1
|
Wu H, Wu Y. Experimental evolution reveals evolutionary bias and its causes. BMC Ecol Evol 2024; 24:145. [PMID: 39623316 PMCID: PMC11613857 DOI: 10.1186/s12862-024-02331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Species generally exhibits evolutionary bias, adapting towards a specific direction rather than others, yet the underlying causes remains unknown. RESULTS Here, we investigated evolutionary bias and its causes by conducting experimental evolution on Escherichia coli. We introduced an E. coli strain (lac-), initially unable to utilize lactose due to a frameshift mutation, into two different culture media: one medium (L) containing ample sodium acetate and lactose as carbon sources, and the other medium (G) containing abundant glucose and lactose as carbon sources. After 20 days of experimental evolution, our findings revealed that all L-populations underwent parallel evolution through reverse mutation to utilize lactose (lac+), resulting in a relatively higher fitness gain compared to utilizing sodium acetate. In contrast, all G-populations did not transition towards lactose utilization but instead continued to utilize glucose, which provides a higher fitness gain than utilizing lactose. These results demonstrate that our experimental populations in L and G media respectively exhibit biased evolution towards utilizing different carbon sources, yet all trajectories converge towards higher fitness gains. When lac+ (lactose-eater) and lac- (acetate-eater) were co-cultured in L medium, all lac- individuals were eventually eliminated, while lac + individuals were consistently selected and retained. CONCLUSIONS Our findings indicate that species tend to evolve with a bias towards directions that offer higher fitness gains, partly because high-fitness-gain directions competitively exclude low-fitness-gain directions.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
2
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
3
|
Warson J, Baguette M, Stevens VM, Honnay O, De Kort H. The impact of habitat loss on molecular signatures of coevolution between an iconic butterfly (Alcon blue) and its host plant (Marsh gentian). J Hered 2023; 114:22-34. [PMID: 36749638 DOI: 10.1093/jhered/esac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Habitat loss is threatening natural communities worldwide. Small and isolated populations suffer from inbreeding and genetic drift, which jeopardize their long-term survival and adaptive capacities. However, the consequences of habitat loss for reciprocal coevolutionary interactions remain poorly studied. In this study, we investigated the effects of decreasing habitat patch size and connectivity associated with habitat loss on molecular signatures of coevolution in the Alcon blue butterfly (Phengaris alcon) and its most limited host, the marsh gentian (Gentiana pneumonanthe). Because reciprocal coevolution is characterized by negative frequency-dependent selection as a particular type of balancing selection, we investigated how signatures of balancing selection vary along a gradient of patch size and connectivity, using single nucleotide polymorphisms (SNPs). We found that signatures of coevolution were unaffected by patch characteristics in the host plants. On the other hand, more pronounced signatures of coevolution were observed in both spatially isolated and in large Alcon populations, together with pronounced spatial variation in SNPs that are putatively involved in coevolution. These findings suggest that habitat loss can facilitate coevolution in large butterfly populations through limiting swamping of locally beneficial alleles by maladaptive ones. We also found that allelic richness (Ar) of the coevolutionary SNPs is decoupled from neutral Ar in the butterfly, indicating that habitat loss has different effects on coevolutionary as compared with neutral processes. We conclude that this specialized coevolutionary system requires particular conservation interventions aiming at generating a spatial mosaic of both connected and of isolated habitat to maintain coevolutionary dynamics.
Collapse
Affiliation(s)
- Jonas Warson
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Michel Baguette
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'HistoireNaturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Hanne De Kort
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
4
|
Malusare SP, Zilio G, Fronhofer EA. Evolution of thermal performance curves: A meta-analysis of selection experiments. J Evol Biol 2023; 36:15-28. [PMID: 36129955 PMCID: PMC10087336 DOI: 10.1111/jeb.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Temperatures are increasing due to global changes, putting biodiversity at risk. Organisms are faced with a limited set of options to cope with this situation: adapt, disperse or die. We here focus on the first possibility, more specifically, on evolutionary adaptations to temperature. Ectotherms are usually characterized by a hump-shaped relationship between fitness and temperature, a non-linear reaction norm that is referred to as thermal performance curve (TPC). To understand and predict impacts of global change, we need to know whether and how such TPCs evolve. Therefore, we performed a systematic literature search and a statistical meta-analysis focusing on experimental evolution and artificial selection studies. This focus allows us to directly quantify relative fitness responses to temperature selection by calculating fitness differences between TPCs from ancestral and derived populations after thermal selection. Out of 7561 publications screened, we found 47 studies corresponding to our search criteria representing taxa across the tree of life, from bacteria, to plants and vertebrates. We show that, independently of species identity, the studies we found report a positive response to temperature selection. Considering entire TPC shapes, adaptation to higher temperatures traded off with fitness at lower temperatures, leading to niche shifts. Effects were generally stronger in unicellular organisms. By contrast, we do not find statistical support for the often discussed "Hotter is better" hypothesis. While our meta-analysis provides evidence for adaptive potential of TPCs across organisms, it also highlights that more experimental work is needed, especially for under-represented taxa, such as plants and non-model systems.
Collapse
Affiliation(s)
- Sarthak P Malusare
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Giacomo Zilio
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
5
|
Ge D, Wen Z, Feijó A, Lissovsky A, Zhang W, Cheng J, Yan C, She H, Zhang D, Cheng Y, Lu L, Wu X, Mu D, Zhang Y, Xia L, Qu Y, Vogler AP, Yang Q. Genomic Consequences of and Demographic Response to Pervasive Hybridization Over Time in Climate-Sensitive Pikas. Mol Biol Evol 2022; 40:6958644. [PMID: 36562771 PMCID: PMC9847633 DOI: 10.1093/molbev/msac274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rare and geographically restricted species may be vulnerable to genetic effects from inbreeding depression in small populations or from genetic swamping through hybridization with common species, but a third possibility is that selective gene flow can restore fitness (genetic rescue). Climate-sensitive pikas (Ochotona spp.) of the Qinghai-Tibetan Plateau (QHTP) and its vicinity have been reduced to residual populations through the movement of climatic zones during the Pleistocene and recent anthropogenic disturbance, whereas the plateau pika (O. curzoniae) remains common. Population-level whole-genome sequencing (n = 142) of six closely related species in the subgenus Ochotona revealed several phases of ancient introgression, lineage replacement, and bidirectional introgression. The strength of gene flow was the greatest from the dominant O. curzoniae to ecologically distinct species in areas peripheral to the QHTP. Genetic analyses were consistent with environmental reconstructions of past population movements. Recurrent periods of introgression throughout the Pleistocene revealed an increase in genetic variation at first but subsequent loss of genetic variation in later phases. Enhanced dispersion of introgressed genomic regions apparently contributed to demographic recovery in three peripheral species that underwent range shifts following climate oscillations on the QHTP, although it failed to drive recovery of northeastern O. dauurica and geographically isolated O. sikimaria. Our findings highlight differences in timescale and environmental background to determine the consequence of hybridization and the unique role of the QHTP in conserving key evolutionary processes of sky island species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinlai Wu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Danping Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yubo Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
6
|
Olive M, Moerman F, Fernandez-Cassi X, Altermatt F, Kohn T. Removal of Waterborne Viruses by Tetrahymena pyriformis Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4062-4070. [PMID: 35258957 PMCID: PMC8988290 DOI: 10.1021/acs.est.1c05518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/20/2023]
Abstract
Biological treatment of waterborne viruses, specifically grazing of viruses by protists, can enhance microbial water quality while avoiding the production of toxic byproducts and high energy costs. However, tangible applications are limited by the lack of understanding of the underlying mechanisms. Here, we examined the feeding behavior of Tetrahymena pyriformis ciliates on 13 viruses, including bacteriophages, enteric viruses, and respiratory viruses. Significant differences in virus removal by T. pyriformis were observed, ranging from no removal (Qbeta, coxsackievirus B5) to ≥2.7 log10 (JC polyomavirus) after 48 h of co-incubation of the protist with the virus. Removal rates were conserved even when protists were co-incubated with multiple viruses simultaneously. Video analysis revealed that the extent of virus removal was correlated with an increase in the protists' swimming speed, a behavioral trait consistent with the protists' response to the availability of food. Protistan feeding may be driven by a virus' hydrophobicity but was independent of virus size or the presence of a lipid envelope.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix Moerman
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Florian Altermatt
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Plum K, Tarkington J, Zufall RA. Experimental Evolution in Tetrahymena. Microorganisms 2022; 10:414. [PMID: 35208869 PMCID: PMC8877770 DOI: 10.3390/microorganisms10020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes.
Collapse
Affiliation(s)
- Karissa Plum
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Jason Tarkington
- Department of Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
8
|
Moerman F, Fronhofer EA, Altermatt F, Wagner A. Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist Tetrahymena thermophila. J Anim Ecol 2021; 91:1088-1103. [PMID: 34582573 PMCID: PMC9291582 DOI: 10.1111/1365-2656.13598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Populations that expand their range can undergo rapid evolutionary adaptation of life‐history traits, dispersal behaviour and adaptation to the local environment. Such adaptation may be aided or hindered by sexual reproduction, depending on the context. However, few empirical and experimental studies have investigated the genetic basis of adaptive evolution during range expansions. Even less attention has been given to the question how sexual reproduction may modulate such adaptive evolution during range expansions. We here studied genomic adaptation during experimental range expansions of the protist Tetrahymena thermophila in landscapes with a uniform environment or a pH gradient. Specifically, we investigated two aspects of genomic adaptation during range expansion. First, we investigated adaptive genetic change in terms of the underlying numbers of allele frequency changes from standing genetic variation and de novo variants. We focused on how sexual reproduction may alter this adaptive genetic change. Second, we identified genes subject to selection caused by the expanding range itself, and directional selection due to the presence or absence of the pH gradient. We focused this analysis on alleles with large frequency changes that occurred in parallel in more than one population to identify the most likely candidate targets of selection. We found that sexual reproduction altered adaptive genetic change both in terms of de novo variants and standing genetic variation. However, sexual reproduction affected allele frequency changes in standing genetic variation only in the absence of long‐distance gene flow. Adaptation to the range expansion affected genes involved in cell divisions and DNA repair, whereas adaptation to the pH gradient additionally affected genes involved in ion balance and oxidoreductase reactions. These genetic changes may result from selection on growth and adaptation to low pH. In the absence of gene flow, sexual reproduction may have aided genetic adaptation. Gene flow may have swamped expanding populations with maladapted alleles, thus reducing the extent of evolutionary adaptation during range expansion. Sexual reproduction also altered the genetic basis of adaptation in our evolving populations via de novo variants, possibly by purging deleterious mutations or by revealing fitness benefits of rare genetic variants.
Collapse
Affiliation(s)
- Felix Moerman
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland.,ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, NM, USA.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, Urban MC. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
| | - Luc De Meester
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Institute of Biology Freie Universität Berlin Berlin Germany
| | | | - Mark A. McPeek
- Department of Biological Sciences Dartmouth College Hanover NH USA
| | - Jelena H. Pantel
- Department of Computer Science, Mathematics, and Environmental Science The American University of Paris Paris France
| | - Mark C. Urban
- Center of Biological Risk and Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
10
|
Moerman F, Fronhofer EA, Wagner A, Altermatt F. Gene swamping alters evolution during range expansions in the protist Tetrahymena thermophila. Biol Lett 2020; 16:20200244. [PMID: 32544380 PMCID: PMC7336843 DOI: 10.1098/rsbl.2020.0244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
At species' range edges, individuals often face novel environmental conditions that may limit range expansion until populations adapt. The potential to adapt depends on genetic variation upon which selection can act. However, populations at species' range edges are often genetically depauperate. One mechanism increasing genetic variation is reshuffling existing variation through sex. Sex, however, can potentially limit adaptation by breaking up existing beneficial allele combinations (recombination load). The gene swamping hypothesis predicts this is specifically the case when populations expand along an abiotic gradient and asymmetric dispersal leads to numerous maladapted dispersers from the range core swamping the range edge. We used the ciliate Tetrahymena thermophila as a model for testing the gene swamping hypothesis. We performed replicated range expansions in landscapes with or without a pH-gradient, while simultaneously manipulating the occurrence of gene flow and sexual versus asexual reproduction. We show that sex accelerated evolution of local adaptation in the absence of gene flow, but hindered it in the presence of gene flow. However, sex affected adaptation independently of the pH-gradient, indicating that both abiotic gradients and the biotic gradient in population density lead to gene swamping. Overall, our results show that gene swamping alters adaptation in life-history strategies.
Collapse
Affiliation(s)
- Felix Moerman
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Génopode, Lausanne 1015, Switzerland
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge—Bâtiment Génopode, Lausanne 1015, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland
| |
Collapse
|