-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023] Open
Abstract
Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution. However, there have not been any similar systems developed for Clostridium, an important bacterial genus. Here we report a novel two-step strategy for developing controllable hypermutable cells of Clostridium acetobutylicum, an important and representative industrial strain. Firstly, the mutS/L operon essential for methyldirected mismatch repair (MMR) activity was inactivated from the genome of C. acetobutylicum to generate hypermutable cells with over 250-fold increased mutation rates. Secondly, a proofreading control system carrying an inducibly expressed mutS/L operon was constructed. The hypermutable cells and the proofreading control system were integrated to form a controllable hypermutable system SMBMutC, of which the mutation rates can be regulated by the concentration of anhydrotetracycline (aTc). Duplication of the miniPthl-tetR module of the proofreading control system further significantly expanded the regulatory space of the mutation rates, demonstrating hypermutable Clostridium cells with controllable mutation rates are generated. The developed C. acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress, indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.
Collapse
Affiliation(s)
- Guodong Luan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fuyu Gong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhao Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
28
|
Turrientes MC, Baquero F, Levin BR, Martínez JL, Ripoll A, González-Alba JM, Tobes R, Manrique M, Baquero MR, Rodríguez-Domínguez MJ, Cantón R, Galán JC. Normal mutation rate variants arise in a Mutator (Mut S) Escherichia coli population. PLoS One 2013; 8:e72963. [PMID: 24069167 PMCID: PMC3771984 DOI: 10.1371/journal.pone.0072963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
The rate at which mutations are generated is central to the pace of evolution. Although this rate is remarkably similar amongst all cellular organisms, bacterial strains with mutation rates 100 fold greater than the modal rates of their species are commonly isolated from natural sources and emerge in experimental populations. Theoretical studies postulate and empirical studies teort the hypotheses that these “mutator” strains evolved in response to selection for elevated rates of generation of inherited variation that enable bacteria to adapt to novel and/or rapidly changing environments. Less clear are the conditions under which selection will favor reductions in mutation rates. Declines in rates of mutation for established populations of mutator bacteria are not anticipated if such changes are attributed to the costs of augmented rates of generation of deleterious mutations. Here we report experimental evidence of evolution towards reduced mutation rates in a clinical isolate of Escherichia coli with an hyper-mutable phenotype due a deletion in a mismatch repair gene, (ΔmutS). The emergence in a ΔmutS background of variants with mutation rates approaching those of the normal rates of strains carrying wild-type MutS was associated with increase in fitness with respect to ancestral strain. We postulate that such an increase in fitness could be attributed to the emergence of mechanisms driving a permanent “aerobic style of life”, the negative consequence of this behavior being regulated by the evolution of mechanisms protecting the cell against increased endogenous oxidative radicals involved in DNA damage, and thus reducing mutation rate. Gene expression assays and full sequencing of evolved mutator and normo-mutable variants supports the hypothesis. In conclusion, we postulate that the observed reductions in mutation rate are coincidental to, rather than, the selective force responsible for this evolution.
Collapse
Affiliation(s)
- María-Carmen Turrientes
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta Georgia, United States of America
| | - José-Luis Martínez
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Aida Ripoll
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - José-María González-Alba
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Raquel Tobes
- Research Department, Era7 Bioinformatics, Granada, Spain
| | | | | | | | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Juan-Carlos Galán
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| |
Collapse
|
29
|
Abstract
From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.
Collapse
|
30
|
Jain K, Nagar A. Fixation of mutators in asexual populations: the role of genetic drift and epistasis. Evolution 2013; 67:1143-54. [PMID: 23550762 DOI: 10.1111/evo.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We study the evolutionary dynamics of an asexual population of nonmutators and mutators on a class of epistatic fitness landscapes. We consider the situation in which all mutations are deleterious and mutators are produced from nonmutators continually at a constant rate. We find that in an infinitely large population, a minimum nonmutator-to-mutator conversion rate is required to fix the mutators but an arbitrarily small conversion rate results in the fixation of mutators in a finite population. We calculate analytical expressions for the mutator fraction at mutation-selection balance and fixation time for mutators in a finite population when the difference between the mutation rate for mutator and nonmutator is smaller (regime I) and larger (regime II) than the selection coefficient. Our main result is that in regime I, the mutator fraction and the fixation time are independent of epistasis but in regime II, mutators are rarer and take longer to fix when the decrease in fitness with the number of deleterious mutations occurs at an accelerating rate (synergistic epistasis) than at a diminishing rate (antagonistic epistasis). Our analytical results are compared with numerics and their implications are discussed.
Collapse
Affiliation(s)
- Kavita Jain
- Theoretical Sciences Unit and Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| | | |
Collapse
|
31
|
Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, Chane-Woon-Ming B, Médigue C, Lenski RE, Schneider D. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A 2013; 110:222-7. [PMID: 23248287 PMCID: PMC3538217 DOI: 10.1073/pnas.1219574110] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations are the ultimate source of heritable variation for evolution. Understanding how mutation rates themselves evolve is thus essential for quantitatively understanding many evolutionary processes. According to theory, mutation rates should be minimized for well-adapted populations living in stable environments, whereas hypermutators may evolve if conditions change. However, the long-term fate of hypermutators is unknown. Using a phylogenomic approach, we found that an adapting Escherichia coli population that first evolved a mutT hypermutator phenotype was later invaded by two independent lineages with mutY mutations that reduced genome-wide mutation rates. Applying neutral theory to synonymous substitutions, we dated the emergence of these mutations and inferred that the mutT mutation increased the point-mutation rate by ∼150-fold, whereas the mutY mutations reduced the rate by ∼40-60%, with a corresponding decrease in the genetic load. Thus, the long-term fate of the hypermutators was governed by the selective advantage arising from a reduced mutation rate as the potential for further adaptation declined.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Laboratoire Adaptation et Pathogénie des Micro-Organismes, Université Joseph Fourier Grenoble, F-38042 Grenoble Cedex 9, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5163, F-38042 Grenoble Cedex 9, France
| | - Jeffrey E. Barrick
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
| | - Olivier Tenaillon
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé (UMR-S) 722, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 722, 75018 Paris, France
| | - Michael J. Wiser
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Zoology, Michigan State University, East Lansing, MI 48824
| | - W. James Dittmar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Stéphane Cruveiller
- CNRS, UMR 8030, 91057 Evry Cedex, France; and
- Commissariat à l'Energie Atomique et aux énergies alternatives/Direction des Sciences du Vivant/Institut de Génomique (CEA/DSV/IG) Genoscope Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme (LABGeM), 91057 Evry Cedex, France
| | - Béatrice Chane-Woon-Ming
- CNRS, UMR 8030, 91057 Evry Cedex, France; and
- Commissariat à l'Energie Atomique et aux énergies alternatives/Direction des Sciences du Vivant/Institut de Génomique (CEA/DSV/IG) Genoscope Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme (LABGeM), 91057 Evry Cedex, France
| | - Claudine Médigue
- CNRS, UMR 8030, 91057 Evry Cedex, France; and
- Commissariat à l'Energie Atomique et aux énergies alternatives/Direction des Sciences du Vivant/Institut de Génomique (CEA/DSV/IG) Genoscope Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme (LABGeM), 91057 Evry Cedex, France
| | - Richard E. Lenski
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Zoology, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Dominique Schneider
- Laboratoire Adaptation et Pathogénie des Micro-Organismes, Université Joseph Fourier Grenoble, F-38042 Grenoble Cedex 9, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5163, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
32
|
Gillings MR, Stokes H. Are humans increasing bacterial evolvability? Trends Ecol Evol 2012; 27:346-52. [DOI: 10.1016/j.tree.2012.02.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/21/2012] [Accepted: 02/28/2012] [Indexed: 12/01/2022]
|
33
|
Raynes Y, Gazzara MR, Sniegowski PD. Contrasting dynamics of a mutator allele in asexual populations of differing size. Evolution 2012; 66:2329-34. [PMID: 22759305 DOI: 10.1111/j.1558-5646.2011.01577.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutators have been shown to hitchhike in asexual populations when the anticipated beneficial mutation supply rate of the mutator subpopulation, NU(b) (for subpopulation of size N and beneficial mutation rate U(b)) exceeds that of the wild-type subpopulation. Here, we examine the effect of total population size on mutator dynamics in asexual experimental populations of Saccharomyces cerevisiae. Although mutators quickly hitchhike to fixation in smaller populations, mutator fixation requires more and more time as population size increases; this observed delay in mutator hitchhiking is consistent with the expected effect of clonal interference. Interestingly, despite their higher beneficial mutation supply rate, mutators are supplanted by the wild type in very large populations. We postulate that this striking reversal in mutator dynamics is caused by an interaction between clonal interference, the fitness cost of the mutator allele, and infrequent large-effect beneficial mutations in our experimental populations. Our work thus identifies a potential set of circumstances under which mutator hitchhiking can be inhibited in natural asexual populations, despite recent theoretical predictions that such populations should have a net tendency to evolve ever-higher genomic mutation rates.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA.
| | | | | |
Collapse
|
34
|
Abstract
Numerous empirical studies show that stress of various kinds induces a state of hypermutation in bacteria via multiple mechanisms, but theoretical treatment of this intriguing phenomenon is lacking. We used deterministic and stochastic models to study the evolution of stress-induced hypermutation in infinite and finite-size populations of bacteria undergoing selection, mutation, and random genetic drift in constant environments and in changing ones. Our results suggest that if beneficial mutations occur, even rarely, then stress-induced hypermutation is advantageous for bacteria at both the individual and the population levels and that it is likely to evolve in populations of bacteria in a wide range of conditions because it is favored by selection. These results imply that mutations are not, as the current view holds, uniformly distributed in populations, but rather that mutations are more common in stressed individuals and populations. Because mutation is the raw material of evolution, these results have a profound impact on broad aspects of evolution and biology.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
35
|
Raynes Y, Gazzara MR, Sniegowski PD. Mutator dynamics in sexual and asexual experimental populations of yeast. BMC Evol Biol 2011; 11:158. [PMID: 21649918 PMCID: PMC3141426 DOI: 10.1186/1471-2148-11-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/07/2011] [Indexed: 12/05/2022] Open
Abstract
Background In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Results Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. Conclusions We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | |
Collapse
|